抑制过氧化物酶体β-氧化对大鼠脑β-淀粉样蛋白生成的影响及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease, AD)是一种以进行性记忆和认知功能减退为主要临床表现的神经系统退行性疾病。随着社会人口的老龄化,AD发病率逐年上升,日益成为一个严重的社会问题。
     AD脑内的主要病理改变为神经细胞外老年斑、神经细胞内神经原纤维缠结及大量的神经元丢失。β-淀粉样蛋白(β-amyloid,Aβ)是各种原因诱发AD的关键因子,在启动AD的病理级联反应中处于中心地位。Aβ由β-淀粉样前体蛋白(β-amyloid precursor protein,APP)裂解产生。APP有两种裂解途径,一种是β-分泌酶途径,APP依次经β-和γ-分泌酶作用产生Aβ;另一种是α-分泌酶途径,α-分泌酶在Aβ序列内裂解APP,阻止Aβ的生成,这是正常情况下APP的主要代谢方式。APP的过度产生和异常裂解是导致Aβ生成增多的重要机制。Aβ产生过多,形成的Aβ寡聚体可抑制突触功能,通过炎症级联反应最终导致AD特征性病理改变及脑功能障碍。因此,探究何种原因可引发Aβ生成增多,对防治AD有着十分重要的意义。
     体内脂肪酸主要通过线粒体和过氧化物酶体中β-氧化途径分解。中长链直链脂肪酸主要在线粒体分解,极长链直链脂肪酸和支链脂肪酸主要在过氧化物酶体分解。近年研究显示,高脂、高饱和脂肪酸饮食是AD发生的重要危险因素。AD患者脑中的脂肪酸含量也较同龄人多。过氧化物酶体β-氧化酶缺陷的病人,体内极长链脂肪酸增多;与AD类似,这类病人都存在认知功能障碍。提示,过氧化物酶体脂肪酸β-氧化活性降低,极长链脂肪酸增加,可能与AD的发生有关。过氧化物酶体脂肪酸β-氧化的活性降低对AD发生的关键因子Aβ的生成有何影响?目前国内外尚未见报道。
     为此,本课题首先以成年大鼠为研究对象,用过氧化物酶β-氧化抑制剂甲硫哒嗪,选择性地抑制过氧化物酶体脂肪酸β-氧化活性,观察过氧化物酶体β-氧化活性降低对大鼠学习记忆及大脑Aβ生成的影响;然后,以原代培养的大鼠皮质神经元为研究对象,进一步确证过氧化物酶体脂肪酸β-氧化活性降低对Aβ生成途径的影响;最后,观察极长链脂肪酸对原代培养的大鼠皮质神经元Aβ生成途径的影响。本课题从不同层面探讨过氧化物酶体脂肪酸β-氧化活性降低与Aβ生成的关系,为进一步阐明Aβ生成的分子机制以及寻找AD的治疗靶点提供实验依据。本课题共分三个部分。
     第一部分抑制过氧化物酶体β-氧化对大鼠学习记忆及Aβ生成的影响
     目的:用甲硫哒嗪抑制过氧化物酶体β-氧化活性后,观察大鼠学习记忆能力、脑Aβ生成量、APP表达水平、β-分泌酶BACE1和α-分泌酶ADAM10 mRNA水平的变化,探讨脑过氧化物酶体脂肪酸β-氧化与AD发生的关系。
     方法:雄性SD大鼠随机分为对照组(Con组)和甲硫哒嗪组(TZ组),每组10只。TZ组按治疗剂量(10 mg·kg-1)每天腹腔注射甲硫哒嗪(生理盐水溶解),Con组注射以等量的生理盐水,共2 wk。Morris水迷宫测试大鼠空间学习记忆能力;每组各取3只大鼠心脏灌流固定后取脑皮质及海马作HE染色及APP免疫组化染色;其余大鼠颈动脉放血处死,血清用于血甘油三酯(TG)测定、总胆固醇(TC)测定、脂肪酸提取;大脑组织用于总RNA提取、Aβ测定、脂肪酸提取。
     结果:
     1血清十六烷酸(C_(16:0))、二十烷酸(C_(20:0))、二十二烷酸(C22:0)、二十四烷酸(C24:0)、二十六烷酸(C26:0)含量(用气相色谱测定)
     本实验条件下,未检测到血清中的C26:0。Con组血清C_(16:0)、C_(20:0)、C22:0、C24:0分别为血清总脂肪酸的(22.776±2.541)%、(0.410±0.025)%、(0.266±0.032)%、(0.252±0.036)%;TZ组血清C_(16:0)、C_(20:0)、C22:0、C24:0分别为血清总脂肪酸的(26.805±4.502)%、(0.437±0.035)%、(0.293±0.077)%、(0.420±0.134)%。其中TZ组C24:0含量较Con组高(P<0.05),表明甲硫哒嗪抑制了机体的过氧化物酶体β-氧化,引起血中极长链脂肪酸增加。
     2脑组织十六烷酸(C_(16:0))、二十烷酸(C_(20:0))、二十二烷酸(C22:0)、二十四烷酸(C24:0)、二十六烷酸(C26:0)水平(用气相色谱测定)
     Con组脑组织C_(16:0)、C_(20:0)、C_(22:0)、C_(24:0)、C_(26:0)分别为脑总脂肪酸的(20.034±1.534)%、(0.500±0.082)%、(0.386±0.105)%、(0.530±0.154)%、和(0.078±0.019)%;TZ组脑组织C_(16:0)、C_(20:0)、C_(22:0)、C_(24:0)、C_(26:0)分别为脑总脂肪酸的(20.164±1.100)%、(0.496±0.083)%、(0.362±0.106)%、(0.498±0.222)%、(0.122±0.034)%。其中TZ组脑组织C26:0含量较Con组高(P<0.05),表明甲硫哒嗪抑制了脑组织过氧化物酶体β-氧化活性,引起脑组织极长链脂肪酸增加。
     3大鼠学习记忆能力(用Morris水迷宫测定)。
     TZ组平均逃避潜伏期(23.5±11.7)s较Con组(12.3±5.8)s长(P<0.05),表明过氧化物酶体β-氧化活性降低后,大鼠空间学习记忆能力下降。
     4脑组织Aβ含量的变化(用放射性免疫分析法测定)
     TZ组脑组织Aβ含量(15.773±3.161)ng/g是Con组(11.833±0.593)ng/g的1.3倍(P<0.05),表明过氧化物酶体β-氧化活性降低时脑Aβ水平升高。
     5脑组织形态学(HE染色)
     TZ组和Con组脑皮质和海马区神经细胞的形态和分布未见区别。表明甲硫哒嗪并未引起脑组织形态学损伤。
     6大鼠脑皮质和海马区APP水平(免疫组织化学分析法)
     TZ组脑皮质和海马各区APP着色阳性细胞数量、着色强度高于Con组,图像分析显示,TZ组脑皮质和海马区平均光密度(0.300±0.008,0.245±0.021)高于Con组(0.247±0.006,0.215±0.012)(P<0.01,P<0.05)表明过氧化物酶体β-氧化活性降低后,脑APP表达升高。
     7脑组织APP695、APP751+770 mRNA水平(用RT-PCR法测定)
     Con组(0.172±0.044)和TZ组(0.197±0.030)APP695 mRNA水平的差异无统计学意义(P>0.05);APP751+770 mRNA水平TZ组(0.096±0.034)是Con组(0.039±0.020)的2.5倍(P<0.05);表明过氧化物酶体β-氧化活性降低后,APP751+770转录水平表达增多。
     8α-分泌酶ADAM10和β-分泌酶BACE1 mRNA水平(用RT-PCR法测定)
     ADAM10 mRNA水平在TZ组(0.108±0.039)与Con组(0.093±0.029)之间差异无统计学意义(P>0.05);而BACE1 mRNA水平TZ组(0.106±0.033)较Con组(0.04±0.017)高(P<0.05)。表明抑制过氧化物酶体β-氧化活性后,APP的β-分泌酶裂解途径上调,但对α-分泌酶裂解途径无明显影响。
     9血清TG、TC水平(用试剂盒酶法测定)
     TZ组血清TG(0.519±0.169)mmol/L与Con组(0.476±0.052)mmol/L比较差异无统计学意义(P>0.05)。TZ组血清TC(1.151±0.216)mmol/L较Con组(0.907±0.074)mmol/L高(P<0.05)。表明抑制过氧化物酶体β-氧化代谢影响脂质代谢,引起胆固醇水平升高。
     小结:
     1过氧化物酶体脂肪酸β-氧化活性下降,极长链脂肪酸升高时,APP和BACE1表达上调,Aβ生成增加。
     2过氧化物酶体β-氧化活性下降引起大脑认知功能降低与Aβ水平升高有关。
     第二部分抑制过氧化物酶体β-氧化对原代培养的大鼠皮质神经元APP代谢途径的影响
     目的:观察神经元过氧化物酶体β-氧化活性降低时APP、BACE1表达的变化,以进一步确证神经元过氧化物酶体β-氧化活性与Aβ生成途径的关系。
     方法:将原代培养的大鼠皮质神经元随机分为对照组(Con组)和甲硫哒嗪组(TZ组)。TZ组用0.2μmol/L的甲硫哒嗪(过氧化物酶体β-氧化抑制剂)作用24 h,倒置显微镜下观察神经元的形态变化,RT-PCR测定APP、BACE1、ADAM10 mRNA水平,Western blotting检测APP、BACE1蛋白水平。
     结果:
     1神经元形态变化
     TZ组和Con组神经元形态未见明显差异,表明本实验条件下用甲硫哒嗪抑制过氧化物酶体β-氧化未造成神经元形态学损伤。
     2 APP mRNA水平
     APP695 mRNA水平TZ组(1.085±0.139)和Con组(0.947±0.287)比较差异无统计学意义(P>0.05);APP770+751 mRNA水平TZ组(0.857±0.081)较Con组(0.651±0.158)高(P<0.05)。表明抑制过氧化物酶体β-氧化后主要引起了神经元APP770+751 mRNA升高,对APP695 mRNA无明显影响。
     3 APP蛋白水平
     APP蛋白量TZ组(9.75±2.75)较Con组(5.33±0.57)高(P<0.05)。表明抑制过氧化物酶体β-氧化后神经元APP蛋白表达增加。
     4 BACE1 mRNA水平
     TZ组(0.708±0.155)BACE1 mRNA水平较Con组(0.537±0.091)高(P<0.05)。表明抑制过氧化物酶体β-氧化后神经元BACE1 mRNA水平表达增加。
     5 BACE1蛋白水平
     BACE1蛋白量TZ组(19.0±2.94)较Con组(9.20±2.16)高(P<0.01)。表明抑制过氧化物酶体β-氧化后神经元BACE1蛋白表达增加,APP的β-分泌酶裂解途径上调。
     6 ADAM10 mRNA水平
     TZ组(0.720±0.162)ADAM10 mRNA的水平和Con组(0.600±0.081)比较差异无统计学意义(P>0.05)。表明抑制过氧化物酶体β-氧化对APPα-分泌酶裂解途径无明显影响。
     小结:
     抑制过氧化物酶体脂肪酸β-氧化活性后,皮质神经元的APP和BACE1的mRNA及蛋白升高,进一步表明整体水平抑制过氧化物酶体脂肪酸β-氧化所引起的脑Aβ水平的升高与皮质神经元APP和BACE1表达升高有关。
     第三部分极长链脂肪酸对原代培养的大鼠皮质神经元APP代谢途径的影响
     目的:观察极长链脂肪酸对APP、BACE1、ADAM10表达的影响,探讨极长链脂肪酸在过氧化物酶体β-氧化活性降低引起Aβ升高过程中的作用。
     方法:将原代培养的神经元随机分为3组:对照组(Con组)、二十烷酸组(EA组)和EA+Wy14,643组(EA+Wy组)。EA组用40μmol/L EA与细胞作用24 h以增加细胞内极长链脂肪酸浓度;EA+Wy组用40μmol/L EA和10μmol/L Wy14,643同时作用24 h,用PPARα的配体Wy14,643激活PPARα,增加细胞过氧化物酶体β-氧化活性从而促进细胞对二十烷酸的分解,降低细胞内二十烷酸的含量。倒置显微镜下观察神经元的形态变化,RT-PCR测定ACOX1、DBP、APP、BACE1、ADAM10 mRNA水平,Western blotting检测APP、BACE1蛋白水平。
     结果:
     1神经元的形态变化
     EA组、EA+Wy组神经元细胞形态与Con组相比,无明显差异。表明所给药物未造成神经元形态学损伤。
     2极长链脂肪酸对神经元APP、BACE1、ADAM10表达的影响
     ①极长链脂肪酸对APP表达的影响
     APP695 mRNA水平EA组(1.401±0.135)与Con组(1.242±0.099)之间差异无统计学意义(P>0.05);但APP751+770 mRNA和APP蛋白水平EA组(1.217±0.162,46.7±22.1)较Con组(0.942±0.094,12.0±2.0)高(P<0.05)。表明极长链脂肪酸可引起神经元内Aβ前体蛋白APP表达增加。
     ②极长链脂肪酸对BACE1表达的影响
     BACE1 mRNA EA组(0.852±0.161)与Con组(0.766±0.129)之间差异无统计学意义(P>0.05);但BACE1蛋白水平EA组(51.00±14.79)较Con组(27.67±6.35)高(P<0.05)。表明极长链脂肪酸虽对神经元内Aβ生成关键酶BACE1 mRNA水平无影响,但使其蛋白水平增加。
     ③极长链脂肪酸对ADAM10 mRNA水平的影响
     ADAM10 mRNA水平在EA组(1.291±0.158)与Con组(1.040±0.099)之间差异无统计学意义(P>0.05)。表明极长链脂肪酸对神经元内APP的α-分泌酶无明显影响。
     3激活PPARα增加脂肪酸β-氧化活性对神经元ACOX1、DBP、APP、BACE1、ADAM10表达的影响
     ①激活PPARα对神经元内ACOX1、DBP mRNA水平的影响ACOX1和DBP mRNA水平EA+Wy组(3.350±0.322,1.255±0.021)均较EA组(1.835±0.420,1.047±0.124)高(P<0.05),表明激活PPARα使过氧化物酶体β-氧化活性加强。
     ②激活PPARα增加脂肪酸β-氧化活性对APP表达的影响
     APP695、APP751+770 mRNA水平在EA+Wy组(1.203±0.152,1.335±0.032)与EA组(1.401±0.135,1.217±0.162)之间差异无统计学意义(P>0.05);但APP蛋白水平EA+Wy组(20.3±7.5)较EA组(46.7±22.1)有降低趋势(P=0.12)。表明激活PPARα促进脂肪酸β-氧化虽未对APP mRNA产生明显影响,但使APP蛋白有降低趋势。
     ③激活PPARα增加脂肪酸β-氧化活性对BACE1表达的影响BACE1 mRNA水平在EA+Wy组(0.756±0.037)与EA组(0.852±0.161)之间差异无统计学意义(P>0.05);但BACE1蛋白水平EA+Wy组(25.33±6.35)较EA组(51.00±14.79)低(P<0.05)。表明激活PPARα促进脂肪酸β-氧化可降低BACE1的表达。
     ④激活PPARα增加脂肪酸β-氧化活性对ADAM10mRNA水平的影响ADAM10 mRNA水平在EA+Wy组(1.141±0.083)与EA组(1.291±0.158)之间差异无统计学意义(P>0.05)。表明激活PPARα促进脂肪酸β-氧化对APP的α-分泌酶裂解途径无明显影响。
     小结:
     1极长链脂肪酸使皮质神经元Aβ生成途径中APP、BACE1表达升高。
     2激活PPARα促进脂肪酸的分解,可降低皮质神经元APP、BACE1的表达。
     结论
     1过氧化物酶体脂肪酸β-氧化活性下降时,极长链脂肪酸增加,通过上调神经元APP及β-分泌酶的表达,增加Aβ的生成。
     2过氧化物酶体β-氧化活性下降引起大脑认知功能降低与Aβ水平升高有关;过氧化物酶体脂肪酸β-氧化活性降低,有可能是AD发病的原因之一。
Alzheimer’s disease (AD) is a neurodegenerative disease of central neural system, characterized by progressive loss of memory and general cognitive decline. With the aging of the social population, the incidence of AD is increasing rapidly leading to a serious social problem.
     The pathological hallmark of AD includes extracellular senile plaque (SP), intraneuronal neurofibrillary tangles (NFTs) and loss of neuron. SP is composed of beta-amyloid peptides (Aβ) which is considered a pivotal fator associated with the pathogenesis of AD. Aβis derived from a transmembrane protein, beta-amyloid precursor protein (APP). APP is cleaved either byβ-secretase to initiate amyloidogenic processing to release Aβor byα-secretase to start nonamyloidogenic processing of APP, respectively. BACE1 is the key enzyme involved in the production of Aβ.α-Secretase splits Aβdomain to preclude Aβformation, which is the main way of APP proteolytic processing. Overexpression and abnormal cleavage of APP has been suggested a major cause for Aβproduction. Accumulation and aggregation of Aβis the primary cause of AD, inducing an inflammatory response followed by neuritic injury, hyperphosphorylation of tau protein and formation of fibrillary tangles, leading ultimately to neuronal dysfunction and cell death, which counted for the progressive symptom of AD. To date, however, what etiological factor induced overexpression and abnormal cleavage of APP to facilitate Aβproduction, has not been well understood.
     Peroxisomes are responsible for the catabolism of very long chain fatty acids and branched chain fatty acids in cell. Peroxisomal fatty acid beta-oxidation systems are transcriptionally regulated by peroxisome proliferator-activated receptor-α(PPARα), a member of the nuclear hormone receptor superfamily. Epidemiological studies suggest that high fat diets significantly increase the risk of AD and the degree of saturation of fatty acids is critical in determining the risk for AD. Neurofibrillary tangles in AD brain have been shown to be rich in palmitic and stearic fatty acids. And in patients with defects in peroxisomal beta-oxidation enzyme, the main metabolite abnormality was observed with elevated VLCFAs. Similar to AD, these patients usually showed progressive behavioral, cognitive and neurologic deterioration. Therefore, whether the elevated level of VLCFAs caused by the dysfunction of peroxisomal beta-oxidation is related to the development of AD, and whether the production of Aβis influenced by VLCFAs, are unclear.
     In the present work, we have studied the possible involvement of peroxisomal beta-oxidation and VLCFAs in the process of Aβgeneration, in vivo and in vitro. Firstly, we investigated the effect of inhihiting peroxisomal beta-oxidation by thioridazine, a selective inhibitor to peroxisomal beta-oxidation, on learning and memory and brain Aβof adult rats. Secondly, we subsequencely determined the effect of inhibiting peroxisomal beta-oxidation on the expression of APP and BACE1 in primary cultured rat cerebral cortical neurons. Thirdly, in order to illuminate the mechanism of effect of inhibiting peroxisomal beta-oxidation on APP secretory pathway, we determined the APP and BACE1 level in primary cultured neurons treated with VLCFAs or VLCFAs plus Wy14,643.
     PartⅠEffect of inhibiting peroxisomal beta-oxidation on the learning and memory and beta-amyloid generation in rat brain
     Objective: To observe the effect of peroxisomal beta-oxidation dysfunction on rat learning and memory and Aβgeneration in rat brain.
     Methods: Male SD rat were divided randomly into control group (Con group, n=10) and thioridazine (TZ group, n=10). TZ group was administered with 10 mg·kg-1 thioridazine by peritoneal injection for 2 weeks while Con group was administered with equal physiological saline. Morris water maze was used to measure rat spatial learning and memory performance. Rat cortex and hippocampus were dissected after perfusion fixation for further HE staining and APP immunohistochemistry. Blood was collected by carotid artery bloodletting, and the serum was used for the detection of serum triglyceride (TG), total cholesterol (TC), and extraction of fatty acids. Rat brains were used for the extraction of RNA and fatty acids and the detection of Aβ.
     Results:
     1 The content of serum fatty acids (C_(16:0), C_(20:0), C_(22:0), C_(24:0) and C_(26:0)) (determined by gas chromatography)
     On this experiment condation, we failed to detect serum C26:0. The content of serum C_(16:0), C_(20:0), C22:0 and C24:0 of Con group were (22.776±2.541)%, (0.410±0.025)%, (0.266±0.032)% and (0.252±0.036)% of general fatty acids respectively, while that of TZ group were (26.805±4.502)%, (0.437±0.035)%, (0.293±0.077)% and (0.420±0.134)% respectively. Compared with Con group, the C24:0 content of TZ group was significantly increased (P< 0.05). The results confirmed that thioridazine inhibited peroxisomal beta-oxidation and resulted in the increase of very long chain fatty acids in blood.
     2 The content of brain fatty acids (C_(16:0), C_(20:0), C22:0, C24:0 and C26:0) (determined by gas chromatography)
     Brain C_(16:0), C_(20:0), C22:0, C24:0 and C26:0 in Con group were (20.034±1.534)%, (0.500±0.082)%,(0.386±0.105)%,(0.530±0.154)% and (0.078±0.019)% of general fatty acids respectively, while that of TZ group were (20.164±1.100)%, (0.496±0.083)%, (0.362±0.106)%, (0.498±0.222)% and (0.122±0.034)% respectively. Compared with Con group, the C26:0 content of TZ group was significantly increased (P<0.05).The results confirmed that thioridazine inhibited peroxisomal beta-oxidation of brain and resulted in the increase of very long chain fatty acids in brain.
     3 Rat learning and memory performance (determined by Morris water maze) Compared with Con group (23.5±11.7) s, the escape latency of TZ group (12.3±5.8) s was significantly prolonged (P<0.05). The results showed that rat learning and memory capability were impaired after inhibiting peroxisomal beta-oxidation.
     4 The content of brain Aβ(determined by radioimmunoassay)
     Compared with Con group (11.833±0.593) ng/g, brain Aβcontent of TZ group (15.773±3.161) ng/g was significantly increased (P<0.05). The results showed that brain Aβincreased after inhibiting peroxisomal beta-oxidation.
     5 The morphological changes of brain (HE staining)
     Compared with Con group, tissue structure and neural cell morphology in cerebral cortex and hippocampus of TZ group had no singnificant change. The results showed that thioridazine did not lead to the pathological injury of brain.
     6 The APP level in rat cerebral cortex and hippocampus (determintd by immunohistochemistry)
     Compared with Con group, the amount of positive cells and the degree of staining by APP antibody in cerebral cortex and hippocampus of TZ group were remarkly increased. The results showed that the expression of brain APP increased after inhibiting peroxisomal beta-oxidation.
     7 The mRNA level of APP695 and APP751+770 (determined by RT-PCR)
     There was no statistical difference in brain APP695 mRNA level between Con group (0.172±0.044) and TZ group (0.197±0.030) (P>0.05). The APP751+770 mRNA level of TZ group (0.096±0.034) was singnificantly higher by 2.5 times than Con group (0.039±0.020) (P<0.05). The results showed that the expression of APP751+770 increased after inhibiting peroxisomal beta-oxidation.
     8 The mRNA level of ADAM10and BACE1 (determined by RT-PCR)
     There was no statistical difference in brain ADAM10 mRNA level between Con group (0.093±0.029) and TZ group (0.108±0.039) (P>0.05). The BACE1 mRNA level of TZ group (0.106±0.033) was singnificantly higher than that of Con group (0.04±0.017) (P<0.05). The results showed that theβ-secretase pathway of APP proteolytic processing was up-regulated while theα-secretase pathway was not affected obviously after inhibiting peroxisomal beta-oxidation. 9 The level of serum TG and TC (determined by the kits of enzymic method)
     There was no statistical difference in serum TG between Con group (0.476±0.052) mmol/L and TZ group (0.519±0.169) mmol/L (P>0.05). Compared with Con group (0.907±0.074), the serum TC level of TZ group (1.151±0.216) was significantly increased( P<0.05). The results showed that lipid metabolism was disordered with increasing serum cholesteral resulted from the inhibiting of peroxisomal beta-oxidation.
     Conclusion:
     1 Inhibition of peroxisomal fatty acid beta-oxidation with VLCFAs increasing promotes Aβproduction accompanied by the expression of APP and BACE1 increasing in brain.
     2 The brain cognitive impairment resulting from the inhibition of peroxisomal beta-oxidation is related to the increase of Aβ.
     PartⅡEffect of the inhibition of peroxisomal beta-oxidation on APP metabolism in primary cultured rat cortical neurons
     Objective: To observe the effect of inhibition of neuronal peroxisomal beta-oxidation on the expression of APP and BACE1.
     Methods: Primary cultured rat cortical neurons were divided randomly into control group (Con group, n=6) and thioridazine group (TZ group, n=6). TZ group and Con group were respectively administered with 0.2μmol/L thioridazine and phosphate buffer saline for 24 h. observe The changes of neuronal morphous and the expression of APP and BACE1 were observed by RT-PCR and Western blotting.
     Results:
     1 The morphological changes of neurons
     Neuronal morphous had no singnificant change between TZ group and Con group. The results showed that the inhibition of peroxisomal beta-oxidation by thioridazine didn’t lead to the neuronal morphological injury.
     2 The mRNA level of APP695 and APP770+751
     There was no statistical difference in brain APP695 mRNA level between Con group (0.947±0.287) and TZ group (1.085±0.139) (P>0.05). The APP751+770 mRNA level was singnificantly higher in TZ group (0.857±0.081) than that of Con group (0.651±0.158) (P<0.05). The results showed that the inhibition of peroxisomal beta-oxidation increased APP751+770 mRNA level, but not APP695.
     3 The protein level of APP
     The APP level was singnificantly higher in TZ group (9.75±2.75) than that of Con group (5.33±0.57) (P<0.05). The results showed that the protein level of APP was increased after inhibiting neuronal peroxisomal beta-oxidation.
     4 The mRNA level of BACE1
     The BACE1 mRNA level was singnificantly higher in TZ group (0.708±0.155) than that of Con group (0.537±0.091) (P<0.05). The results showed that the mRNA level of BACE1 was increased after inhibiting neuronal peroxisomal beta-oxidation.
     5 The protein level of BACE1
     The BACE1 protein level was singnificantly higher in TZ group (19.0±2.94) than that of Con group (9.20±2.16) (P<0.05). The results showed that theβ-secretase pathway of APP processing was up-regulated after inhibiting neuronal peroxisomal beta-oxidation.
     6 The mRNA expression of ADAM10
     There was no statistical difference in ADAM10 mRNA level between Con group (0.600±0.081) and TZ group (0.720±0.162) (P>0.05). The results showed that theα-secretase pathway of APP processing was not affected obviously by inhibiting peroxisomal beta-oxidation.
     Conclusion:
     The Aβincrease in brain is relevant to the enhanced APP and BACE1 expression after inhibiting peroxisomal beta-oxidation.
     PartⅢEffect of VLCFA on APP metabolism in primary cultured rat cortical neurons
     Objective: To observe the effect of VLCFA on the expression of APP, BACE1, and ADAM10
     Methods: Primary cultured neurons were divided randomly into: control group (Con group), eicosanic acid (EA group) and EA+Wy14,643 (EA+Wy group). EA group was administered with 40μmol/L EA for 24 h to increase eicosanic acid concentration in neurons; EA+Wy group was administered with 40μmol/L EA and 10μmol/L Wy14,643 simultaneously for 24 h to promote peroxisomal beta-oxidation to lower intracellular eicosanic acid level. The changes of neuronal morphous and the expression of APP and BACE1 were observed by RT-PCR and Western blotting.
     Results:
     1 The morphological changes of neurons There were no singnificant change in neuronal morphous between Con group, EA group and EA+Wy group. The results showed that the chemicals didn’t lead to the morphological injury of neurons.
     2 The mRNA level of ACOX1 and DBP
     The mRNA level of ACOX1 was singnificantly higher in EA+Wy group (3.350±0.322) than that of EA group (1.835±0.420) (P<0.05). The mRNA level of DBP was singnificantly higher in EA+Wy group (1.255±0.021) than that of EA group (1.047±0.124) (P<0.05). The results showed that activated-PPARαenhanced peroxisomal beta-oxidation in neurons.
     3 The mRNA level of APP695 and APP751+770
     There were no statistical difference in APP695 mRNA level between Con group (1.242±0.099), EA group (1.401±0.135) and EA+Wy group (1.203±0.152) (P>0.05).
     The mRNA levels of APP751+770 were singnificantly higher in EA group (1.217±0.162) and EA+Wy group (1.335±0.032) Con group (0.942±0.094) (P<0.05, P<0.01). There was no statistical difference in APP751+770 mRNA level between EA group and EA+Wy group (P>0.05).
     The results showed that eicosanic acid increased the mRNA expression of APP751+770, but did not affect the mRNA expression of APP695, and fatty acid oxidation promoted by activated-PPARαdidn’t affect the mRNA expression of APP.
     4 The protein level of APP
     The protein level of APP was significantly higher in EA group (46.7±22.1) than Con group (12.0±2.0) (P<0.05), and there was a degressive tendency in EA+Wy group (20.3±7.5) by compared with EA group (46.7±22.1) (P=0.12). The results showed that eicosanic acid increased APP protein level and APP protein level had a degressive tendency after activating PPARαto promote fatty acid oxidation.
     5 The mRNA expression of BACE1
     There were no statistical difference in BACE1 mRNA level between Con group (0.766±0.129), EA group (0.852±0.161) and EA+Wy group (0.756±0.037) (P>0.05). The results showed that eicosanic acid and the activation of PPARαdidn’t affect the mRNA expression of BACE1.
     6 The protein level of BACE1
     The BACE1 protein level of EA group (51.00±14.79) was significantly higher than Con group (27.67±6.35) (P<0.05), and compared with EA group, the BACE1 protein level of EA+Wy group (25.33±6.35) was significantly decreased (P<0.05). The results showed that eicosanic acid up-regulated the protein expression of BACE1 and the activation of PPARαto promote fatty acid oxidation decreased BACE1 protein level.
     7 The mRNA expression of ADAM10
     There were no statistical difference in ADAM10 mRNA level between Con group (1.040±0.099), EA group (1.291±0.158) and EA+Wy group (1.141±0.083) (P>0.05).The results showed that eicosanic acid and the activation of PPARαdidn’t affect the mRNA expression of ADAM10.
     Conclusion:
     1 VLCFA increases the expression of APP and BACE1 invoved in the process of Aβproduction in neurons.
     2 Promoting fatty acid oxidation by activated-PPARαdecreased the expression of APP and BACE1 involved in the process of Aβproduction in neurons.
     Summary:
     1 Increased VLCFA level resulted from the inhibition of peroxisomal fatty acid beta-oxidation can increase Aβproduction through up-regulating the expression of APP and BACE1.
     2 The brain cognitive impairment resulted from the inhibition of peroxisomal beta-oxidation is related to the increase of Aβ, and the dysfunction of peroxisomal beta-oxidation is one cause for the development of AD.
引文
1 KMasters CL, Simms G, Weinman NA, etal. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA, 1985,82:4245~4249
    2 Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256:184~185
    3 Morris MC, Evans DA, Bienias JL, etal. Dietary fats and the risk of incident Alzheimer disease.Arch Neurol, 2003, 60(2):194~200
    4 Goux WJ, Rodriguez S, Sparkman DR. Analysis of the core components of Alzheimer paired helical filaments. A gas chromatography/mass spectrometry characterization of fatty acids, carbohydrates and long-chain bases. FEBS Lett, 1995, 366(1):81~85
    5 Hashimoto T. Peroxisomal beta-oxidation enzymes. Cell Biochem Biophys, 2000,32 Spring:63~72
    6 Mannaerts GP, Van Veldhoven PP, Casteels M. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Cell Biochem Biophys, 2000, 32 Spring:73~87
    7 Latruffe N, Cherkaoui Malki M, Nicolas-Frances V, etal. Regulation of the peroxisomal beta-oxidation-dependent pathway by peroxisome proliferator-ctivated receptor alpha and kinases. Biochem Pharmacol, 2000, 60(8):1027~1032
    8 Poirier Y, Antonenkov VD, Glumoff T, etal. Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. Biochim Biophys Acta, 2006, 1763(12):1413~1426
    9 Kang J, Lemaire HG, Unterbeck A, etal. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor. Nature, 1987,325:733~736
    10 Walter J, Kaether C, Steiner H, etal. The cell biology of Alzheimer's disease: uncovering the secrets of secretases. Curr Opin Neurobiol, 2001, 11(5):585~590
    11 Wanders RJ. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol Genet Metab, 2004, 83(1-2):16~27
    12 Van den Branden C, Roels F. Thioridazine: a selective inhibitor of peroxisomal beta-oxidation in vivo. FEBS Lett, 1985,187(2):331~333
    13 Van den Branden C, Vamecq J, Dacremont G, etal. Short and long term influence of phenothiazines on liver peroxisomal fatty acid oxidation in rodents. FEBS Lett,1987, 222(1):21~26
    14 Daniel WA, Syrek M, Mach A, etal. Pharmacokinetics of thioridazine and its metabolites in blood plasma and the brain of rats after acute and chronic treatment. Pol J Pharmacol, 1997, 49(6):439~452
    15 Markwell MAK, Haos SM, Bieber LL, et al. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem, 1978, 87: 206~210
    16 Suzuki Y, Jiang LL, Souri M, et al. D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency:a newly identified peroxisomal disorder. Am J Hum Genet, 1997, 61:1153~1162
    17 Wanders RJ, Vreken P, Ferdinandusse S, etal. Peroxisomal fatty acid alpha- and beta-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. Biochem Soc Trans, 2001, 29(Pt 2):250~267
    18 Klein WL, Krafft GA, Finch CE. Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci, 2001, 24(4):219~224
    19 Walsh DM, Klyubin I, Fadeeva JV, etal. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo.Nature, 2002, 416(6880):535~539
    20 Cleary JP, Walsh DM, Hofmeister JJ, etal. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci, 2005, 8(1):79~84
    21 Gedye A. Neuroleptic-induced dementia documented in four adults with mental retardation. Ment Retard, 1998, 36(3):182~186
    22 Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloidA4 protein resembles a cell surface receptor. Nature, 1987, 325:733~736
    23 Tanaka S, Liu L, Kimura J, etal. Age-related changes in the proportion of amyloid precursor protein mRNAs in Alzheimer's disease and other neurological disorders. Brain Res Mol Brain Res, 1992, 15(3-4):303~310
    24 Tanaka S, Nakamura S, Kimura J, etal. Age-related change in the proportion of amyloid precursor protein mRNAs in the gray matter of cerebral cortex.Neurosci Lett, 1993, 163(1):19~21
    25 Moir RD, Tanzi RE. LRP-mediated clearance of Abeta is inhibited by KPI-containing isoforms of APP. Curr Alzheimer Res, 2005, 2(2):269~273
    26 Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease.Trends Cell Biol, 1998, 8(11):447~453
    27 Hussain I, Powell D, Howlett DR, etal. Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci, 1999, 14(6):419~27
    28 Lin X, Koelsch G, Wu S, etal. Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci U S A, 2000, 97(4):1456~1460
    29 Sinha S, Anderson JP, Barbour R, etal. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 1999, 402(6761):537~540
    30 Cai H, Wang Y, McCarthy D, etal. BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci, 2001, 4(3):233~234
    31 Kojro E, Gimpl G, Lammich S, etal. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10.Proc Natl Acad Sci U S A, 2001, 98(10):5815~5820
    32 Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med, 1999, 222(3):236~245
    33 Ferdinandusse S, Finckh B, de Hingh YC, etal. Evidence for increased oxidative stress in peroxisomal D-bifunctional protein deficiency. Mol Genet Metab, 2003, 79(4):281~287
    34 Vargas CR, Wajner M, Sirtori LR, etal. Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta, 2004, 1688(1):26~32
    35 Yan SD, Yan SF, Chen X, etal. Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med, 1995, 1(7):693~699
    36 Tamagno E, Bardini P, Obbili A, etal. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis, 2002, 10(3):279~288
    37 Frederikse PH, Garland D, Zigler JS Jr, etal. Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J Biol Chem, 1996, 271(17):10169~10174
    38 Paola D, Domenicotti C, Nitti M, etal. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells. Biochem Biophys Res Commun, 2000, 268(2):642~646
    39 Patil S, Sheng L, Masserang A, etal. Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons. Neurosci Lett, 2006, 406(1-2):55~59
    40 Su HM, Moser AB, Moser HW, etal. Peroxisomal straight-chain Acyl-CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. J Biol Chem, 2001, 276(41):38115~38120
    41 Lim GP, Calon F, Morihara T, etal. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci, 2005, 25(12):3032~3040
    42 Meyer JM, Koro CE. The effects of antipsychotic therapy on serum lipids: a comprehensive review. Schizophr Res, 2004, 70(1):1~17
    43 Davis JC, Bigger JT. The effects of thioridazine on electrical and ischemic ventricular fibrillation in the dog heart in situ. J Pharmacol Exp Ther, 1981, 216(1):39~44
    1 Farioli-Vecchioli S, Moreno S, Ceru MP. Immunocytochemical localization of acyl-CoA oxidase in the rat central nervous system. J Neurocytol, 2001, 30(1):21~33
    2 Itoh M, Suzuki Y, Takashima S. A novel peroxisomal enzyme, D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenasebifunctional protein: its expression in the developing human brain. Microsc Res Tech, 1999, 45(6):383~388
    3 Fukumoto H, Tomita T, Matsunaga H, etal. Primary cultures of neuronal and non-neuronal rat brain cells secrete similar proportions of amyloid beta peptides ending at A beta40 and A beta42. Neuroreport, 1999, 10(14):2965~2969
    4 Yue X, Lu M, Lancaster T, etal. Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer's disease animal model. Proc Natl Acad Sci U S A, 2005, 102(52):19198~19203
    5 Liskowsky W, Schliebs R. Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int J Dev Neurosci, 2006, 24(2-3):149~156
    6 Suzuki Y, Jiang LL, Souri M, et al. D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency:a newly identified peroxisomal disorder. Am J Hum Genet, 1997, 61:1153~1162
    7 Wanders RJ, Vreken P, Ferdinandusse S, etal. Peroxisomal fatty acid alpha- and beta-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. Biochem Soc Trans, 2001, 29(Pt 2):250~267
    8 Tanaka K, Shimada M, Naruto T, etal. Very long-chain fatty acids in erythrocyte membrane phospholipids in adrenoleukodystrophy. Acta Paediatr Jpn, 1989, 31(2):136~143
    9 Glomset JA. Role of docosahexaenoic acid in neuronal plasma membranes. Sci STKE, 2006, 2006(321):pe6
    10 Latruffe N, Vamecq J, Cherkaoui Malki M. Genetic-dependency of peroxisomal cell functions - emerging aspects. J Cell Mol Med, 2003, 7(3):238~248
    11 Akbar M, Calderon F, Wen Z, etal. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci U S A,2005, 102(31):10858~10863
    1 Kalmijn S, Launer LJ, Ott A, etal. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol, 1997, 42(5):776~782
    2 Morris MC, Evans DA, Bienias JL, etal. Dietary fats and the risk of incident Alzheimer disease. Arch Neurol, 2003, 60(2):194~200
    3 Patil S, Sheng L, Masserang A, etal. Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment ofAPP in primary cortical neurons. Neurosci Lett, 2006, 406(1-2):55~59
    4 Lim GP, Calon F, Morihara T, etal. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci, 2005, 25(12):3032~3040
    5 Krey G, Braissant O, L'Horset F, etal. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol, 1997, 11(6):779~791
    6 Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A, 1997, 94(9):4312~4317
    7 Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr, 2001, 21:193~230
    8 Aoyama T, Peters JM, Iritani N, etal. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem, 1998, 273(10):5678~5684
    9 Levin-Allerhand JA, Lominska CE, Smith JD. Increased amyloid- levels in APPSWE transgenic mice treated chronically with a physiological high-fat high-cholesterol diet. J Nutr Health Aging, 2002, 6(5):315~319
    10 Ferdinandusse S, Finckh B, de Hingh YC, etal. Evidence for increased oxidative stress in peroxisomal D-bifunctional protein deficiency. Mol Genet Metab, 2003, 79(4):281~287
    11 Vargas CR, Wajner M, Sirtori LR, etal. Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta, 2004, 1688(1):26~32
    12 Kim SI, Yi JS, Ko YG. Amyloid beta oligomerization is induced by brain lipid rafts. J Cell Biochem, 2006, 15;99(3):878~889.
    13 Tanaka K, Shimada M, Naruto T, etal. Very long-chain fatty acids inerythrocyte membrane phospholipids in adrenoleukodystrophy. Acta Paediatr Jpn, 1989, 31(2):136~143
    14 Monti LD, Landoni C, Setola E, etal. Myocardial insulin resistance associated with chronic hypertriglyceridemia and increased FFA levels in Type 2 diabetic patients. Am J Physiol Heart Circ Physiol, 2004, 287(3):H1225~231
    15 Arvanitakis Z, Wilson RS, Bienias JL, etal. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol, 2004, 61(5):661~666
    16 Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med, 2004, 82(8):510~529
    17 Goux WJ, Rodriguez S, Sparkman DR. Analysis of the core components of Alzheimer paired helical filaments. A gas chromatography/mass spectrometry characterization of fatty acids, carbohydrates and long-chain bases. FEBS Lett, 1995, 366(1):81~85
    18 Roher AE, Weiss N, Kokjohn TA etal. Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer's disease. Biochemistry, 2002, 41(37):11080~11090
    19 Guo Z, Cupples LA, Kurz A, etal. Head injury and the risk of AD in the MIRAGE study. Neurology, 2000, 54(6):1316~1323
    20 Nunomura A, Perry G, Aliev G, etal. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol, 2001, 60:759~767
    21 Standridge JB. Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer's disease. Curr Alzheimer Res, 2006, 3(2):95~108
    22 Simons K, Ikonen E. Functional rafts in cell membranes. Nature, 1997, 387(6633):569~572
    23 Edidin M. Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol, 2003, 4(5):414~418
    24 Abad-Rodriguez J, Ledesma MD, Craessaerts K, etal. Neuronal membranecholesterol loss enhances amyloid peptide generation. J Cell Biol, 2004, 167(5):953~960
    25 Ehehalt R, Keller P, Haass C, etal. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol, 2003, 160(1):113~123
    26 Tamboli IY, Prager K, Barth E, etal. Inhibition of glycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloid beta-peptide. J Biol Chem, 2005, 280(30):28110~28117
    27 Kakio A, Nishimoto S, Yanagisawa K, etal. Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry, 2002, 41(23):7385~7390
    28 Kakio A, Nishimoto S, Kozutsumi Y, etal. Formation of a membrane-active form of amyloid beta-protein in raft-like model membranes. Biochem Biophys Res Commun, 2003, 303(2):514~518
    29 Lazo O, Singh AK, Singh I. Postnatal development and isolation of peroxisomes from brain. J Neurochem, 1991, 56(4):1343~1353
    30 Bourre JM, Piciotti M. Alterations in eighteen-carbon saturated, monounsaturated and polyunsaturated fatty acid peroxisomal oxidation in mouse brain during development and aging. Biochem Mol Biol Int, 1997, 41(3):461~468.
    1 Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell, 1996, 87(3):377~389
    2 Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci USA,1999, 96: 2327~2332
    3 Depreter M, Espeel M, Roels F. Human peroxisomal disorders. Microsc Res Tech, 2003, 61(2):203~223
    4 Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr, 2001, 21:193~230
    5 Latruffe N, Vamecq J, Cherkaoui Malki M. Genetic-dependency of peroxisomal cell functions - emerging aspects. J Cell Mol Med, 2003, 7(3):238~248
    6 Hiltunen JK, Karki T, Hassinen IE, etal. Beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. J Biol Chem, 1986, 261(35):16484~16493
    7 Osmundsen H, Bjornstad K. Inhibitory effects of some long-chain unsaturated fatty acids on mitochondrial beta-oxidation. Effects of streptozotocin-induced diabetes on mitochondrial beta-oxidation of polyunsaturated fatty acids. Biochem J, 1985, 230(2):329~337
    8 IJlst L, Mandel H, Oostheim W, etal. Molecular basis of hepatic carnitine palmitoyltransferase I deficiency. J Clin Invest, 1998, 102(3):527~531
    9 van Roermund CW, Elgersma Y, Singh N, etal. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J, 1995, 14(14):3480~3486
    10 Shindo Y, Hashimoto T. Acyl-Coenzyme A synthetase and fatty acid oxidation in rat liver peroxisomes. J Biochem (Tokyo), 1978, 84(5):1177~1181
    11 Miyazawa S, Hashimoto T, Yokota S. Identity of long-chain acyl-CoA synthetase of microsomes, mitochondria, and peroxisomes in rat liver. J. Biochem, 1985, 98:723~733
    12 Suzuki H, Kawarabayasi Y, Kondo J, etal. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem, 1990, 265(15):8681~8685
    13 Vanhove G, Van Veldhoven PP, Vanhoutte F, etAL. Mitochondrial and peroxisomal beta oxidation of the branched chain fatty acid 2-methylpalmitate in rat liver. J Biol Chem, 1991, 266(36):24670~24675
    14 Wanders RJ, Denis S, van Roermund CW, etal. Characteristics and subcellular localization of pristanoyl-CoA synthetase in rat liver. Biochim Biophys Acta, 1992, 1125(3):274~279
    15 Visser WF, van Roermund CW, Ijlst L, etal. Metabolite transport across the peroxisomal membrane. Biochem J, 2007, 401(2):365~375.
    16 Jakobs BS, Wanders RJ. Fatty acid β-oxidation in peroxisomes andmitochondria: the first, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria. Biochem. Biophys. Res. Commun, 1995, 213(3):1035~1041
    17 Osumi T, Hashimoto T, Ui N. Purification and properties of acyl-CoA oxidase from rat liver. J Biochem (Tokyo), 1980, 87(6):1735~1746.
    18 Vanhove GF, Van Veldhoven PP, Fransen M, etal. The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di- and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. J Biol Chem, 1993, 268(14):10335~10344
    19 Osumi T, Hashimoto T. Peroxisomal beta-oxidation system of rat liver.Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun, 1979,89:580~584
    20 Ferdinandusse S, Denis S, Van Roermund CW, etal. Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J Lipid Res, 2004, 45(6):1104~1111
    21 Verhoeven NM, Jakobs C. Human metabolism of phytanic acid and pristanic acid. Prog Lipid Res, 2001,40:453~466
    22 Jiang LL, Kurosawa T, Sato M, et al. Physiological role of D-3-hydroxyacyl-CoA dehydratase /D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein. J Biochem (Tokyo), 1997,121:506~513
    23 Miyazawa S, Furuta S, Osumi T, etal. Properties of peroxisomal 3-ketoacyl-coA thiolase from rat liver. J Biochem (Tokyo), 1981, 90(2):511~519
    24 Seedorf U, Assmann G. Cloning, expression, and nucleotide sequence of rat liver sterol carrier protein-2 cDNAs. J.Biol. Chem, 1991, 266: 630~636
    25 Ossendorp BC, Van Heusden GP, De Beer AL, etal. Identification of the cDNA clone which encodes the 58-kDa protein containing the amino acid sequence of rat liver non-specific lipid-transfer protein (sterol-carrier protein 2). Homology with rat peroxisomal and mitochondrial 3-oxoacyl-CoA thiolases. Eur J Biochem, 1991, 201(1):233~239
    26 Schmitz W, Conzelmann E. Stereochemistry of peroxisomal and mitochondrial beta-oxidation of alpha-methylacyl-CoAs. Eur J Biochem, 1997, 244(2):434~440
    27 Ferdinandusse S, Overmars H, Denis S, etal. Plasma analysis of di- and trihydroxycholestanoic acid diastereoisomers in peroxisomal alpha-methylacyl-CoA racemase deficiency. J Lipid Res, 2001, 42(1):137~141
    28 Ferdinandusse S, Rusch H, van Lint AE, etal. Stereochemistry of the peroxisomal branched-chain fatty acid alpha- and beta-oxidation systems in patients suffering from different peroxisomal disorders. J Lipid Res, 2002, 43(3):438~444
    29 Krey G, Braissant O, L'Horset F, etal. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol, 1997, 11(6):779~791
    30 Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A, 1997, 94(9):4312~4317
    31 Hostetler HA, Kier AB, Schroeder F. Very-long-chain and branched-chain fatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activated receptor alpha (PPARalpha). Biochemistry, 2006, 45(24):7669~7781
    32 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev, 1999, 20: 649~688
    33 Reddy JK, Goel SK, Nemali MR, etal. Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc Natl Acad Sci U S A, 1986, 83(6):1747~1751
    34 Lee SS, Pineau T, Drago J, etal. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol, 1995, 15(6):3012~3022
    35 Aoyama T, Peters JM, Iritani N, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem, 1998, 273:5678~5684
    36 Palmer CN, Hsu MH, Griffin KJ, etal. Peroxisome proliferator activated receptor-alpha expression in human liver. Mol Pharmacol, 1998, 53(1):14~22
    37 Hu T, Foxworthy P, Siesky A, etal. Hepatic peroxisomal fatty acid beta-oxidation is regulated by liver X receptor alpha. Endocrinology, 2005,146(12):5380~5387
    38 Beyer TP, Schmidt RJ, Foxworthy P, etal. Coadministration of a liver X receptor agonist and a peroxisome proliferator activator receptor-alpha agonist in Mice: effects of nuclear receptor interplay on high-density lipoprotein and triglyceride metabolism in vivo. J Pharmacol Exp Ther, 2004, 309(3):861~868
    39 Suzuki Y, Jiang LL, Souri M, etal D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am J Hum Genet, 1997, 61:1153~1162
    40 Ferdinandusse S, Denis S, Clayton PT, etal. Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet, 2000, 24(2):188~191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700