新型轻钢龙骨体系结构试验研究与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻钢结构体系具有强度高、重量轻、抗震性能好、保温隔热性好,耐久性好、用钢量少、造价低、可标准化生产、施工方便的特点,近10年来在我国得到快速的发展。本文针对一种新型的轻钢龙骨体系-IBS (Integra Building System)结构体系的构件、墙体、整体模型进行试验研究,分析了该体系构件的承载力、变形和破坏模式、动力特性等,为制订该体系的设计和施工规范提供依据。通过IBS结构体系13个桁片梁试验研究其承载力、破坏模态、变形、抗弯刚度以及平面外抗弯刚度等力学性能,结果表明桁片梁的极限承载力和刚度较小,不适宜单独作为受力构件,采用大截面的上弦杆可以提高梁的整体稳定承载力。建立合理的桁片梁有限元分析模型,通过有限元分析影响桁片梁承载力和跨中最大挠度的因素,桁架梁极限承载力主要由上弦管截面决定,上弦管截面越大,梁的极限承载力和刚度越大;V型连接件倒置(尖角向上)会使桁架梁的承载力变小,大型号的v型连接件可增大桁架梁的极限承载力,减少梁跨中挠度,提高梁的抗弯刚度。通过6个试件轴向荷载作用下极限承载力试验,研究桁片和四方柱轴心极限承载力的影响因素和破坏形式,表明IBS结构体系中的单桁片柱和四方柱的轴压极限承载力较低,不建议其作为单独的轴向受力构件。完成了9个梁柱节点试件的承载力试验,分析节点在分级荷载作用下的变形和应变变化规律,获到各试件的极限承载力,提出了提高梁柱节点刚性的具体措施。利用通用有限元软件建立了IBS结构体系梁柱节点的有限元计算模型,比较了试件测试数据和有限元分析结果,计算给出了三种典型IBS结构体系梁柱节点的M-0特征曲线。通过5个竖向荷载作用墙体试件和1O个水平荷载作用墙体试件对IBS结构体系龙骨墙体和复合墙体的竖向承载能力、水平承载能力及其变形和破坏规律进行详细的研究。试验表明:无蒙皮墙体竖向承载力低,增加横撑和斜撑能提高其承载力,但增加了用钢量;有蒙皮墙体的竖向承载力得到很大的提高,整体变形小,材料的强度得到较充分的发挥,多呈强度破坏;无蒙皮墙体水平荷载主要由斜拉钢带承担,洞口对墙体的抗侧力影响较大,有蒙皮墙体的抗侧能力较高,有蒙皮墙体具有较好的整体性,侧向力作用下不再呈现剪切形变形。运用有限元软件建立IBS结构体系龙骨墙体和复合墙体的有限元模型,通过大量的有限元数值计算研究了蒙皮对复合墙体竖向承载力的影响,对复合墙体竖向承载力影响最大的是蒙皮,其次是墙体的高度、厚度和横撑的数量;提出了IBS结构体系墙体竖向承载力计算方法。对抗侧力墙体的有限元数值研究表明:竹胶板蒙皮墙体比OSB板蒙皮墙体和纸面石膏蒙皮板墙体具有更高的抗侧能力;随着蒙皮厚度的增加,复合墙体的水平承载力有所提高,但趋于不显著;蒙皮的数量对水平承载力有较大影响,斜拉钢带横截面积的增加也能提高墙体的水平承载力,但提高不明显;随着墙体内桁片柱间距的减小,墙体水平承载能力有较大的提高。根据影响复合墙体抗剪强度和抗剪刚度的主要因素,在分析一般轻钢龙骨复合墙体的抗剪强度和抗剪刚度简化计算方法的基础上,建立了IBS结构体系复合墙体的抗剪强度和抗剪刚度计算公式。利用1:1的足尺模型,对一个两层无比钢结构房屋进行了振动台试验与动力分析。测试了结构的动力特性以及结构在不同输入波激励下的动力反应。运用有限元方法对该模型结构进行了理论分析,计算结果能很好地与实测结果相吻合,为IBS结构体系的抗震设计提供相关参数与理论依据。
Lightweght steel structures are higher strength and durability, superior aseismic performance lightweight for easy handing and lower costs, manufactured to exacting standards to produce pre cut lengths and angles, also able to withstand most environmental conditions that can qualify for lower fire insurance premiums. In recent 10 years these systems are developed rapidely in China. In this paper, the Integra building system (IBS) which is a web light gauge steel system is introduced. The bearing capacity, deflection, failure modes and dynamic performance of its member, shear wall and structure system are researched based on experiments for its codes of design and construction.The bearing capacity, failure modes, deformation, bend stiffness in plane and out plane of floor joist are tested by 13 floor joist specimens. The results suggest that a single foor joist is not suitable for bearing loads for its lower ultimate bearing capacity and stiffness out plane, the stabiliy bearing capacity can be improved with larger cross section of up-tube of joist floor. Compare with test results the finite element analysis (FEA) models of joist floor are rational. Parameters which have effect on bearing capacity and deflection of mid-span are investigated by FEA. Corss section of up-tube of floor joist has most effect on its ultimate bearing capacity. With larger cross section of up-tube, the ultimate bearing capacity and stiffness are higher. Upside-down clips in members can decrease ultimate bearing capacity. Large clips can improve ultimate bearing capacity, reduce deflection of mid-span and increase its bending stiffness.The ultimate bearing capacity and failure modes of studs and box columns are studied with 6 spcimens which bear axis press loads. The data suggest that its ultimate bearing capacity is lower, its can not use alone as structure member.9 connnection specimens (3 types) have been studied for the deformation, strain and ultimate bearing capacity under each level load. Based on the result, detail means for improving stiffness of connections are bring forward. The connections are modeled in finite element analysis software; the results of FEA are closed to data of experiment for specimens. Three type M-θcurves are given for IBS connections.Vertical bearing capacity, lateral bearing capacity, deformation and failure modes of IBS wall are researched through 5 specimen which bear veritical load and 10 ones which bear lateral load. Experiment result shows that bearing capacity of these walls without sheathing is lower. More horizontal and "X" bracing, more bearing capacity is, but more steel need. But veritical bearing capacity of IBS wall with seathing is higer, deformation is less. Intensity of steel is brought into sufficient play, and failure of wall with sheathing is strength one. Lateral load is beared mainly by diagonal tension straps; window and door opening in the wall have serious effect on its bearing capacity. The wall with seathing has suporier lateral performance and structure integrity, and its deformation is not more shear type under lateral loads.Parameters effect on veritical bearing capacity of IBS wall with sheathing and without seathing have been instigated by FEA, the most important factor effect on veritical bearing capacity of wall is sheathing, next is high, thickness of wall and number of horizontal bracing. Design method of veritical bearing capacity is brought forward. The result of FEA shows that lateral capacity of wall with bamboo glue panel is higher than one of wall with OSB panel and gypsum panel, and more thickness, number of sheathing, cross section of diagonal tension steel strap and less span between studs in wall, more lateral capacity the wall has.Based on study of mainly factors effect on shear strength and shear stiffness and its simplified formulas for general light gauge steel structure, these formulas for IBS wall are put forward.Shaking table test and dynamic analysis of a full size two-layer model is performed. Dynamic characteristic of the model and dynamic response under various wave excitations input are studied. Finite element method is used for dynamic analysis of this model, these results are close and can provide relative data and reference.
引文
[1]. http://www.scaqw.com/bbs/viewthread.php?tid=6169 (2009)
    [2].柴昶.我国建筑钢结构用钢材的现状与展望[J].钢结构,2001,(01)
    [3].吴晓晖.薄壁冷弯型钢小桁架建筑体系.建设科技,2004(14):46-47.
    [4].李登满.冷弯薄壁型无比钢建筑体系.建设科技,2005(18):46-47.
    [5].江冰.浅谈无比钢环保住宅.工程与建设,2006,20(6):747-749.
    [6]. Anton Polenske. Finite Element Analysis of Wood-Stud Wall [J]s, Journal of Structural Division, Vol.102, No.ST7, July,1976.
    [7]. Rafik Y Itani and Chung K.Cheung. Nonlinear Analysis of Sheathed Wood Diaphragms [J]. Journal of Structural Engineering.Vol.110, NO.9,1984.
    [8]. John T. Easley, Mehdi Foomani. Formulas for Wood Shear Walls [J]. Journal of Structural Division, vol.108,NO.ST11.11,1982.
    [9]. Kasal B. and Leichti R.J. Nonlinear Finite Element Model For Light-Framc:Stud Walls [J]. Journal of Structural Engineering. Vol.118, N0.11,1992.
    [10].日本建筑学会.木質(?)造設計ノ一ト.[S]
    [11].于炜文著,董军,夏冰青译.冷成型钢结构设计(原文第三版)[M].北京:中国水利水电出版社和知识产权出版社,2003.
    [12]. Wei-wen Yu. Cold-formed Steel Design (3rd Edition). John Wiley&Sons, Inc.,2000:619-621
    [13]. American Iron and Steel Institute:Specification for the Design of Cold-formed Steel Structural Members [S],1996ed.
    [14].Young-ki Lee and Thomas H. Miller:Axial Strength Determination for Gyrpsum-Sheathed Cold-Formed Steel Wall Stud Composite Panels, Journal of Structural Engineering. Vol,127 No.6 June 608-815,2001:
    [15].Simaan, A., and T.Pekoz. Diaphragm Braced Members and Design of Wall Studs [J]. Journal of the Structural Division, ASCE Proceeding, Vol.102, Jan.1976.
    [16].Tarpy, T.S.& Hauenstein, S.F. Effect of Construction Details on Shear Resistance of Steel-stud Wall Panels[R]. Vanderbilt University. Nashville, TN, USA.A research project sponsored by American Iron and Steel Institute. Project No.1201-412.1978.
    [17].Tarpy, T.S. Shear resistance of steel-stud wall panels [JJ. In Proceedings of the Sth International Specialty Conference on Cold-formed Steel Structures. St. Louis, MO, USA.1980.
    [18].Tarpy, T.S.&Girard, J.D. Shear Resistance of Steel-stud Wall Panels [J]. In Proceedings of the 6th International Snecialtv Conference on Cold-formed Steel Structures. St. Louis, MO, USA.1982
    [19].Tissell, J.R. Wood Structural Panel Shear Walls[R]. Report No.154, APA (The Engineering Wood Association). Tacoma, WA, USA.1993.
    [20].Serrette,R., Ogunfunmi,K. Shear Resistance of Gypsum-sheathed Light-gauge Steel Stud Walls(J]. Journal ofStructural Engineering.vol.122,N0.4,1996.
    [21].Serrette,R., Encalada,J., Juadines,M., and Nguyen, H. Static Racking Behavior of Plywood, OSB, Gypsum,and Fiberboard Walls with Metal Framing[J]. Journal of Structural Engineering, V 123,NO8. Aug1997
    [22].Serrette. R., Nguyen, H., Hall, Cx Shear Wall Values for Light Weight Steel Framing[R]. Report No. LGSRG-3-96, Light Gauge Steel Research Group, Department of Civil Engineering, Santa Clara University. SantaClara, CA, USA 1996
    [23].Serrette,R.,Hall,G, Nguyen, H. Dynamic Performance of Light Gauge Steel Framed Shear Walls[J] In Proceedings of the 13'} International Specialty Conference on Cold-formed Steel Structures. St.Louis,MO,USA.1996
    [24].NAHB Research Center. Monotonic Tests of Cold-formed Steel Shear Walls with Openings[R].(NAHB) National Association of Home Builders. Upper Marlboro, MD, USA.1997
    [25].Salenikovich, A.J., Dolan, J.D., Easterling, w.s. Racking Performance of Long Steel-frame Shear Walls[J]. In Proceedings of the 15'} International Specialty Conference on Cold-formed Steel Structures. St.Louis, MO,USA.2000
    [26]. Gad, E.F., Duffield, C.F., Hutchinson, G.L., Mansell, D.S., Stark, G. Lateral Performance of Cold-formed Steel-framed Domestic Structures [J]. Engineering Structures, Elsevier. Vol.21, No.1.1999
    [27].Gad, E.F., Chandler, A.M., Duffield, C.F., Stark, G. Lateral Behaviour of Plasterboard-clad Residential Steel Frames [J]. Journal of Structural Engineering, ASCE, Vol.125, No.1.999
    [28].The City of Los Angeles-University of California (COLA-UCI) Report of A Testing Program of Light-framed Walls with Woodsheathed Shear Panels[R]. Final report to the City of Los Angeles Department of Building and Safety, Structural Engineers Association of Southern California. Irvire, CA, USA.2001
    [29]. American Iron and Steel Institute. Shear Wall Design Guide[R]. February 1998.
    [30].日本铁鋼聯盟编、薄板軽量形鋼造建築物设计の手册引ま。[M]本:技报堂出版,2002,6.
    [31].朱勇军,张耀春,刘锡良等.影响蒙皮支撑柱静力性能的若干因素[J].哈尔滨建筑科技大学,1998,31(5).
    [32].DBJCT 011-2001,MB-1轻钢成骨体系低层装配式房屋技术规程[S].
    [33].钟亚军.冷弯型钢低层住宅房屋体系墙体立柱的性能研究[D].西安建筑技大学硕士学位论文,2002.
    [34].郭丽峰,何保康.轻型密立柱墙体的抗剪和抗弯性能试验研究报告[R],西安建筑科技大学钢结构研究所,2003.
    [35].何保康,郭丽峰等.轻钢密墙架柱墙体抗剪性能试验研究[J].建筑结构增刊,2004:338-341.
    [36].郭丽峰.轻钢密墙架柱墙体的抗剪性能研究[D].西安建筑科技大学研士学位论文,2004.
    [37].周天华.何保康.冷弯型钢立柱柱复合墙体及螺栓连接抗剪性能试验研究报告[R].西安建筑科技大学钢结构研究所和长安大学建筑工程学院,2004.
    [38].周天华.石宇,何保康等.冷弯型钢复合墙体抗剪承载力试验研究[J].西安建筑科技大学学报,2006.38(1):83-88
    [39].石宇.低层冷弯薄壁型钢结构住宅复合墙体抗剪承载力研究[D].长安大学硕士学位论文2005.
    [40].周绪红,石宇,周天华,狄瑾.冷弯薄壁型钢结构住宅复合墙体受剪性能研究[J].建筑结构学报,2006,27(3):42-47.
    [41].郭鹏,冷弯型钢骨架墙体抗剪性能试验与理论研究[D],西安:西安建筑科技大学,2008.
    [42].聂少峰.冷弯型钢立柱组合墙体抗剪承载力简化计算方法研究[D].长安大学硕士毕业论文,2006.
    [43].夏冰青.轻钢龙骨复合承载体系结构性能研究[D].南京工业大学硕士毕业论文,2003.
    [44].夏冰青,董军.轻钢龙骨复合承载墙体抗剪性能的有限元分析[J].建筑结构增刊,2004:334-337.
    [45].薄壁冷弯小桁架建筑体系应用成果通过评估[J].建设科技,2004(2)
    [46].蒋沧如,王小平.无比钢建筑体系试验报告—材料[R].武汉理工大学,2004
    [47].蒋沧如,王小平.无比钢建筑体系试验报告—梁[R].武汉理工大学,2004
    [48].蒋沧如,蔡江勇.无比钢建筑体系试验报告—柱和墙体[R].武汉理工大学,2004
    [49].蒋沧如,李书进.无比钢建筑体系试验报告—振动台试验[R].武汉理工大学,2004
    [50].张明远,王小平,周超,蒋沧如.新型轻钢龙骨体系墙体计算方法研究,华中科技大学学报,2007.V124 No.4.
    [51].江风波.轻钢龙骨组合墙体抗侧性能研究[D].武汉理工大学硕士学位论文,2005.
    [52].胡海兵.轻钢龙骨墙体在水平荷载作用下的试验研究[D].武汉理工大学硕士学位论文,2005.
    [53].李鹏超.轻钢龙骨单片墙体竖向承载能力的有限元分析研究[D].武汉理工大学硕士学位论文,2006
    [54].周超.新型轻钢龙骨体系墙体计算方法研究[D].武汉理工大学硕士学位论文,2006.
    [55].汪浪涛.轻钢龙骨墙体在竖向荷载作用下的试验研究[D].武汉理工大学硕士学位论文,2006
    [56].胡蕾.轻钢龙骨体系基于蒙皮大板结构分析方法研究[D].武汉理工大学硕士学位论文,2006.
    [57].陈坚.新型轻钢龙骨体系梁—柱节点试验性研究及有限元分析[D].武汉理工大学硕士学位论文,2006.
    [58].袁巧云.新型轻钢龙骨体系桁架梁的承载力试验及影响因素分析[D].武汉理工大学硕士学位论文,2005
    [59].蔡江勇,刘志会,蒋沧如,王小平,李书进.轻钢骨架—覆面结构板材组合墙体抗侧力性能的试验[J].工业建筑,2007,(06).
    [60].池家祥,冀德学,杨岳民,石晶.平行弦桁架梁的简化计算.武警工程学院学报.2001.8
    [61].尚晓江 邱峰ANSYS结构有限元高级分析方法与范例应用中国水利水电出版社2006.1
    [62].龚曙光ANSYS基础应用及范例解析机械工业出版社2003.1
    [63].叶裕明刘春山ANSYS土木工程应用实例中国水利水电出版社2005.1
    [64].周黎.轻钢龙骨体系四方柱轴压承载能力的研究[D].武汉理工大学硕士学位论文,2006
    [65].AISC Steel Construction Manual, American Institute of Steel Construction (325-05),3th Edition, 2006
    [66].Reidar Bjorhovde, A. Colson, etc. Connections in Steel Structures:3rd:Behaviour, Strength and Design (3th edition) [M]. Pergamon,1996
    [67].Eurocode Design of Steel Structure, Part1-1:General Rules and Rules for Building [S].DD ENV 1993-1-1:European Committee for Standardisation (CEN),1992
    [68].Nethercot D A.Li T Q. Ahmed B. Unified Classification System for Beam-to-Column Connection
    [J]. Journal of Constructional Steel Research. Vol.45, No.1,1998:19-65
    [69]. W.M. Wilson and H.F. Moore, Tests to determine the rigidity of riveted joints in steel structures[R]. In:(2nd Edition), Bulletin no.104. Engineering Experiment Station, University of Illinois, Urbana (1917).
    [70].Jones, S. W., Kirby, P. A., and Nethercot, D. A.. The Analysis of Frames with Semi-Rigid Connections-A State-of-the-Art Report[J]. Journal of Constructional Steel Research,3(2). 1983:2-13.
    [71].Kishi, N., and Chen, W. F. Data Base of Steel Beam-to-Column Connections. Report No. CE-STR-86-26, School of Civil Engineering, Purdue University, West Lafayette, Indiana.1986.
    [72].Kishi, N., and Chen, W. F. Steel Connection Data Bank Program. Report No. CE-STR-86-18, School of Civil Engineering, Purdue University, West Lafeyatte, Indiana.1986
    [73].Kishi, N., and Chen, W. F. The Collection of Tests on Steel Beam-to-Column CE-STR-86-20, School of Civil Engineering, Purdue University, West Lafayette, Indiana.1986
    [74].Kishi, N., and Chen, W. F. Moment-Rotation Relation of Semi-Rigid [J]. Journal of Structural Engineering,116(7),1990:1813-1834.
    [75].C. Batho, Investigations on beam and stanchion connections. In:(2nd Edn. ed.),lst Report, Steel Structures Research Committee, Department of Scientific and Industrial Research Vol.1-2. HMSO, London,1931:61-137.
    [76].C. Batho and S.D. Lash, Further investigations on beam and stanchion connections encased in concrete. Together with laboratory Investigation on a full scale steel frame. In:(2nd Edn. ed.), Final Report, Steel Structures Research Committee, Department of Scientific and Industrial Research, HMSO, London,1936:276-363.
    [77].C. Batho and H.C. Rowan, Investigations on beam and stanchion connections. In:(2nd Edn. ed.), 2nd Report, Steel Structures Research Committee, Department of Scientific and Industrial Research, HMSO, London,1934:92.
    [78].Lionberger, S. R. and W. J. Weaver.. Dynamic response of frames with non-rigid connections [J]. Journal of engineering mechanics,95(1),1969:95-114
    [79].Z. Razzaq, End restraint effect on steel column strength [J]. ASCE J. struct. Div.109 ST2, 1983:314-334.
    |80].Frye, M. J., and Morris, G A. Analysis of Flexibly Connected Steel Frames[J]. Canadian Journal of Civil Engineering,2,1975:280-291.
    [81]. Jones, S. W., Kirby, P. A., and Nethercot, D. A. Effect of Semi-Rigid Connections on Steel Colamn Strength [J]. Journal of Constructional Steel Research,1(1),1980:38-46.
    [82].Jones, S. W., Kirby, P. A., and Nethercot, D. A. The Analysis of Frames with Semi-Rigid Connections-A State-of-the-Art Report [J]. Journal of Constructional Steel Research,3(2), 1983:2-13.
    [83].. Colson and J.M. Louveau, Connections incidence on the behavior of steel structures. In:(2nd Edn. ed.), Euromech. Colloq.1983:174.
    [84].R.E. Melchers and D. Kaur, Behaviour of frames with flexible joints [C]. In:Proc.8th Australian Conf. Mech. of Structural Materials,1982:27.1-27.5.
    [85].E.M. Lui and W.F. Chen, Strength of H-columns with small end restraints [J]. J. Inst. struct. Engrs 61B,1983:17-26.
    [86].蒋沧如,王小平.无比钢建筑体系试验报告一节点[R].武汉理工大学,2004
    [87]. American Iron and Steel Institute (AISI), Shear Wall Design Guide [S]. Puhlication RG-9804,1998.
    [88].中华人民共和国国家标准.冷弯薄壁型钢结构技术规范,GB50018-2002
    [89].Liew Y L., Duffield C.F The Influence of Plasterboard Clad Walls on the Structural Behavior of Low Rise Residential Buildings [J]. Electronic Journal of Structural Engineering.2002(1).
    [90].Marcia Patton-Mallory, Steven M. Cramer, Frederick W. Smith, Nonlinear Material Models for Analysis of Bolted Wood Connections and Patrick J. Pellicane:Journal of Structural Engineering, Vol.123,No.8, August,1063-1070 1997:
    [91].W. H. Thomas:Concentrated Load Capacity and Stiffness of Oriented Strand Board:Calculation Versus Test, Journal of Structural Engineering, Vol.128, No.ST7, July 90.
    [92].Kasal B. and Leichti R.J. Nonlinear Finite Element Model For Light-Frame Stud Walls [J]. Journal of Structural Engineering, vol.118, NO.11.11,1992:3122-3135.
    [93].Young-ki Lee and Thomas H. Miller:Axial Strength Determination for Gyrpsum-Sheathed Cold-Formed Steel Wall Stud Composite Panels, Journal of Structural Engineering. Vol,127 No.6 June 608-815,2001.
    [94].Marcia Patton-Mallory, Steven M. Cramer, Frederick W. Smith, Nonlinear Material Models for Analysis of Bolted Wood Connections and Patrick J. Pellicane:Journal of Structural Engineering, Vol.123,No.8, August,1063-1070 1997:
    [95].《定向刨花板行业标准》LY/T 1580-2000.中华人民共和国林业行业标准.2000.
    [96].《装饰纸面石膏板》JC/T 997-2006.中华人民共和国建材行业标准.中华人民共和国国家
    [97].高景辉.轻钢龙骨复合墙体抗剪性能研究[D].武汉理工大学硕士学位论文.2008
    [98].建筑抗震设计规范GB50011-2001[S],北京:中国建筑工业出版社.2002
    [99].叶红.新型轻钢龙骨体系振动试验研究及动力分析[D].武汉理工大学硕士学位论文,200
    [100]. Giulio Ballio and Federico M. Mazzolani:Theory and Design of Steel Structures [M], Chapman and Hall,1983;
    [101].杨茀康,李家宝.结构力学(第三版)上册[M].高等教育出版社,1983.1(1996重印)
    [102]. Division A.nton Polensek:Finite Element Analysis of Wood-Stud Walls, of Structural Vol.102} No.ST7, July 1317-1334,1976.
    [103].《混凝土模板用竹材胶合板行业标准》LT/T 1574-2000.中华人民共和国林业行业标准.2000.
    [104].朱伯龙.结构抗震试验[M].北京地震出版社,1989
    [105].王勖成等.有限单元法基本原理与数值方法[M].清华大学出版社(第二版),北京,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700