Al_2O_3-TiC-TiN陶瓷刀具的研制及其切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计并研制了新型氧化铝基陶瓷刀具材料,研究了材料组分、烧结温度和保温时间对氧化铝基陶瓷刀具材料物相组成、微观组织和力学性能的影响,研究了新型氧化铝陶瓷刀具的切削性能。
     提出了氧化铝基新型陶瓷刀具材料的设计方案。选取微米Al203作为陶瓷刀具的基体材料,微米TiC、微米TiN和纳米TiN为添加相,MgO为烧结助剂,Ni和Mo为金属粘结剂,制备了四类氧化铝基陶瓷刀具材料,即Al203-TiNn陶瓷刀具材料(AN体系)、Al203-TiNn-TiNμ陶瓷刀具材料(ANU体系)、Al203-TiC-TiNμ陶瓷刀具材料(ACU体系)和Al203-TiC-TiNμ-TiNn陶瓷刀具材料(ACUN体系)。
     研究了陶瓷刀具材料物相组成及其对力学性能的影响。结果表明,在烧结过程中,金属粘结剂溶解陶瓷相元素并替代陶瓷相的原子。生成相C0.7N0.3Ti和立方Mg0.4Ni0.6O能提高材料的抗弯强度;三方Ti8C5、立方Al3Mg2和立方NiAl2O4能提高材料的硬度;osbornite-TiN、正方Mo2N、立方Al0.96Ni1.94和立方Al09Ni322能提高材料的断裂韧度;镁铝尖晶石、立方MoC、立方NiTi和正交MoNi能提高材料的抗弯强度和硬度,立方AlNi3能提高材料的抗弯强度和硬度,但会降低断裂韧度,正方AlNi3会降低材料的力学性能。
     研究了陶瓷刀具材料微观组织及其对力学性能的影响。结果表明,金属相对硬质相良好的润湿性、颗粒之间较强的结合力有利于提高陶瓷刀具材料的力学性能。金属相润湿硬质相产生的芯壳结构有利于改善材料的力学性能,尤其能明显提高陶瓷材料的断裂韧度。颗粒尺寸均匀、颗粒间结合力强、添加相对裂纹有钉扎作用的微观组织有利于提高材料的抗弯强度;硬质相颗粒尺寸大、粘结相颗粒尺寸小的微观组织有利于提高材料的硬度;粘结相润湿作用好、颗粒尺寸大、裂纹扩展路径曲折的微观组织有利于提高材料的断裂韧度。
     研究了TiN含量、烧结温度和保温时间对陶瓷刀具材料力学性能的影响。结果表明,烧结压力为32MPa时, ACU体系陶瓷刀具材料的最佳烧结工艺参数为1650。C和30min,在此工艺下AC2U陶瓷刀具材料的抗弯强度、维氏硬度和断裂韧度分别为853.1MPa、20.23GPa和6.75MPa.m。ACUN体系陶瓷刀具材料的最佳烧结工艺参数为1600℃和50min,在此工艺下AC2U4N陶瓷刀具材料的抗弯强度、维氏硬度和断裂韧度分别为861.1MPa、20.83GPa和6.97MPa·m1/2。AN体系陶瓷刀具材料的最佳烧结工艺参数为1700℃和45min,在此工艺下Al203-10vol%TiNn陶瓷刀具材料的抗弯强度、维氏硬度和断裂韧度分别为896.8MPa、21.08GPa和7.90MPa·m1/2。ANU体系陶瓷刀具材料的最佳烧结工艺参数为1650℃和30min,在此工艺下ANU25陶瓷刀具材料的抗弯强度、维氏硬度和断裂韧度分别为444.2MPa、21.57GPa和8.81MPa·m1/2。
     通过复现实验成功研制了三种新型氧化铝基陶瓷刀具,即AC2U(Al203-20vol%TiC-10vol%TiNμ)、AC2UN2(Al203-20vol%TiC-3vol%TiNμ-7vol%TiNn)和AC2UN4(Al203-20vol%TiC-2vol%TiNμ-8vol%TiNn)。AC2U的抗弯强度、维氏硬度和断裂韧度分别为876.5MPa、20.96GPa和6.75MPa.mm。AC2UN2的抗弯强度、维氏硬度和断裂韧度分别为887.2MPa、20.21GPa和5.94MPa.m1/2。AC2UN4的抗弯强度、维氏硬度和断裂韧度分别为904.2MPa、19.54GPa和5.85MPa·m1/2。性能良好且较稳定。
     研究了新型氧化铝基陶瓷刀具连续切削淬硬40Cr合金钢和淬硬T10A碳素工具钢时的切削性能。结果表明,在ap=0.1mm的条件下连续切削淬硬40Cr时,陶瓷刀具AC2U在低速和小进给量条件下的抗磨损能力较好,但切削后期易发生崩刃;陶瓷刀具AC2UN4在高速和大进给量条件下的抗磨损能力较好。在户0.1mm/r和ap=0.1mm的条件下连续切削淬硬T10A时,陶瓷刀具AC2U和AC2UN2的抗磨损性能均优于LT55。
In this paper, the novel alumina matrix ceramic cutting tool materials were designed and fabricated. The effects of material components, sintering temperature and sintering time on the phase composition, microstructure and mechanical properties of the alumina matrix ceramic cutting tool materials were analyzed. The cutting performance of the novel alumina matrix ceramic cutting tools was studied.
     The design scheme for the novel alumina matrix ceramic cutting tool materials was proposed. Micron Al2O3was chosen as the matrix and micron TiC, micron TiN, nanometer TiN were chosen as the additives. MgO was added as the sintering aids, Ni and Mo were added as the metal binders. Four kinds of Al2O3matrix ceramic cutting tools materials were fabricated, which were Al2O3-TiNn ceramic cutting tool materials (AN), Al2O3-TiNn-TiNμ ceramic cutting tool materials (ANU), Al2O3-TiC-TiNμ ceramic cutting tool materials (ACU), and Al2O3-TiC-TiNμ-TiNn ceramic cutting tool materials (ACUN).
     The phase composition and its effects on the mechanical properties were investigated. The results showed that the metal binders dissolved the elements of the ceramic phases and replaced the atoms of the ceramic phases during the sintering process. The final phases such as C0.7N3.3Ti and cubic-Mg0.4Ni0.6O could improve the flexural strength. The final phases such as trigonal-Ti8C5, cubic-Al3Mg2and cubic-NiAl2O4could improve the hardness. The final phases such as obornite-TiN, tetragonal-Mo2N, cubic-Al0.96Ni1.9494and cubic-Alo.9Ni3.22could improve the fracture toughness. The phases such as spinel-MgAl2O4, cubic-MoC, cubic-NiTi and orthorhombic-MoNi could improve the flexural strength and hardness at the same time, the phase cubic-AlNi3could increase the flexural strength and hardness, but it would decrease the fracture toughness. The phase tetragonal-AlNi3would decrease the mechanical properties.
     The microstructure of the ceramic tool materials and its effects on the mechanical properties were studied. The results showed that the mechanical properties were better when the microstructure was dense, the metal phases wetted the hard phase well and the adhesive strength among particles was strong. The core-rim structures which were formed by the wetting effect of metal phases on the hard phases could improve the mechanical properties, where the fracture toughness could be improved significantly. The flexural strength could be improved when the particles in the microstructure were uniform, the adhesive strength among particles was strong and the additives had pinning effect on the crack. The Vickers hardness could be improved when the hard phase particles were big while the binding phase particles were small. The fracture toughness could be improved when the metal phases wetted the hard phase well, the particles were big and the crack propagation path was tortuous.
     The effects of TiN content, sintering temperature and sintering time on the mechanical properties were investigated. The results showed that when the sintering pressure was32MPa, the optimized sintering process for the ACU material system was1650℃and30min, in which AC2U ceramic cutting tool material owned the flexural strength of853.1MPa, Vickers hardness of20.23GPa and fracture toughness of6.75MPa·m1/2. The optimized sintering process for the ACUN material system was1600℃and50min, in which AC2U4N ceramic cutting tool material owned the flexural strength of861.1MPa, Vickers hardness of20.83GPa and fracture toughness of6.97MPa·m1/2. The optimized sintering process for the AN material system was1700℃and45min, in which Al2O3-10vol%TiNn ceramic cutting tool material owned the flexural strength of896.8MPa, Vickers hardness of21.08GPa and fracture toughness of7.90MPa·m1/2. The optimized sintering process for the ANU material system was1650℃and30min, in which ANU25ceramic cutting tool material owned the flexural strength of444.2MPa, Vickers hardness of21.57GPa and fracture toughness of8.81MPa·m1/2.
     Three kinds of novel Al2O3-TiC-TiN ceramic cutting tools were developed successfully after repeatability tests, which were AC2U micro-composite ceramic cutting tool (Al2O3-20vol%TiC-10vol%TiNμ), AC2UN2nano-composite ceramic cutting tool (Al2O3-20vol%TiC-3vol%TiNμ-7vol%TiNn) and AC2UN4nano-composite ceramic cutting tool (Al2O3-20vol%TiC-2vol%TiNμ-8vol%TiNn). The flexural strength, Vickers hardness and fracture toughness of AC2U were876.5MPa,20.96GPa and 6.75MPa·m1/2, respectively. The flexural strength, Vickers hardness and fracture toughness of AC2UN2were887.2MPa,20.21GPa and5.94MPa·m1/2, respectively. The flexural strength, Vickers hardness and fracture toughness of AC2UN4were904.2MPa,19.54GPa and5.85MPa·m1/2, respectively. The mechanical properties of the novel ceramic cutting tools were good and steady.
     The cutting performance of the novel alumina matrix ceramic cutting tools was investigated in continuous turning the quenched alloy steel40Cr and quenched carbon tool steel T10A. The results showed that when turning quenched40Cr continuously with the cutting depth ap=0.1mm, AC2U had better wear resistance at a low cutting speed and small feed, but tool breakage was liable to happen at the end of turning process. AC2UN4had better wear resistance at a high cutting speed and big feed. When turning quenched carbon tool steel T10A continuously with the cutting depth ap=0.1mm and the feed f=0.1mm/r, the novel ceramic cutting tools AC2U and AC2UN2both showed better wear resistance than LT55.
引文
[1]刘战强,艾兴.高速切削刀具磨损表面形态研究[J].摩擦学学报.2002,22(6):468-471.
    [2]师汉民.金属切削理论及其应用新探[M].华中科技大学出版社,2003:1-9.
    [3]熊建武,周进,陈湘舜,张克昌.高速切削加工对刀具材料的要求及其合理选用[J].企业技术开发.2008,26(12):6-8.
    [4]Schulz H, Moriwaki T. High-speed machining[J]. CIRP Annals-Manufacturing Technology.1992,41(2):637-643.
    [5]樊新民,张骋,蒋丹宇.工程陶瓷及其应用[M].北京:机械工业出版社,2006:86-102.
    [6]艾兴,肖诗纲.切削用量手册[M].北京:机械工业出版社,1985:1-49.
    [7]Surappa M. Aluminium matrix composites:Challenges and opportunities[J]. Sadhana.2003,28(1):319-334.
    [8]尹衍升,张景德.氧化铝陶瓷及其复合材料[M].北京:化学工业出版社,2001:221-229.
    [9]薛旺录.基于高速切削技术中刀具材料性能的研究与应用[J].兰州工业高等专科学校学报.2009,16(4):39-44.
    [10]彭鹏,姜斌,高金宝,房明浩,刘艳改,黄朝晖.Al203基复相陶瓷及其韧化机理的研究进展[J].现代技术陶瓷.2007,28(1):32-35.
    [11]刘军,陈志刚.硬质颗粒弥散强韧化氧化铝[J].佛山陶瓷.1994,(004):10-14.
    [12]陈文蔚.陶瓷摩擦学[J].青岛大学学报(工程技术版).1993,8(1):62-69.
    [13]陈焱,刘宁.金属陶瓷刀具切削性能的研究[J].硬质合金.2008,24(4):226-231.
    [14]刘炳强.原位生长晶须增韧氧化铝陶瓷刀具及切削性能研究[D].济南:山东大学博士学位论文,2007:70-76,93-103.
    [15]Tampieri A, Bellosi A. Oxidation resistance of alumina-titanium nitride and alumina-titanium carbide composites[J]. Journal of the American Ceramic Society. 1992,75(6):1688-1690.
    [16]刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究[D].济南:山东大学博士学位论文,2005:54-74,102-107.
    [17]Tampieri A, Bellosi A. Oxidation of monolithic TiB2 and of Al2O3-TiB2 composite [J]. Journal of Materials Science.1993,28(3):649-653.
    [18]张希华.氧化铝基结构陶瓷材料设计及其性能研究[D].济南:山东大学博士学位论文,2005:3-13,17-20,71-80,102-107.
    [19]洪明.多元多尺度碳化钛基陶瓷刀具研制及切削性能研究[D].济南:山东大学硕士学位论文硕士学位论文,2009:46-52.
    [20]尤显卿,斯庭智,任萍萍,刘宁.起始粉末粒径对Al203-TiC陶瓷力学性能的影响[J].兵器材料科学与工程.2004,27(5):17-19.
    [21]Gong J, Miao H, Zhao Z, Guan Z. Effect of TiC particle size on the toughness characteristics of Al2O3-TiC composites[J], Materials Letters.2001,49(3-4): 235-238.
    [22]Shen Z, Johnsson M, Nygren M. TiN/Al2O3 composites and graded laminates thereof consolidated by spark plasma sintering[J]. Journal of the European Ceramic Society.2003,23(7):1061-1068.
    [23]Rak Z S, Czechowski J. Manufacture and properties of Al2O3-TiN particulate composites[J]. Journal of the European Ceramic Society.1998,18(4):373-380.
    [24]罗芳.Al203-TiN基复合陶瓷材料的制备及性能[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:2-9,28-54.
    [25]史晓琪.TiN-Al203复合材料的制备及性能研究[D].西安:西安建筑科技大学硕士学位论文,2007:9-19,43-57.
    [26]Reimanis I, Kleebe H J. A review on the sintering and microstructure development of transparent spinel (MgAl2O4[fJ]. Journal of the American Ceramic Society.2009, 92(7):1472-1480.
    [27]Cambaz G, Timucin M. Compositional modifications in humidity sensing MgAl2O4 ceramics[J]. Key Engineering Materials.2004,264(2004):1265-1268.
    [28]张金升,张银燕,王美婷.陶瓷材料显微结构与性能[M].北京:化学工业出版社,2007:176-271.
    [29]Coble R. Sintering crystalline solids. Ⅱ. Experimental test of diffusion models in powder compacts[J]. Journal of Applied Physics.1961,32(5):793-799.
    [30]Bennison S J, Harmer M P. Effect of MgO solute on the kinetics of grain growth in Al2O3[J]. Journal of the American Ceramic Society.1983,66(5):C-90-C-92.
    [31]Berry K A, Harmer M P. Effect of MgO solute on microstructure development in Al2O3[J]. Journal of the American Ceramic Society.1986,69(2):143-149.
    [32]Yokota K, Tsukuda A, Kondo Y. Effect of addition of MgO on platelike grain growth in alumina sintered bodies and their mechanical properties[J]. Journal of the Japan Society of Powder and Powder Metallurgy(Japan).1998,45(11):1018-1023.
    [33]Soni K K, Thompson A, Harmer M, Williams D, Chabala J, Levi-Setti R. Solute segregation to grain boundaries in MgO-doped alumina[J]. Applied Physics Letters. 1995,66(21):2795-2797.
    [34]Greskovich C, Brewer J A. Solubility of magnesia in polycrystalline alumina at high temperatures[J]. Journal of the American Ceramic Society.2001,84(2): 420-425.
    [35]Bateman C A, Bennison S J, Harmer M P. Mechanism for the role of magnesia in the sintering of alumina containing small amounts of a liquid phase[J]. Journal of the American Ceramic Society.1989,72(7):1241-1244.
    [36]Kaysser W A, Sprissler M, Handwerker C A, Blendell J E. Effect of a liquid phase on the morphology of grain growth in alumina[J]. Journal of the American Ceramic Society.1987,70(5):339-343.
    [37]Bennison S, Harmer M. A history of therole of MgO in the sintering of α-alumina[J]. Ceramic Transactions.1990,7(1990):13-49.
    [38]Bennison S J, Harmer M P. Effect of magnesia solute on surface diffusion in sapphire and the role of magnesia in the sintering of alumina[J]. Journal of the American Ceramic Society.1990,73(4):833-837.
    [39]Bae S I, Baik S. Critical concentration of MgO for the prevention of abnormal grain growth in alumina[J]. Journal of the American Ceramic Society.1994,77(10): 2499-2504.
    [40]Kim B K, Hong S H, Lee S H, Kim D Y, Hwang N M. Alternative explanation for the role of magnesia in the sintering of alumina containing small amounts of a liquid phase[J]. Journal of the American Ceramic Society.2003,86(4):634-639.
    [41]王欣,程一兵.Ti02和MgO微量添加剂对Al203陶瓷烧结致密化的影响[J].无机材料学报.2001,16(5):979-984.
    [42]彭晓峰,黄校先,张玉峰.高性能细晶粒氧化铝陶瓷材料的制备与研究[J].无机材料学报.1998,13(3):327-332.
    [43]Kwon W T, Park J S, Kang S. Effect of group Ⅳ elements on the cutting characteristics of Ti(C,N) cermet tools and reliability analysis[J]. Journal of Materials Processing Technology.2005,166(1):9-14.
    [44]周泽华,丁培道Ti(C,N)基金属陶瓷中添加成分的研究现状[J].材料导报.2000,14(4):21-22.
    [45]丰平,熊惟皓,余立新Ti(C,N)基金属陶瓷烧结过程的冶金进础及其显微组织特征:Ⅱ,芯-环结构的形成机理及烧结过程中的脱气演化[J].材料导报.2004,18(003):6-8.
    [46]刘胜明,汤爱涛,陈敏,潘复生.添加物对Al203-TiC/Ti(C,N)系陶瓷复合材料组织和性能的影响[J].材料导报.2011,25(13):48-53.
    [47]Sekino T, Nakajima T, Ueda S, Niihara K. Reduction and sintering of a nickel-dispersed-alumina composite and its properties[J]. Journal of the American Ceramic Society.1997,80(5):1139-1148.
    [48]Tuan W H, Brook R J. The toughening of alumina with nickel inclusions[J]. Journal of the European Ceramic Society.1990,6(1):31-37.
    [49]Tuan W H, Brook R J. Processing of alumina/nickel composites[J]. Journal of the European Ceramic Society.1992,10(2):95-100.
    [50]Sun X, Yeomans J. Microstructure and fracture toughness of nickel particle toughened alumina matrix composites[J]. Journal of Materials Science.1996,31(4): 875-880.
    [51]李乾,孙旭东,修稚萌.Ni和Ti的添加对Al203-Ti(C,N)复合材料性能的影响[J].无机材料学报.2011,26(9):955-960.
    [52]邢国红,王志,张雷,丁寅森.Ni对MF/Al203复合材料力学性能的影响[J].济南大学学报:自然科学版.2010,24(003):251-254.
    [53]陈文琳.超细晶粒Ti (C,N)基金属陶瓷刀具与切削性能研究[D].合肥:合肥工业大学博士学位论文,2007:6-46.
    [54]Conforto E, Mari D, Cutard T. The role of molybdenum in the hard-phase grains of (Ti,Mo)(C,N)-Co cermets[J]. Philosophical Magazine.2004,84(17):1717-1733.
    [55]Diaz L A, Valdes A, Diaz C, Espino A, Torrecillas R. Alumina/molybdenum nanocomposites obtained in organic media[J]. Journal of the European Ceramic Society.2003,23(15):2829-2834.
    [56]Rudy E. Boundary phase stability and critical phenomena in higher order solid solution systems[J]. Journal of the Less Common Metals.1973,33(1):43-70.
    [57]Xu. S, Wang. H, Zhou. S. The influence of TiN content on properties of Ti(CN) solid solution[J]. Materials Science and Engineering:A.1996,209(1):294-297.
    [58]刘宁,朱绍峰Mo, Ni含量与Ti(C,N)基金属陶瓷组织和性能之间的关系[J].硬质合金.1994.11(2):74-78.
    [59]Humenik Jr M, Parikh N M. Cermets:I, Fundamental concepts related to micro structure and physical properties of cermet systems[J]. Journal of the American Ceramic Society.1956,39(2):60-63.
    [60]Parikh N, Humenik Jr M. Cermets:II, Wettability and microstructure studies in liquid-phase sintering[J]. Journal of the American Ceramic Society.1957,40(9): 315-320.
    [61]Manning Jr C R, Stoops R F. High-temperature cermets:I, Compatibility[J]. Journal of the American Ceramic Society.1968,51(8):411-415.
    [62]Qian M, Lim L. Microstructural evolution in the phase mixtures of Ti(C,N)-Mo at 1600℃[J]. Materials Science and Engineering:A.1999,264(1):39-46.
    [63]LaSalvia J, Kim D, Meyers M. Effect of Mo on microstructure and mechanical properties of TiC-Ni-based cermets produced by combustion synthesis impact forging technique[J]. Materials Science and Engineering:A.1996,206(1):71-80.
    [64]熊惟皓,胡镇华,崔昆Ti(C,N)基金属陶瓷中包覆结构的研究[J].华中理工大学学报.1998,26(3):32-34.
    [65]陆远明,张超凡,彭日登.国外硬质合金[M].北京:冶金工业出版杜,1976:168-503.
    [66]娄海琴,杨彬,王刚,王龙光.添加剂自增韧氧化铝陶瓷的若干研究进展[J].现代技术陶瓷.2005,26(004):24-27.
    [67]李海林,葛晓陵.韧性颗粒增韧脆性材料的桥接变形计算模型[J].无机材料学报.1994,9(1):77-82.
    [68]萧虹,艾兴.SiC晶须增韧Al203陶瓷刀具材料的增韧特性及其对刀具破损的影响[J].硅酸盐学报.1992,20(001):1-7.
    [69]琚宏昌,陈国荣.颗粒复合材料微裂纹增韧的数值模拟[J].土木建筑与环境工程.2009,31(001):13-18.
    [70]Kreher W, Pompe W. Increased fracture toughness of ceramics by energy-dissipative mechanisms [J]. Journal of Materials Science.1981,16(3): 694-706.
    [71]Chevalier J, Olagnon C, Fantozzi G. Crack propagation and fatigue in zirconia-based composites[J]. Composites Part A:Applied Science and Manufacturing.1999,30(4):525-530.
    [72]隋万美.陶瓷基复相材料的非相变增韧机制[J].中国陶瓷.2000,36(1):4-8.
    [73]朱流,郦剑,李军,姚继鹏.热压烧结工艺对超韧Al203-TiC-Co复合陶瓷性能的影响[J].材料热处理学报.2007,28(005):20-24.
    [74]崇学文.碳热还原合成晶须增韧陶瓷刀具研究[D].济南:山东大学博士学位论文,2011:76-86,100-109.
    [75]郭庚辰.液相烧结粉末冶金材料[M].化学工业出版社,2003:2-37,175-183.
    [76]李世乐.热压工艺因素对Al203-TiC复合陶瓷刀具材料性能的影响[J].粉末冶金技术.1996,14(003):201-205.
    [77]仝建峰,陈宇航.热压工艺参数对纳米SiC-Al203/TiC新型陶瓷刀具材料力学性能的影响[J].粉末冶金技术.2000,18(2):102-105.
    [78]柳军旺,郭英奎,石春艳.TiC含量及烧结温度对Al203-TiC复合陶瓷材料力学性能的影响[J].哈尔滨理工大学学报.2009,13(6):114-116.
    [79]任萍萍.氧化铝基复合陶瓷的制备和性能测试[D].合肥:合肥工业大学硕士学位论文,2004:2-12,28-40,45-57.
    [80]卢红宪.Al203-TiC-TiN基金属陶瓷的制备,结构与性能研究[D].西安:西安建筑科技大学硕士学位论文,2006:9-14,24-38.
    [81]王珉,艾兴,赵军,张宗阳.保温时间对ATN陶瓷刀具材料力学性能及显微结构的影响[J].工具技术.2011,45(002):32-35.
    [82]王连鹏.数控车床低温精切45淬硬钢的切削研究[D].沈阳:辽宁工程技术大学硕士学位论文,2001:19-23,52-71.
    [83]曾宝平,王成勇.淬硬钢的高速切削加工[J].机电工程技术.2002,31(006):14-16.
    [84]王晓光,李东阳.陶瓷刀具干式车削淬硬钢试验研究[J].制造技术与机床.2006,(2):90-92.
    [85]仇启源,赵维新.AT6陶瓷刀具的推广应用[J].硬质合金.1991,8(1):44-48.
    [86]黄金昌.碳氮化钛基金属陶瓷[J].稀有金属与硬质合金.1994,119(12):43-49.
    [87]Ettmayer P, Kolaska H, Lengauer W, Dreyer K. Ti(C,N) cermets-Metallurgy and properties[J]. International Journal of Refractory Metals and Hard Materials.1995, 13(6):343-351.
    [88]李国星,陈昌平,李玮,刘安,刘成安,卢红霞.陶瓷材料断裂韧性测试方法[J].河南建材.2003,4):15-17.
    [89]关振铎,杜新民.陶瓷材料断裂韧性KIc测试方法的对比及其影响因素的分析
    [J].硅酸盐学报.1982,10(3):262-271.
    [90]顾延慰,潘敏元,张炳荣.陶瓷刀具材料的断裂韧性及其测试方法的研究[J].机械工程材料.1996,(2):1 5-17,48.
    [91]Gogotsi G A. Fracture toughness of ceramics and ceramic composites[J]. Ceramics International.2003,29(7):777-784.
    [92]方明星,严祖同.MgO及其它矿物质的体积弹性模量和剪切模量与温度间关系研究(英文)[J].安徽师范大学学报(自然科学版).2003,(1):30-34.
    [93]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,1995:32-45,85-86,100-120.
    [94]Cutard T, Viatte T, Feusier G, Benoit W. Microstructure and high temperature mechanical properties of TiC0.7N0.3-Mo2C-Ni cermets [J]. Materials Science and Engineering:A.1996,209(1):218-227.
    [95]贺从训,夏志华.Ti(C,N)基金属陶瓷的研究[J].稀有金属.1999,23(1):4-12.
    [96]Shim J H, Oh C S, Lee D N. A thermodynamic evaluation of the Ti-Mo-C system[J]. Metallurgical and Materials Transactions B.1996,27(6):955-966.
    [97]Timokhina I B, Hodgson P D, Ringer S P, Zheng R K, Pereloma E V. Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography [J]. Scripta Materialia.2007,56(7):601-604.
    [98]张清纯.陶瓷材料的力学性能[M].北京:科学出版社,1987:120-311.
    [99]Fei Y, Zhou L, Qu H, Zhao Y, Huang C. The phase and microstructure of TC21 alloy [J]. Materials Science and Engineering:A.2008,494(1-2):166-172.
    [100]于松,王崇愚,于涛.嵌入原子法研究Ni3Al中点缺陷以及Re择优占位和集团化[J].物理学报.2007,56(6):3212-3218.
    [101]Tiegs T, Alexander K, Plucknett K, Menchhofer P, Becher P, Waters S. Ceramic composites with a ductile Ni3Al binder phase[J]. Materials Science and Engineering:A.1996,209(1):243-247.
    [102]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005:51-59.
    [103]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000:5,100,103-104,113-114,143,171-174,176,192.
    [104]胡宝玉,徐延庆,张宏达.特种耐火材料实用技术手册[M].北京:冶金工业出版社,2004:185-189.
    [105]冯端.固体物理学大辞典[M].北京:高等教育出版社,1995:507-510,696-698.
    [106]张显鹏.铁合金辞典[M].沈阳:辽宁科学技术出版社,1996:262-266.
    [107]郑勇,赵兴中.TiN对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金.1997,14(3):139-143.
    [108]Cardinal S, Malchere A, Gamier V, Fantozzi G. Microstructure and mechanical properties of TiC-TiN based cermets for tools application[J]. International Journal of Refractory Metals and Hard Materials.2009,27(3):521-527.
    [109]Doi H. Advanced TiC and TiC-TiN base cermets[C]. E.A. Almond C A B, R. Warren. Proceedings of the 2nd International Confonrence on Science of Hard Materials Rhodes,1984.489-521.
    [110]Ahn S Y, Kang S. Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process [J]. Journal of the American Ceramic Society.2000,83(6):1489-1494.
    [111]Zhang X, Liu N. Microstructure, mechanical properties and thermal shock resistance of nano-TiN modified TiC-based cermets with different binders[J]. International Journal of Refractory Metals and Hard Materials.2008,26(6): 575-582.
    [112]Zhang X, Liu N, Li Y, Yu C, Chen Y. Mechanical properties and thermal shock resistance of nano modified Ti(C,N)-based cermets[J]. Journal of the Chinese Ceramic Society.2008,36(4):503-509.
    [113]Lee C K. Microstructure evaluations and thermomechanical properties of spinel (MgAl2O4) dispersed molybdenum alloys[D]. Virginia:West Virginia University Master of Science,2005:3-33.
    [114]Funamori N, Jeanloz R, Nguyen J H, Kavner A, Caldwell W A, Fujino K, Miyajima N, Shinmei T, Tomioka N. High-pressure transformations in MgAl2O4[J]. Journal of Geophysical Research.1998,103(B9):20813-20818.
    [115]于超Ni-Ti合金对Ti(C,N)基金属陶瓷组织和力学性能的影响[D].合肥:合肥工业大学硕士学位论文,2007:19-20,45-57.
    [116]陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,1996:180-299.
    [117]Wei Z, Wang Z, Wang H, Cao L. Evolution of microstructures and phases of Al-Mg alloy under 4GPa high pressure[J]. Journal of Materials Science.2007, 42(17):7123-7128.
    [118]王振玲Al-Mg合金高压凝固组织与相演变研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:1-22,49-79.
    [119]Kciuk M, Kurc A, Szewczenko J. Structure and corrosion resistance of aluminium AlMg2.5; AlMg5Mn and AlZn5Mg1 alloys[J]. Journal of Achievements in Materials and Manufacturing Engineering.2010,41(1-2):74-81.
    [120]Kciuk M. Structure, mechanical properties and corrosion resistance of AlMg5 alloy [J]. Journal of Achievements in Materials and Manufacturing Engineering. 2006,17(1):185-188.
    [121]Straumal B, Baretzky B, Kogtenkova O, Straumal A, Sidorenko A. Wetting of grain boundaries in Al by the solid Al3Mg2 phase[J]. Journal of Materials Science. 2010,45(8):2057-2061
    [122]Franken P, Gehring A. Grain boundary analysis of MgO-doped Al2O3[J]. Journal of Materials Science.1981,16(2):384-388.
    [123]John S T, Klug D D, Gao F. Hardness of nanocrystalline diamonds[J]. Physical Review B.2006,73(14):140102.
    [124]兰剑.晶胞尺寸对密立根布居和硬度计算的影响[D].吉林:吉林大学硕士学位论文,2011:49-67.
    [125]Rocha S D, Thibaudeau P. Ab initio high-pressure thermodynamics of cationic disordered MgAl2O4 spinel[J]. Journal of Physics:Condensed Matter.2003,15(41): 7103-7115.
    [126]李美玲.镁铝尖晶石等材料物性的理论研究[D].沈阳:东北大学博士学位论文,2009:13-23,33-46,53-85.
    [127]Rittidech A, Portia L, Bongkarn T. The relationship between microstructure and mechanical properties of Al2O3-MgO ceramics[J]. Materials Science and Engineering:A.2006,438-440:395-398.
    [128]Azhar A Z A, Mohamad H, Ratnam M M, Ahmad Z A. The effects of MgO addition on microstructure, mechanical properties and wear performance of zirconia-toughened alumina cutting inserts[J]. Journal of Alloys and Compounds. 2010,497(1):316-320.
    [129]Chantikul P, Bennison S J, Lawn B R. Role of grain size in the strength and R-curve properties of alumina[J]. Journal of the American Ceramic Society.1990, 73(8):2419-2427.
    [130]Matsubara H, Shin S G, Sakuma T. Growth of carbide particles in TiC-Ni and TiC-Mo2C-Ni cermets during liquid phase sintering[J], Materials Transactions, JIM. 1991,32(10):951-956.
    [131]黄虹,黄金昌.TiC0.7No.3-Mo2C-Ni金属陶瓷的显微组织和高温性能[J].稀有金属快报.1997,(006):10-13.
    [132]Liu N, Xu Y, Li Z, Chen M, Li G, Zhang L. Influence of molybdenum addition on the microstructure and mechanical properties of TiC-based cermets with nano-TiN modification[J]. Ceramics International.2003,29(8):919-925.
    [133]刘宁,胡镇华,崔昆.Mo在颗粒型复合材料金属陶瓷中的作用[J].稀有金属材料与工程.1994,23(3):45-48.
    [134]何林,黄传真,黄勤,宋世学,王随莲,艾兴.Mo2C含量对Ti(C,N)基陶瓷力学性能和显微结构的影响[J].材料科学与工程学报.2003,21(002):238-241.
    [135]Numakura H, Ikeda T, Koiwa M, Almazouzi A. Self-diffusion mechanism in Ni-based Ll2 type intermetallic compounds[J]. Philosophical Magazine A.1998, 77(4):887-909.
    [136]Aoki K, Izumi O. Defect structures and long-range-order parameters in off-stoichiometric Ni3Al[J]. Physica Status Solidi (a).1975,32(2):657-664.
    [137]Kim S, Min K, Kang S. Rim structure in Ti(Co.7No.3)-WC-Ni cermets[J]. Journal of the American Ceramic Society.2003,86(10):1761-1766.
    [138]Chen R Z, Tuan W H. Pressureless sintering of Al2O3/Ni nanocomposites[J]. Journal of the European Ceramic Society.1999,19(4):463-468.
    [139]刘鸿文.材料力学(上册)[M].第三版.北京:高等教育出版社,1992:23-58,167-235.
    [140]刘玉先,刘援朝,敖青,张秀菊,李凤照.SG4,LT55陶瓷的组织结构与性能[J].山东工业大学学报.1993,23(4):18-22.
    [141]Evans A. Abrasive wear in ceramics:An assessment[M]. National Bureau of Standards-Ceramic Meeting. Washington; Lawrence Berkeley National Laboratory. 1978:11-12.
    [142]Zhao J, Yuan X, Zhou Y. Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro-nano-composite ceramic tool[J]. International Journal of Refractory Metals and Hard Materials.2010,28(3):330-337.
    [143]李德伟.新型氧化铝基陶瓷刀具的研制及其性能研究[D].大连:大连理工大学硕士学位论文,2010:5-13,37-47.
    [144]Senthil Kumar A, Raja Durai A, Sornakumar T. Wear behaviour of alumina based ceramic cutting tools on machining steels[J]. Tribology International.2006, 39(3):191-197.
    [145]周泽华.金属切削理论[M].北京:机械工业出版社,1991:121-143.
    [146]陈日曜.金属切削原理[M].第二版.北京:机械工业出版社,1993:4-117.
    [147]Camus, cu N. Effect of cutting speed on the performance of Al2O3 based ceramic tools in turning nodular cast iron[J]. Materials & Design.2006,27(10): 997-1006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700