质子交换膜燃料电池不锈钢双极板镀铌改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双极板是质子交换膜燃料电池的核心部件之一。本论文研究了采用对水和空气稳定的离子液体中对不锈钢进行电沉积铌,等离子体基离子注入铌的方法对不锈钢极性双极板进行改性,研究了膜层组织形貌和在模拟质子交换膜燃料电池(PEMFC)环境中的电化学性能和孔蚀动力学历程。
     首先,采用离子液体1-乙基-3-甲基咪唑三氟甲磺酸盐作为电解质在304不锈钢上电沉积铌,铌镀层以孤岛的形式均匀分布在不锈钢表面,其高度在100nm以内。镀铌后304不锈钢表面生成化学惰性良好的NbO、Nb2O5,所形成的一层氧化铌惰性薄保护膜覆盖着基体。在模拟PEMFC的环境中,镀铌304不锈钢的腐蚀电位提高,电化学极化性能得到改善,反应电阻增大,提高了耐蚀性能。
     其次,首次采用氯化胆碱类离子液体氯化胆碱-乙二醇为电解质在316不锈钢上电沉积铌,获得平整均匀的颗粒状镀层。铌镀层以孤岛的形式均匀分布在不锈钢表面,其高度在50nm以内。镀铌后316表面生成化学惰性良好的NbO、Nb2O5,改善了316不锈钢表面膜的钝化能力。在模拟PEMFC环境中,镀铌后316不锈钢的维钝电流密度减小,改善了阳极极化性能;孔蚀电位正移,反应电阻增大,提高了耐蚀性能。以对水和空气稳定的氯化胆碱类离子液体为电解质进行电镀,镀液性质稳定,可重复利用,绿色环保。
     最后,采用金属等离子体基离子注入技术对316不锈钢进行铌离子注入,发现注入铌层以孤岛的形式均匀分布在不锈钢表面,其高度在50nm以内。离子注入铌后316不锈钢表面形成的化学惰性良好的NbO2、Nb2O5膜层及弥散的铌的氧化物小颗粒析出相的化学效应,使其基体的电化学性能得到提高。在模拟PEMFC环境中电化学测试结果,离子注入铌316不锈钢的腐蚀电位升高,维钝电流密度减小,电荷转移电阻增大,电容值降低,注入铌层成为高电阻、低电容的阻挡层,增强了不锈钢表面钝化能力,抑制和减缓了腐蚀反应。在85℃的模拟PEMFC阳极和阴极环境中,离子注入铌316不锈钢腐蚀动力学方程分别为i0-556.85.t-1/2和i0=1108.17.t-1/2,表明孔蚀过程受孔表面盐膜溶解控制。
The bipolar plate is one of the critical components of a proton-exchange-membrane fuel cell (PEMFC). In this study, niobium electrodeposited on stainless steel from air-and water-stable ionic liquids and niobium implanting on stainless steel bipolar plate by metal plasma immersion ion implantation (MePBII) have been researched. The niobium film morphology, electrochemical properties and pitting dynamics course are investigated in the simulated PEMFC environment.
     Firstly, an air-and water-stable ionic liquid,1-ethyl-3-methylimidazolium trifluoromethane sulfonate ([Emim]OTF), has been applied as electrolytes for niobium electrodeposition for the first time. The electrochemical behavior of bare and niobium coated304stainless steel are evaluated by electrochemical tests in PEMFC environment. The results show that niobium can be electrodeposited on the surface of stainless steel in the ionic liquid electrolyte. The niobium plating roughness is within100nm and a thin niobium film acted as barrier can remarkably improve the corrosion resistance of304stainless steel in the PEMFC environment. The analysis of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Atomic force microscopy (AFM) indicate that the improvement is attributed to the smoothness and strong chemical stability of NbO, Nb2O5film.
     Subsequently, another water and air-stable choline chloride based ionic liquid, choline chloride-ethylene glycol, has been explored as an electrolyte for niobium electrodeposition on316stainless steel for the first time. A uniform-dense(isolated island-like) niobium film is obtained on316stainless steel surface. The plating roughness is within50nm. The coated niobium form chemically inert compounds of NbO and Nb2O5which behave as an anti-corrosion barrier and improve the passavition ability of surface layer. The results of the electrochemical characteristic indicate that in simulated PEMFC environment, the electrochemical characteristics of316stainless steel are improved greatly after coated with niobium such as corrosion potential increasing, passivation current density decreasing, pitting potential moving toward positive, and reaction resistance enlarging. ionic liquids electrolytes has obvious advantages such as higher character stability, non-pollution, reusable, less side reactions, and wide usage prospects.
     Finally, niobium implanting on316stainless steel by metal plasma immersion ion implantation (MePBII) has been investigated. The plating roughness of niobium deposited films is within50nm. The electrochemical results reveal that, compared with uncoated substrates, corrosion potential and reaction resistance increases, passivation current density decreases, and pitting potential moves toward positive. The corrosion resistance of the Nb implanted316stainless steel has been improved significantly. The Nb coating was an effective barrier with high resistance and low capacitance which against the inward penetration of corrosive species. This can be attributed to niobium as effectively resistant to pitting corrosion and has more stable chemical properties. the ion implantation niobium316stainless steel corrosion kinetics equations isi0=-556.85.t12and i0=1108.17.t12respectively. It shows that pitting process is controlled by film dissolution.
引文
[1]表宝廉.燃料电池-原理·技术·应用.北京:化学工业出版社,2003:220-228.
    [2]张海峰,衣宝廉,侯明,等.质子交换膜燃料电池双极板的材料与制备.电源技术,2003,27(2):129-133.
    [3]管从胜,杜爱玲,杨玉国.高能化学电源.北京:化学工业出版社,2005:383-384.
    [4]沈春晖,潘牧,罗志平,等,质子交换膜燃料电池双极板的研究进展.新材料产业,2004,129(8):18-21.
    [5]Wind J, Spah R, Kaiser W,et al. Metallic bipolar plates for PEM fuel cells. Journal of Power Sources, 2002,105(2):256-260.
    [6]Li M C, Zeng C L, Luo S Z,et al. Electrochemical corrosion characteristics of type 316 stainless steel in simulated anode environment for PEMFC. Electrochim Acta,2003,48(12):1735-1741.
    [7]Viral Mehta, Joyce Smith Cooper. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources,2003,114(1):32-53.
    [8]Turner J A. Stainless steel as a bipolar plate material for polymer eletrolyte membrane fuel cell. Journal of Power Sourecs.2003,115(2):243-251.
    [9]Taw fik H,Hung Y,Mahajan D. Metal bipolar plates for PEM fuel cell a review. Journal of Power Sourecs.2007,163(2):755-767.
    [10]Davies D P,Adcock P L,Turpin M,et al. Bipolar plate materials for solid polymer fuel cells. APP1 Electrochem,2000,30(1):101-105.
    [11]Davies D P,Adcock P L, Turpin M,et al. Stainless steel as a bipolar plate material for solid polymer fuel cells. Journal of Power Sources,2000,86(1/2):237-242.
    [12]Hornung R,Kappelt.Bipolar plate materials development using Fe-based alloys for solid polyer fuel cells. Journal of Power Sources,1998,72(1):20-27.
    [13]Waidhas M, Datz A,Gebhardt U,et al. Low-coat PEMFC development at siemens-material aspect[A].New Materials for Batteries and Fuel Cells (Mat. Res. Soc. Symp.Proc)[C], Pennsylvania:Material Research Society,2000,575:229-238.
    [14]Paulauskas I E,Brady M P,Meyer H M,et al.Corrosion behavior of CrN,Cr2N and π phase surfaces on nitrided Ni-50Cr for proton exchange membrane fuel bipolar plates. Corrosion Science,2006,48(10):3157-3171.
    [15]Brady M P,Weisbrod K,Paulaukas I,et al.Preferential thermal nitridation to form pri-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates. Scripta Materialia,2004,50(7):1017-1022.
    [16]Zhang J, Kerr R D, Oakley C D, et al. Extended rod of slide mechanism for drawer slide track US Patent,0033408-A1,2004.
    [17]Wind J, Spah R, Kaiser W, et al. Metallic bipolar plates for PEM fuel cells. Journal of Power Sources 2002,105(2):256-260.
    [18]Rockel M. Corrosion behaviour of nickel alloys and high-alloy stainless steel. In:Heubner U, editor. Nickel alloys. New York:1998:44-49.
    [19]Murphy O J, Cisar A, Clarke E. Low-cost light weight high power density PEM fuel cell stack. Electrochim Acta.1998.43(24):3829-3840.
    [20]Hodgson D R, May B, Adcock P I, et al. New lightweight bipolar plate system for polymer electrolyte membrane fuel cells. Journal of Power Sources 2001,96(1):233-235.
    [21]Lee S J, Huang C H, Lai J J, et al. Corrosion-resistant component for PEM fuel cells. Journal of Power Sources,2004,131(1-2):162-168.
    [22]Lee S J, Huang C H, Chen Y P. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell. Journal of Materials Processing Technology,2003,140(1-3):688-693.
    [23]Wang H,Brady M P,Teeter G,et al.Thermally nitride stainless steels for polymer electrolyte membrane fuel cell bipolar plates part 1:model Ni-50Cr and austenitic 349 (TM) alloys. Journal of Power Sources,2004,138(9):86-93.
    [24]Feng H P, Hsu C H, Lu J K, et al. Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel. Materials Science and Engineering A,2003,347(1-2):123-129.
    [25]Brady M P,Weisbrod K, Palauskas I,et al. Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates.Scripta Materialia, 2004,50(7):1017-1022.
    [26]Silva R F,Franchi D,Leone A,et al. Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte fuel cells. Electrochim Acta,2006,51(17):3592-3598.
    [27]Silva R F,Pozio A.Corrosion study on different types of metallic bipolar plates for polymer electrolyte membrane fuel cells.Fuel Cell Science and Technology,2007,4(2):116-123.
    [28]Rujin Tian, Juncai Sun, Liang Wang. Plasma-nitrided austenitic stainless steel 316L as bipolar plate for PEMFC. International Journal of Hydrogen Energy.2006,31(13):1874-1878.
    [29]Brady M P,Wang H,Yang B,et al.Growth of Cr-nitrides on commercial Ni-Cr and Fe-Cr base alloys to protect PEMFC bipolar plates. International Journal of Hydrogen Energy,2007,32(16):3778-3788.
    [30]Scott Weil K, Gordon Xia G,GaryYang Z,et al. Development of a niobium clad PEM fuel cell bipolar plate material. International Journal of Hydrogen Energy.2007,32(16):3724-3733.
    [31]Sung-Tae Hong,Scott Weil K.Niobium-clad 304L stainless steel PEMFC bipolar plate material tensile and bend properties. Journal of Power Sources,2007,168 (2):408-417.
    [32]Sung-Tae Hong.Annealing induced interfacial layers in niobium-clad stainless steel developed as a bipolar plate material for polymer electrolyte membrane fuel cell stacks. Journal of Power Sources,2010,195(9):2592-2598.
    [33]Ren Y J,Chen J, Zeng C L. Corrosion protection of type 304 stainless steel bipolar plates of proton-exchange membrane fuel cells by doped polyaniline coating. Journal of Power Sources, 2010,195(7):1914-1919.
    [34]Fedrizzi L,Massiani Y,Crousier J P,et al.Electrochemical characterization of magnetron sputter-deposited Nb-Zr thin metal films,Corrosion,1990,46 (6):499-505.
    [35]孟繁茂,付俊岩.现代含铌不锈钢.北京:冶金工业出版社,2004,3.
    [36]章洪涛,王瑞珍,庞千云.铌钢和铌合金:中国-巴西学术研讨会论文集.北京:冶金工业出版社,2000.1.
    [37]Marchebois H, Savall C, J Bernard,et al. Electrochemical behavior of zinc-rich powder coatings in artificial sea water, Electrochimica Acta,2004,49(17-18):2945-2954.
    [38]Martin F J,Olek J. Experimental procedure for fundamental studies of reinforcing steel corrosion p rocesses, Review of Scientific Instruments,2003,74 (4):2512-2516.
    [39]Seo M,Hultquist G,Leygraf C,et al. The influence of minor alloying elements (Nb,Ti and Cu) on the corrosion resistivity of Ferritic stainless steel in sulfuric acid solution,Corrosion Science,1986,26(11): 946-960.
    [40]Neusa Alonso Falleiros, Stephan Wolynec. Effect of niobium on corrosion resistance to sulfuric acid
    430 ferritic stainless steel, Materials Research,1998,1(1):39-45.
    [41]Scott Weil K, Gordon Xia, Gary Yang Z, et al. Development of a niobium clad PEM fuel cell bipolar plate material. International Journal of Hydrogen Energy,2007,32(16):3724-3733.
    [42]Richard C,Sutherlin, Ronald A. Corrosion of niobium and niobium alloys[A].ASM Handbook Volume 13B,Corrosion:Materials.USA,2005:325-336.
    [43]Robin A,Almeida M E, Nunes C A. Corrosion behavior of niobium and Nb-25wt% Ta alloy in sulfuric acid solutions. Corrosion,1991,47(6):443-448.
    [44]Jha S C,Delagi R G., Forster J A.High-strength high-conductivity Cu-Nb microcomposite sheet fabricatedvia multiple roll bonding. Metallurgical and Materials Transactions A,1993,24(1):15-20.
    [45]Chu D, Jiang R. Comparative studies of polymer electrolyte membrane fuel cell stack and single cell. Journal of Power Sources,1999,80(1-2):226-234.
    [46]MishraV,Yang, F,Pitchumani R. Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells. Journal of Fuel Cell Science and Technology,2004,1 (1):2-9.
    [47]Alain Robin A. Corrosion behavior of niobium, tantalum and their alloys in boiling sulfuric acid solutions.International Journal of Refractory Metals and Hard Materials,1997,15(5-6):317-323.
    [48]冯景苏.铌应用的新进展.稀有金属材料与工程,1994,23(3):7-12.
    [49]Seok-Hyun Lee,Jeong-Heon Kim,Min-Chul Kim,et al.Effects of niobium and titanium addition and surface treatment on electrical conductivity of 316 stainless steel as bipolar plates for proton-exchange membrane fuel cells.Journal of Power Sources,2009.187(2):312-317.
    [50]Hong Sung-Tae, Weil K Scott, Bae In-Tae, et al. Annealing induced interfacial layers in niobium-clad stainless steel developed as a bipolar plate material for polymer electrolyte membrane fuel cell stacks. Journal of Power Sources,2010,195(9):2592-2598.
    [51]Kamada K, Mukai M, Matsumoto Y. Anodic dissolution of tantalum and niobium in acetone solvent with halogen additives for electrochemical synthesis of Ta2O5 and Nb2O5 thin films. Elcctrochimica Acta,2004,49(2):321-327.
    [52]Endres F,Abbott A P,MacFarlane D R.Electrodeposition from ionic liquids, Weiheim:Wiley-VCH, 2008:9-11.
    [53]Endres F,Abbott A P,MacFarlane D R.Electrodeposition from Ionic Liquids, Weiheim:Wiley-VCH, 2008:6-8.
    [54]Abbott A P, Mckenzie K J. Application of ionic liquids to the electrodeposition of metals. Physical Chemistry Chemical Physics.2006,8(37):4265-4279.
    [55]Girginov,Tzvetkoff T Z,Bojinov M. Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes.Journal of Applied Electrochemistry (in Japanese),1995,25(11):993-1003.
    [56]Stafford G R,Haarberg G M.The electrodeposition of Al-Nb alloy from chloroaluminate elecrtolytes. Plasmas & Ions,1999,2(1):35-44.
    [57]Stafford G R,Hussey C L.Advances in Electrochemical Science and Engineering. Weinheim. Germany:Wiley-VCH,2002(7):275-291.
    [58]Koura N, Umembayashi T, Idemoto Y,et al. Electrodeposition of Nb-Sn alloy from SnCl2-NbCl5-EMIC ambient temperaturemolten salts. Electrochemistry(in Japanese),1999,67(6):684-689.
    [59]王晓丹,吴文远,涂赣峰,等.离子液体中电沉积金属的研究现状.材料导报,2008,22(10):70-75.
    [60]Abbott A E,Boothby D.Deep eutectic solvents formed between cholinechloride and carboxylic acids:versatile alternatives to ionic liquids. Journal of American Chemical Society,2004,126 (29):9142-9147.
    [61]Andrew P A, Glen Capper, Katy J M, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. Journal of Electroanalytical Chemistry,2007,599, (2):288-294.
    [62]Abbott A P,Capper G, Swain BG,et al. Electropolishing of stainless steel in an ionic liquid. Transactions of the Institute of Metal Finishing,2005,83(1):51-53.
    [63]Bonhote P,Dias A P,Papageorgiou N,et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry,1996,35(5):1168-1178.
    [64]Rajender S V,Vasudevan V N. An expeditious solvent-free route to ionic liquids using microwaves. Chemical Communications,2001,22(7):643-644.
    [65]Jens Hoffmann, Matthias Nuchter, Bernd Ondruschka,et al. Ionic liquids and their heating behaviour during microwave irradiation-a state of the art report and challenge to assessment. Green Chemistry,2003, 5(3):296-299.
    [66]李春喜,宋红艳,王子镐.超声波在化工中的应用与研究进展.石油学报,2001,17(3):86-90.
    [67]Varma R S, Namboodiri V V. Solvent-free preparation of ionic liquids using a household microwave oven. Pure Applied Chemistry,2001,73(8):1309-1313.
    [68]Vasudevan V,Namboodiri, Rajender S V. Solvent-free sonochemical preparation ofionic liquids. Organic Letters,2002,4(18):3161-3163.
    [69]Leveque J M,Luche J L, Rouxa C P R,et al. An improved preparation of ionic liquids by ultrasound. Green Chemistry,2002,4(4):357-360.
    [70]孙华,李胜清,付健健,等.超声波辅助合成离子液体及其性能测定.武汉工程大学学报,2007,30(4):14-17.
    [71]Jiashou Wu,Fei Wang,Yaping Ma,et al.Asymmetric transfer hydrogenation of imines and iminiums catalyzed by a water-soluble catalyst in water.Chemical Communications,2006,8(16):1766-1768.
    [72]陈光文,袁权.微化工技术.化工学报,2003,54(4):427-439.
    [73]石春艳.微反应器中沸石及其膜的制备与性能研究:(硕士学位论文).大连:大连理工大学2006.
    [74]Hsu J P,Wei T H.Residence time distribution of a cylindrical microreactor.Physical Chemistry B,2005,109(18):9160-9165.
    [75]刘娟,郑成,陈永亨.微反应器的研究与进展.广州化工,2005,33(6):6-9.
    [76]朱炳辰.化学反应工程.北京:化学工业出版社,2000.
    [77]郑来峰.微反应器中的乙烯催化反应: (硕士学位论文).天津:天津大学,2005.
    [78]黑瑟尔沃尔克,勒韦霍尔格.微反应器研究与应用新进展.现代化工,2004,24(7):9-18.
    [79]干茗,史庆南,陈勇军.离子注入材料表面改性的研究进展.云南冶金,2003,32(2):54-56.
    [80]蔡珣,等.等离子体基离子注入技术发展及其应用.机械工人:热加工,2005,532(4):33-35.
    [81]复立芳,等.材料等离子体基离子注入表面改性.材料热处理学报,2001,22(1):42-45.
    [82]Kai Feng,Zhu guo,Xun Cai, et al.Corrosion behavior and electrical conductivity of niobium implanted 316L stainless steel used as bipolar plates in polymer electrolyte membrane fuel cells. Surface and Coatings Technology,2010,205(1):85-91.
    [83]Chen X W,Bai X D,Yu R H,et al.Studies on the oxidation behavior of niobium-implanted Zircaloy-4 at 500℃. Nuclear Materials,2002,306(2-3):190-193.
    [84]Chen X W,Bai X D,Deng P Y,et al.Electrochemical behavior of niobium-implanted zircaloy-4 induced by heat treatment. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,211 (4):512-518.
    [85]Liu Y Z, Zu X T, Li C,et al. Surface characteristics and corrosion behavior of Ti-Al-Zr alloy implanted with Al and Nb. Corrosion Science,2007,49 (3):1069-1080.
    [86]Luo Wenhua, Ni Ranfu, Wu Sheng, et al.Study on improving corrosion resistance abilities of pure iron by ion implantation with Niobium. Materials protection(China),2001,34,(9):12-15.
    [87]Gunzel R, Mandl S,Richter E,et al. Corrosion protection of titanium by deposition of niobium thin films. Surface and Coatings Technology,1999,119:1107-1110.
    [88]崔江涛,田修波,杨十勤.偏压对磁控溅射沉积铌膜表面性能的影响.真空科学与技术学报,2008,28(1):67-71.
    [89]王振霞.Ti6AL4V合金及纯钛双辉等离子渗Nb工艺及改性层性能研究.太原:太原理大工大学硕士论文,2006.
    [90]Abbott A P,Capper G, Swain B G,et al. Electropolishing of stainless steel in an ionic liquid. Transactions of the Institute of Metal Finishing,2005,83 (1):51-53.
    [91]Shores D A, Deluga G A. Handbook of fuel cell-fundmentals, Technology and applications, Harper Collins UK:John Wiley and Sons,2003,273-285.
    [92]Li Y.Meng W,Swathirajan S, et al. Corrosion resistance PEM fuel cell. US Patent 5624769,1997.
    [93]田如锦.质子交换膜燃料电池不锈钢双极版性能的研究:(博士学位论文).大连:大连海事大学2006.
    [94]Sudip Mukhopadhyay, Alexis T Bell, Srinivas R,et al. Synthesis of trifluoromethanesulfonic acid from CHF3.Organic Process Research and Development.2004,8(4):660-662.
    [95]王军.离子液体的性能及应用.北京市:中国纺织出版社.2007.
    [96]Hagiwara R,Ito Y.Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. Fluorine Chemistry,2000,105(22):221-227.
    [97]Richard T C, Hugh C D L, Joan Fuller, et al. Dual intercalating molten electrolyte batteries. Electrochemical Society,1994,141(7):L73-L76.
    [98]Papageorgiou N,Athanassov Y. The performance and stability of ambient temperature molten salts for solar cell applications. Electrochemical Society,1996,143(10):3099-3108.
    [99]Dick G B.Electrodeposition of Ta in high temperature melts. Galvanotechnik,1997,88(12): 3982-3984.
    [100]Zein El Abedin S,Farag H K, Moustafa E M,et al. Electroreduction of tantalum fluoride in a room temperature ionic liquid at variable temperatures. Physical Chemistry Chemical Physics 2005,7(11):2333-2339.
    [101]Ahn S H, Lee J H, Kim H G, et al. A study on the quantitative determination of coating porosity in PVD grown coatings. Applied Surface Science,2004,233(1-4):105-114.
    [102]黄鹤,王学刚,朱晓东,等.离子束辅助磁控溅射沉积TiN薄膜的研究.稀有金属材料与工程,2002,31(3):205-208.
    [103]史新伟,李杏瑞,邱万起,等.电弧离子镀TiN及其复合膜的腐蚀机理探讨.真空科学与技术学报,2006,26(4):330-334.
    [104]Uhlig H H, RW R. Corrosion and corrosion control. New York:John Wiley and Sons,1985.
    [105]Myung S T,Kumagai M,Asaishi R,et al. Nanoparticle TiN-coated type 310 stainless steel as bipolar plates for polymer electrolyte membrane fuel cell. Electrochem Commun,2008,10(3):480.
    [106]Was G S, Demaree J D,Rotberg V,et al. Corrosion and mechanical behavior of ion implanted bearing steels for improved fretting behavior. Surface Coating Technology,1994,66(1):446.
    [107]曹楚南,张鉴清,电化学阻抗谱导论,科学技术出版社,北京,2002:26.
    [108]WIND J,SPAH R,KAISER W,et al.Metallic bipolar plate in PEM fuel cells. Journal of Power Sources,2002,105(3):256-260.
    [109]Magginn, E J,Couling D J,Bernot R J,et al.Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modelling.Green Chemistry,2006,8(1): 82-90.
    [110]Tsuda T,Ito Y.Accumulation and excretion of molinate bromobutide and their degradation products in fish. Electrochemical Society,2000,99(41):100-102.
    [111]Abbott A P,Capper G, Davies D L,et al.Preparation of novel, moisture-stable,Lewis-acidic ionic liquids containingquaternary ammonium salts with functional side chains.Chemical Communications,2001, 19(1):2010-2011.
    [112]Abbott A P,McKenzie K J.Application of ionic liquids to the electrodeposition of metals. Physical Chemistry Chemical Physics,2006,8(37):4265-4279.
    [113]Abbott A P, Capper G, Davies D L,et al. Processing metal oxidesusing ionic liquids. Mineral Processing and Extractive Metallurgy,2006,115(1):15-18.
    [114]Abbott A P, Capper G, Davies D L,et al. Electrodeposition of chromium black from ionic liquids. Transactions of the Institute of Metal Finishing,2004,82(1-2):14-17.
    [115]徐洪杰.离子液体的制备和表征.物理化学B,2009,113(7),2066-2070.
    [116]侯亚伟.功能化离子液体的制备、性能及应用的研究(硕士学位论文).上海:华东师范大学2009.
    [117]付雄之,于爱风,顾建胜.室温离子液体中电沉积金工艺研究.材料保护,2009,42(2):22-24.
    [118]杨海燕,郭兴伍,吴国华,等.Az91D镁合金在氯化胆碱-尿素离子液体中电镀锻Zn的研究.中国腐蚀与防护学报,2010,30(2):155-160.
    [119]Wang H,Turner.Reviewing metallic PEMFC bipolar plates. Fuel Cells,2010,10(4):510-519.
    [120]Silva R F, Pozio A.Corrosion study on different types of metallic bipolar plates for polymer electrolyte membrane fuel cells.Fuel Cell Science and Technology,2007,4(2):116-22.
    [121]Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell a review. Journal of Power Sourecs,2007,163(2):755-767.
    [122]Yin Yuchang, Da Yungwang. Corrosion behavior of CrN coatings enhanced by niobium ion implantation,Surface and Coatings Technology,2004,188-189(1/3):478-483.
    [123]Was G S,Demaree J D,Rotberg V,et al. Corrosion and mechanical behavior of ion implanted bearing steels for improved fretting behavior. Surface and Coatings Technology 1994,66,(1-3):446-452.
    [124]Nieumoudt M K, Commins J D, Cukrowski I. Analysis of the composition of the passive film on iron under pitting conditions in 0.05 M NaOH/NaCl using Raman microscopy in situ with anodic polarisation and MCR-ALS[J].Journal of Raman Spectroscopy,2012,43 (7):928-938

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700