MPLS接纳控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
服务质量(QoS,Quality of Service)是网络研究的技术热点和难点。ITU-T、IETF等组织均对服务质量从不同角度和层面进行了研究,并提出了IntServ(综合服务模型, Integerated service)、DiffServ(区分服务模型,Differentiated Service)和MPLS(多协议标记交换,Multiple Protocols Label Switching) QoS体系结构。能够得到两大阵营从信令到架构完全支持的却只有MPLS QoS体系结构。这主要是因为MPLS具有以下特点:(1)MPLS技术将连接机制引入无连接的IP网络,一次路由,多次交换,既保留了路由的灵活性,又充分发挥了交换的高速度;(2)MPLS良好的扩展性和开放性使其不仅可以在物理层、多种数据链路层、IP层、TCP等多个层次上直接建构,还可以适应从数据链路层到应用层的多种使用要求。(3)MPLS可以对目前Internet的主要关键技术问题如QoS、VPN(虚拟专用网,Virtual Private Network)、流量工程、IPv4/IPv6的过渡、组播等技术均有全面而很好的支持和完整的解决方案。(4)边缘部署,核心可扩展,与Internet的发展方向一致。因此MPLS技术从出现以来便得到了迅速应用、普及和标准化,在无线网络、LAN/PAN/MAN/WAN、光网络、卫星网络、移动网络等众多领域得到了应用,网络设备厂商和科研院所纷纷投入巨资和众多人员进行研究和开发,具有MPLS功能的网络设备是目前中高端网络设备以及网络应用的基本要求。
     接纳控制(CAC,Connection Admission Control)是MPLS体系结构中LSP(标记交换路径,Label Switching Path)和TE(流量工程,Traffic Engineering)实现的基本功能组件。接纳控制一直是QoS实现和研究的热点问题。接纳控制可以同时实现两个目标:(1)保障所有连接的QoS;(2)有效地提高网络资源利用率,即在用户需求和网络效益最大化之间取得良好的折中。接纳控制的实现需要两个前提,只有同时满足了这两个前提条件,新连接请求才被接纳,否则被拒绝:(1)资源条件,即网络结点有足够的资源来满足新连接请求的服务质量;(2)不损害条件,即新连接的接入,不会影响已接纳分组流的QoS。目前主要的接纳控制技术主要分为分布式CAC技术、集中式CAC技术和基于策略的CAC技术。这些CAC技术可以根据需要在MPLS网络中进行应用,与其它技术一起构成完整的QoS实现解决方案。
     围绕MPLS LSP和MPLS TE的CAC实现机制,本文做出了以下具有创新性的工作:
     1.为了准确预测自相似网络流量,提出了基于测量的自相似网络流量预测算法(HSS-MBP)。近年来的研究表明,自相似特性是网络流量的基本特性,因此根据网络流量自相似特性开展相关的网络流量预测是网络研究的根本要求,论文后续章节的大部分相关工作均基于HSS-MBP开展。HSS-MBP算法以测量的方法对自相似流量进行了预测,理论分析和模拟表明HSS-MBP算法能在较少计算量的情况下较好地对自相似网络流量进行预测,更接近于实时预测网络流量的需要。
     2.为了在节点对流量进行调节,提出了基于测量的自相似接纳控制算法(HSS-MBAC)和基于测量的自相似自适应接纳控制算法(HSS-AMBAC)。算法通过预测和自适应地调节相关参数预测自相似网络流量,根据自相似流量的合成特性,使网络流量预测更为准确和及时,接纳控制更为有效,在保证带宽的情况下提高了接纳效率和带宽利用率。
     3.针对MPLS LSP本身固有特性和实现机制,提出了基于标记的LSP概率接纳控制算法(LB-PAC)。LB-PAC不会增加LSP建立的复杂度,有效避免了端点接纳控制和端到端接纳控制的局限性。针对时延敏感和带宽敏感两种不同应用分别提出了概率接纳控制算法,分析和仿真表明,算法进一步提高了LSP接纳效率和带宽利用率。
     4. QoS的效用问题是ISP(Internet服务提供商,Internet Service Provider)和用户都十分关心的问题,本文将效用机制引入MPLS DS-TE(区分服务感知的流量工程,DiffServ aware Traffic Engineering)实现其接纳控制,根据MPLS DS-TE技术要求提出了UB-MDTAC算法。算法较好地权衡了ISP关心的网络效率和用户价格方面的需求,从TE的角度提高了接纳效率和带宽利用率。
     5.针对CAC的柔性化部署要求,本文对MPLS中基于策略的接纳控制技术进行了研究和分析,提出了MPLS策略接纳控制模型(MPBMC)和多域MPLS策略接纳控制模型(MMPBMC),探讨了MPBMC/MMPBMC策略生成、策略冲突及消解方法,作为PBMC(基于策略的接纳控制,Policy based Admission Control)在MPLS网络中实施的基本参考依据。
Quality of Service (QoS) is one of the most active research areas in networking. In an attempt to address the growing needs of applications, organizations such as ITU-T and IETF put forwarding into QoS research and proposed the structure of Integrated Service(IntServ), Differentiated Service(DiffServ) and Multiple Protocol Label Switching(MPLS) QoS. But the MPLS QoS is the only structure that was supported by the two organizations. This is mainly because MPLS have many special characteristics, including: (1) MPLS technology imports connection mechanism into non-connection IP network, realized one routing, multiple switching, remaining the routing flexibility and exerting the high speed of switching; (2) MPLS can be realized on diverse layers from physical layer to TCP layer and meets the use demands from Data Link Layer (DLL) to Application Layer (AL). The real scenario is anything over MPLS and MPLS over anything at present; (3)MPLS primely supports the key technologies such as QoS, VPN(Virtual Private Network), Traffic Engineering (TE), IPv4/IPv6 coexistence, multicast, etc. and provides integrated solving projects; (4)MPLS can be deployed at edge and can be expanded at core, according with the Internet developing. Therefore, MPLS was popular just from its appearance, and has been widely used in wireless network, LAN/PAN/MAN/WAN, optical network, satellite network and mobile network. Main network equipment providers and academic organizations research and develop the MPLS technology with huge capital and many people. Network equipments with MPLS function are the fundamental requirement of advanced network equipments and network applications.
     Call Admission Control or Connection Admission Control (CAC) technology is the basic function opponent of MPLS LSP and MPLS TE. CAC is the most active research areas in QoS at all times. CAC has two targets: (1) guaranteeing the all present QoS links; (2) effectively improving the usage of network resource. The main technologies of CAC can be classified to distributed CAC technology, centralized CAC technology and policy-based CAC technology. These CAC technologies can be realized in the MPLS network on demand, and can be integrated into other technologies to construct whole QoS settlement.
     The main research in this thesis surrounds the CAC realization mechanism of the MPLS LSP and MPLS TE, and the major contributions of this thesis include:
     1. To predict the network traffic precisely, we propose measure-based self-similar network traffic prediction algorithm (HSS-MBP). Self-similarity is the fundamental character of network traffic. The following of the thesis are mainly based on HSS-MBP. Through analysis and simulations, it shows that HSS-MBP has better prediction data with less computing.
     2. To adjust the traffic at the node, we propose Measure-based Self-Similar CAC algorithm (HSS-MBAC) and Adaptive Measure-based Self-similar CAC algorithm (HSS-AMBAC).The algorithms predict the self-similar traffic and adjust it adaptively, traffic prediction is more precise and timely. Through analysis and simulations, they shows higher admission ratio under the same bandwidth.
     3. Referring to the inherent character and realization mechanism of MPLS LSP, we propose Label-based Probability Admission Control algorithm (LB-PAC). Avoiding the limitations of the End-point Admission Control algorithm and End-to-end Admission Control algorithm without increasing the complexity of LSP setup, LB-PAC utilizes MPLS LSP realization mechanism. According to the time sensitive application and bandwidth sensitive application, various probability admission control algorithm are proposed. Through analysis and simulation, the algorithms have higher admission ratio.
     4. The price of QoS is sensitive problem of ISP and users. Pricing mechanism is imported to the MPLS DS-TE and Price-based MPLS DS-TE algorithm (UB-MDTAC) is proposed. The algorithm balances the network usage of ISP focus and the price demand of users, and get better admission ratio under MPLS DS-TE.
     5. To meet the demand of flexible deployment of CAC, the policies of Policy-based Admission Control (PBAC) algorithm are analyzed and two models (MPBMC/MMPBMC) are proposed to meet the realization of PBMC in MPLS network.
引文
[1] Crawley E, Nair R, Rajagopalan B, Sandick H. Aframework for QoS-based routing in the internet, IETF RFC 2386, 1998.8
    [2]林闯,单志广,任丰原,计算机网络的服务质量(QoS),清华大学出版社,2004.1
    [3] R.Braden, D. Clark and S. Shenker, Integrated Services in the Internet Architecture: An Overview, RFC 1633, 1994.7
    [4] S. Blake, D. Black, M. Carlson, et. An Architecture for Differentiated Service, RFC 2475, 1998.12
    [5] E. Rosen, A. Viswanathan, R. Callon, Multiprotocol Label Switching Architecture, RFC 3031, 2001.1
    [6] J. Wroclawski, Specification of the Controlled-Load Network Element Service, RFC 2211, 1997.9
    [7] S. Shenker. C. Partridge, R. Guerin, Specification of Guaranteed Quality of Service, RFC 2212, 1997.9
    [8] S. Shenker, J. Wroclawski, General Characterization Parameters for Integrated Service Network Elements, RFC 2215, 1997.9
    [9] S. Shenker, J. Wroclawski, Network Element Service Specification Template RFC 2216, 1997.9
    [10] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, Resource Reservation Protocol (RSVP)-Version 1 Functional Specification, RFC 2205, 1997.9
    [11] K. Nichols, V. Jacobson, L. Zhang, A Two-bit Differentiated Services Architecture for the Internet, RFC 2638, 1999.7
    [12] K. Nichols, S. Blake, F. Baker, D. Black, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, RFC 2474, 1998.12
    [13] K. Chan, R. Sahita, S. Hahn, K. McCloghrie, Differentiated Services Quality of Service Policy Information Base, RFC 3317, 2003.3
    [14] E. Rosen, D. Tappan, G. Fedorkow, et. MPLS Label Stack Encoding, RFC 3032, 2001.1
    [15] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, J. McManus, Requirements for Traffic Engineering Over MPLS, RFC 2702, 1999.9
    [16] V. Sharma, F. Hellstrand, Framework for Multi-Protocol Label Switching (MPLS)-based Recovery, RFC 3469, 2003.2
    [17] E. Rosen, Y. Rekhter, BGP/MPLS VPNs,RFC 2547, 1999.3
    [18] K. Kompella, Y. Rekhter, L. Berger, Link Bundling in MPLS Traffic Engineering (TE), RFC 4201, 2005.10
    [19] J-L. Le Roux, J.-P. Vasseur, J. Boyle, Requirements for Inter-Area MPLS Traffic Engineering, RFC 4105, 2005.1
    [20] L. Berger, Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471. 2003.1
    [21] P. Ashwood-Smith, L. Berger, Generalized Multi-Protocol Label Switching (GMPLS) Signaling Constraint-based Routed Label Distribution Protocol (CR-LDP) Extensions, RFC 3472, 2003.1
    [22] E. Mannie, D. Papadimitriou, Generalized Multi-Protocol Label Switching (GMPLS) Extensions for Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) Control, RFC 3946, 2004.10
    [23] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, 2001.12
    [24] D. Awduche, A. Hannan, X. Xiao, Applicability Statement for Extensions to RSVP for LSP-Tunnels, RFC 3210, 2001.12
    [25] F. Le Fancheur,L. Wu,B. Davie et,MPLS Support of Differentiated Services[Z],RFC 3270,2002.5
    [26]吴继雁,吴梦晓,吴产乐,集成IntServ DiffServ和MPLS改善IP QoS,太原理工大学学报,第34卷第2期,2003年3月
    [27]汪芸,顾冠群,Qos接入控制必要性研究,小型微型计算机系统,1999.20(9)
    [28] Jamin S, Shenker S J, Danzig P B, Comparison of Measurement based admission control algorithms for controlled Load service[A], IEEE INFOCOM’97[C], 1997, 973-980
    [29]黄新刚,向勇,史美林,IP网络中支持QoS的接纳控制算法[J],计算机科学,2003.11
    [30]马小骏,顾冠群,基于测量的接纳控制研究[J],计算机学报,2001,24(1):40~45
    [31] Floyd S, Comments on Measurement based Admission Contro1 for Controlled Load Service: [Technical report], Lawrence Berkeley Laboratory, July 1996
    [32] Guerin R, Ahmadi H, Naghshineh M, Equivalent capacity audits application to bandwidth allocation in high-speed networks, IEEE Journal on Selected Areas in Communications, 1991.9:968~981
    [33] Hoeffding W, Probability inequalities for sums of bounded random variables, American Statistical Association Journal,1963.58: 13~30
    [34] Jamin S, Danzig P, Shenker S, Zhang L, A Measurement-based Admission Control Algorithm for Integrated Services Packet Networks, IEEE/ACM Transactions on Networking, 1997, 5(1): 56~70
    [35] Breslau L, Jamin S, Shenker S, Comment on the Performance ofMeasurement-based Admission Control Algorithms, Proceedings of IEEE INFOCOM, 2000: 1233~1242
    [36] Jamin S, Shenker S, Measurement-based Admission Control Algorithm for Controlled-load Service: A Structural Examination, University of Michigan, Ann Arbor, MI, Report CSE-TR-333-97, 1997
    [37]桂志波,周立超,基于测量的QoS接纳控制算法的结构与性能分析,计算机科学,2003.12
    [38] Ivars I Ms, Karlsson G, PBAC: probe-based admission control [A], Proceedings of QofIS2001[A], Coimbra, Portugal, 2001
    [39] Breslau L, et al, Endpoint admission control: Architectural issues and performance. Proceedings of ACM SIGCOMM 2000, 2000.8
    [40] Pang Bin,Shao Huai-rong,Zhu Wen-wu.An edge-based admission control for differentiated services network[A], Proceedings of IEEE workshop on High Performance Switching and Routing(HPSR)[C]. Kobe, Japan,May 2002.151~155
    [41] Cetinkaya C, Knightly E, Egress admission contro1, Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israe1, 2000.3
    [42] Bianchi G, Capone A, Petrioli C, Throughput analysis of end-to-end measurement-based admission control, Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, 2000.3
    [43] Elek V, Karlsson G, Ronngren R, Admission control based on end-to-end measurements, Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israe1, 2000.3
    [44] Gibbens R, Kelly F, Distributed connection acceptance control for a connectionless network, Proceedings of ITCC’99, Edinburgh, UK, 1999.6
    [45] Kelly F, Key P, Zachary S, Distributed admission contro1, IEEE Journal on Selected Areas in Communications, 2000
    [46] Choi B K, Bettati R, End point Admission Contro1: Network Based Approach, Proceedings of the 21st International Conference on Distributed Computing Systems, Phoenix, AZ, 2001.4
    [47] Ferrari T, Almesberger W, Boudec J L, SRP: a scalable Efficient Resource Management for Hard Real-Time Communication over Differentiated Services Architectures, the 7th IEEE International Conference on Real-Time Computing Systems and Applications, Cheju, Korea, 2000.12
    [48] Centinkaya C, Knightly E, Scalable Services via Egress Admission Contro1, In: Proc. of IEEE INFOCOM’00, Te1 Aviv, Israe1, 2000.3
    [49] Zhang Z, Duan Z, Gao L, Hou Y, Decoupling QoS control from core routers: A hovel bandwidth broker architecture for scalable support of guaranteed services, Proceedings of ACM SIGCOMM 2000, 2000.10
    [50] Zhang Z, Duan Z, Hou Y, Virtual time reference system: A unifyingscheduling frame work for scalable support of guaranteed services, IEEE Journal on Selected Areas in Communications, 2000.18(12): 2684~2695
    [51] Zhang Z, Duan Z, Hou Y, On scalable design of bandwidth broker, IEICE Transactions on Communications, 2001.E84-B(8):2011~2025
    [52] Bhanagar S, Nath B, Distributed admission control to support guaranteed services in core-stateless networks, IEEE, 2003
    [53] Yavatkar R, Pendarakis D, Gruerln R, A Framework for Policy-based Admission Contro1, RFC 2753, 2000
    [54] Herzog S, Boyle J, et a1, COPS usage for RSVP, RFC 2749, 2000
    [55] Isoyama K, Yoshida M, Policy framework Qos Information Model for MPLS[A], IETF Internet Draft[EB/OL], http://www.ietf.org.internet.drafts/draf-ietf- mode1.for.mpls.txt, 2000-07-12
    [56] Mannie E, et al, Generalized multi-protocol label switching(GMPLS) architecture, RFC 3945, 2004.10
    [57] Abry P. and D.Veitch, Wavelet analysis of long-range dependent traffic, IEEE Transactions on Information Theory, 1998,44(1):2~15
    [58] Leland W, Taqqu M, Willinger W, and Wilson D. On the self-similar nature of Ethernet traffic, Proceedings of ACM SIGCOMM’93, 1993:183~193
    [59] V. Paxson and S. Floyd, Wide-area traffic: the failure of Poisson modeling, Proceedings of ACM SIGCOMM’94, 1994:257~268
    [60] Crovella M and Bestavros A, Self-similarity in World Wide Web traffic: evidence and possible causes, Proceedings of the 1996 ACM SIGETRICS International Conference on Measurement and Modeling of Computer Systems, 1996.5
    [61] Kumar A, Comarative performance analysis of versions of TCP in a local network with a loss link, IEEE/ACM Transactions on Networking, 1998,6(4):485~498
    [62] Feldmann A, Gilber A.C, Huang P and Willinger W, Dynamics of IP traffic: A study of the role of variability and the impact of control, Proceeding of ACM SIGCOMM, Boston, MA, 1999.8
    [63] Figueiredo D. R, Liu B, Misra V and Towsley D, On the autocorrelation structure of TCP traffic. Technical Report TR00-55,University of Massachusetts, Computer Science Department, Amherst, MA, 2000
    [64] Guo L, Crovella M. and Matta I. How does TCP generate pseudo self- similarity? Proceedings of MASCOTS, Cincinnati, OH, 2001.8
    [65] Park K, Kim G, and Crovella M, On the relationship between file sizes, transport protocols, and self-similarity network traffic, Proceeding of ICNP, Columbus, OH, 1996(10):171~180
    [66] Sikdar B and Vastola K S, The effect of TCP on the self-similarity of network traffic, Proceedings of the 35th Conference on Information Sciences and Systems,Baltimore, MD, 2001.3
    [67] Veres A, Kenesi Z, Molnar S and Vattay G, On the propagation of long-rang dependence in the Internet, Proceedings of ACM SIGCOMM, Stockholm, Sweden, 2000(9):243~254
    [68] Veres A and BodaM, The chaotic nature of TCP congestion control, Proceedings of IEEE INFOCOM, Tel Aviv, Israel 2000,1715~1723
    [69] Erramilli A, Narayan O, Neidhardt A and Sainee L, Performance impacts of multi-scaling in wide area TCP/IP traffic, Proceedings of IEEE INFOCOM, Tel Aviv, Israel March 2000, 352~259
    [70] Erramilli A, Narayan O, Willinger W, Data networks as cascades: Investi- gation the multifractal nature of Internet WAN traffic, Computer Communications Review, vol.28, No.4, 42~58 , 1998
    [71] Park K and Willinger W, Self-similarity Network Traffic and Performance Evaluation, John Wiley & Sons, Inc. New York 2000
    [72] Sikdar B, Chandrayana K, Vastola K S and Kalyanaraman S, Queue Management Algorithms and Network Traffic Self-Similarity, http://www.ecse.rpi.edu/ Homepages/shivkuma/research/papers/sikdar-selfsim-hpsr.pdf, 2001
    [73] Sikdar B, Vastola K S and Kalyanaraman S, On Reducing the Degree of Self-Similarity in Network Traffic, http://citeseer.ist.psu.edu, 2002
    [74] Sharma M and Byers J W, How Well Does File Size Predict Wide-Area Transfer Time, http://cs-people.bu.edu/manishrs/paper.pdf, 2001
    [75] Orugant S, Devetsikiotis M and Keith J Townsend, Exploiting Traffic Prediction and Adaptive Control to Implement Robust Active Queue Management Schemes, http://lion.cs.uiuc.edu/paqm_journal_new3.pdf, 2002
    [76] Tsyboko B, Georganas N, On self-similar traffic in ATM queues: definitions, overflow probability bound, and cell delay distribution[J]. IEEE/ACM Transactions on Networking, l997,5(3):397~409
    [77]吴援明,宁正容,梁恩志,网络自相似业务模型进展,通信学报,2004.3
    [78]陈栋,荆涛,冯玉珉,自相似业务流模型的分析与比较,中国新通信,2006.15
    [79]石春艳,自相似网络几种不同模型的比较和分析,电信快报,2004.6
    [80] Mor Harchol-Balte et. al, Size-based scheduling to improve web performance, Traces available in the Internet traffic archive[EB/OL], http://town.hall.org/ARCHI- VES/Pub/ITA,2003
    [81] Roughan R, Veitch D, Abry P, Real-time estimation of the parameters of long-range dependence[J]. IEEE ACM Transactions on Networking, 2000,8(4):467~478
    [82] Ge Xiaohu, Zhu Guangxiu, Zhu Yaoting, An Improved Modeling for Network Traffic Based on Alpha-Stable Se1f-similar Processes, The Chinese Journa1 of Electronics, 2003.10
    [83] Ge Xiaohu, Zhu Guangxiu, Zhu Yaoting, On the Testing for Alpha-stable Distributions of Ethernet Network Traffic. The Journa1 of Electronics(Chinese), 2003.7
    [84] Samorodnitsky G, Taqqu M S, Levy Measures of Infinitely Divisible Random Vectors and Slepian Inequalities, The Annals of Probability, 1994,22(4):l930~l956
    [85] Parulekar M, Makowski A M, Tail Probabilities for a Multiplexer with Self-similar Traffic, Proceedings of Fifteenth Annual Joint Conference of the IEEE Computer Societies, Vol 3. Piscataway(NJ): IEEE Press, 1996,1452~l459
    [86]林青家,陈涤,刘允才,网络流量长相关特性的估值算法的性能分析[J],山东大学学报,2005.40(1):86~89
    [87]宁正容,网络自相似业务产生的研究[D],成都电子科技大学学报,2003
    [88]张连芳,自相似网络业务的建模分析与性能评价研究[D],天津大学学报,1998
    [89]吴援明,黄际彦,李乐民,程婷,自相似业务流Hurst参数小波检测法的研究,信号处理,2006.6
    [90] Darryl V, Patrice A, A wavelet-based joint estimator of the parameters of long-range dependence[J], IEEE/ACM Transactions on Information Theory, 1999. 45(3): 878~897
    [91] Karagiannis Faloutsos M, Riedi R, Long-range Dependence: Now You See It, Now You Don’t, Proceedings of Global Internet, Taiwan, 2002
    [92]陈建,谭献海,贾真,7种Hurst系数估计算法的性能分析,计算机应用2006.4
    [93] Courcoubetis C, Fouskas G, Weber R, On the performance of all effective bandwidths formula[J], Proceedings of 14th International Tele-traffic Congress-ITC14, 1994.1:201~212
    [94] Norros I, On the use of fractional Brownian motion in the theory of connectionless networks[J], IEEE Journal on Selected Areas in Communications, 1995, 13 (6): 953~962
    [95]吴宏斌,张连明,陈志刚,自相似环境中端到端延迟上界,计算机工程与应用,2006.17
    [96]饶云华,邹雪城,基于自相似通信量输入的带宽分配算法,计算机工程与应用,2003.34
    [97] K. Ramakrishnan, S. Floyd, A Proposal to add Explicit Congestion Notification (ECN) to IP, RFC 2481, 1999.1
    [98] Bo Ryu, Fractal Traffic Models for Internet Simulation, IEEE Symposium onComputers and Communications(ISCC), 2000
    [99] Karlsson G, Providing Quality for Internet Video Services[A], Proceedings of CNIT/IEEE IT’WoDC 98[C], Ischia, Italy, 1998,133~146
    [100] Grossglauser M, TSE D, A Framework for Robust Measurement-based Admission Control[J], IEEE/ACM Transactions on Networking, 1999,7(3):293~309
    [101] Ferrarl T, Almesberger W, Boudec J-Y Le, SRP: a scalable resource reservation protocol for the internet[A], Proceedings of IWQoS 98[C], Napa, CA, 1998: 107~116
    [102]毕征,沈苏彬,IP网络接纳控制的研究,南京邮电学院学报,2004.9
    [103] Breslau L, et al, End-point Admission Control: architecture issues and performance, Proceedings of ACM SIGCOMM’00, Stockholm, Sweden, 2000.8
    [104] Gray E. W, MPLS, Implementing the Technology, Addison-Wesley, 2001
    [105]冯径等,多协议标记交换技术,人民邮电出版社,2002.1
    [106]李晓东,MPLS技术与实现,电子工业出版社,2002.12
    [107]吴江,赵慧玲等编著,下一代的IP骨干网络技术-多协议标记交换,人民邮电出版社,2001
    [108] Erie Osborne, Traffic Engineering with MPLS[M], Cisco Press, 2002.07
    [109] Alessio Botta, Paola Lovanna, Extending MPLS Traffic Engineer/ng to deal with QoS[C], SofiCOM 03, 2003.10
    [110] F. Le Faucheur, W. Lai, Requirements for support of Differentiated Services-aware MPLS Traffic Engineering, RFC 3564, 2003.7
    [111] F. Blanchy, L.Melon, G.Leduc, Routing in a MPLS network featuring preemption mechanisms, Proceedings of the ICT2003, vol.1, pp253-260, 2003.3
    [112] MPLS Traffic Engineering–DiffServ Aware(DS-TE), http://www.conft.com /en/US/docs/ios/12_0s/feature/guide/125_DSTE.html, 2006.2
    [113] J A Zubairi, W AI-Khateeb, MPLS: Managing the New Internet[J], Bulletin of Institution of Engineers Malaysia, BIL 2003, 2003 (12)
    [114] H. R. Varian著《微观经济学:高级教程(第三版)》,周洪等译,北京经济科学出版社,1997
    [115] Balakrishnam V K, Network Optimization, London:Chapman &Hall, 1995
    [116] Paul A, Samuelson, William D, Norduaus, Economics(16th edition),萧深译,华夏出版社,1999
    [117] Le Faucheur F, Protocol extensions for support of DiffServ-aware MPLS Traffic engineering, RFC 4124, 2005
    [118] Le Faucheur F, Lai K, Maximum allocation bandwidth constraints model for DS-TE[S], RFC 4125, 2005
    [119] F. Le Faucheur, Le Russian Dolls Bandwidth Constraints Model forDiffServ-aware MPLS Traffic Engineering, RFC 4127, 2005
    [120] F. Le Faucheur, Maximum Allocation with Reservation Bandwidth Constraints Model for DiffServ-aware MPLS Traffic Engineering, RFC 4126, 2005
    [121] Kelly F P, Charging and rate control for elastic traffic[J], European Transactions on Telecommunication, 1997, 8:33~37
    [122] F P Kelly, A Maulloo, D Tan, Rate control for communication networks: Shadow prices, proportional fairness and stability, Journal of the Operational Research Society, 1998, 49 (3) : 237~252
    [123] Nemo Semret, Market mechanisms for network resource sharing[Ph.D dissertation], Columbia University, New York, 1999, http://comet.columbia.edu/~memo/work.html
    [124]陈晓梅,卢锡城,王怀民,基于微观经济学方法的网络资源分配研究,计算机研究与发展,2001.11
    [125] Terminology for Policy-based Management[S], RFC 3198, 2001
    [126] Flegkas P, Trimintzios P, On Policy-based Extensible Hierarchical Network Management in QoS-enabled IP Networks[C], Proceedings of POLICY’01, 2001: 230~246
    [127] Damianou N, Lupu E, Sloman M, The Ponder Policy Specification Language[C], Proceedings of the Policy Workshop, 2001:29~31
    [128] Rajan R, Chiu A, Civanlar S, A Policy Based Approach for QoS-on-demand over the Internet[C], Proceedings of the Eighth International Workshop on Quality of Service, 2000: 167~169
    [129] Snir Y, Ramberg Y, Policy Quality of Service (QoS) Information Model[S], RFC 3644, 2003
    [130]李雷,忻展红,IMS基于策略的QoS管理分析,世界电信,2007.6
    [131]沈海波,洪帆,基于策略的Web服务访问控制研究,计算机科学,2007.34
    [132] M. Wahl, et al. Lightweight Directory Access Protocol, RFC 2251, 1997,12
    [133] B. Moore, Policy core information model(PCIM) Extensions, RFC 3460, 2003.1
    [134] R. Sahita, et al. Framework policy information base, RFC 3318, 2003.3
    [135] Entegrity Solutions Whitepaper, Assure Access Policy Based Access Control: A definition and how it extends Role Based Access Control, http://www.entegrity.com/ products/whitepaperall.shtml, 2005
    [136]李东瑀,张万强,纪阳,IMS中基于策略的网络管理研究,移动通信,2006.3
    [137]姚键等,基于策略的安全管理研究,计算机应用与软件,2005.3
    [138] Blaze M, Feigenbaum J, The KeyNote Trust-management SystemVersion2[EB/OL],1999-09. http://www.rfc- archive.org/getrfc.php?rfc=2704
    [139] Kagal L, Finin T, A Policy Language for a Pervasive Computing Environment[EB/OL], 1997. http://www.csee.umbc.edu/~finin/papers /policy03.pdf.
    [140] Jajodia S, Samarati P, A Logical Language for Expressing Authori- zations[EB/OL], 1997. http://seclab.dti.unimi.it/Papers/oak97-final.ps.
    [141] OASIS Standard, eXtensible Access Control Markup Language (XACML ) Version 1. 0, February 2003. http://www.oasis2open.org/committees/xacml
    [142] Michael, J, B. V. Long and N. C. Rowe (2001), Natural Language Processing Support for Developing Policy Governed Software Systems, Proceedings of the 39th International Conference on Technology for Object Oriented Languages and Systems, Santa Barbara, California, IEEE Computer Society Press, 263~274, 2001.7
    [143] E. Lupu, M. Sloman, conflicts in policy-based distributed systems management, IEEE Transactions on software engineering, 1999:25(6)
    [144] D C Clark, D R Wilson, A comparison of commercial and military computer security policies, IEEE symposium on security and privacy, 1987
    [145] E. P. Galiasso, O.Bremer, J . Hale and S. Shenoi, Policy Mediation for Multi Enterprise Environments, 16th Annual Computer Security Applications Conference December, New Orleans, Louisiana 2000
    [146] Jonathan D, Morris S, Policy Conflict Analysis in Distributed System Management[EB/OL], 1993. http://www.moffett.me.uk/jdm/pubs/polconfl. pdf.
    [147] Lupu E, Sloman M, Conflict Analysis for Management Policies[EB/OL], 1997.http://www.doc.ic.ac.uk/~ecl1/wiki/lib/exe/fetch.php?id=emil%3Aresearchthemes%3Apubbytheme&cache=cache&media=research:papers:1997im.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700