TS-1沸石催化膜的制备与氧化反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机膜和催化反应相结合而构成膜反应器技术,具有将催化反应与产品分离集成在一起的优势,被认为是催化学科的未来三大发展方向之一,将使传统的化学工业,石油工业,生物化工等领域发生变革性的变化,引起了全世界研究和过程开发的广泛关注。
     钛硅分子筛(TS-1)不但具有无机膜耐高温,耐腐蚀的优点,更重要的是其催化性能优异而环境友好,符合绿色化工的发展要求,被认为是80年代沸石催化的里程碑。
     本论文采用水热合成法成功制备了TS-1沸石膜,并将其组装为膜反应器研究了TS-1沸石膜的催化性能。
     TS-1膜的制备运用预涂晶种二次合成法,并首次采用亚微米级Silicalite-1沸石粒子作为晶种导向、合成液为清液状态条件下,分别在α-Al_2O_3陶瓷管载体上和多孔多通道不锈钢片微反应器内合成了TS-1沸石催化膜。考察了合成条件对膜形成的影响,用SEM、FT-IR、XRD等分析手段表征了TS-1膜的形貌和相关特性,用苯酚氧化合成苯二酚为探针反应评价了在管式TS-1沸石膜反应器的催化氧化性能,用丁酮氨氧化反应合成丁酮肟反应评价了在不锈钢微通道反应器内TS-1沸石膜的催化氧化性能。
     研究结果表明:
     1、采用亚微米级Silicalite-1沸石粒子替代以TS-1沸石粒子作为晶种导向,在不锈钢微反应器内和管式陶瓷载体表面可形成一层均匀、连续的TS-1沸石膜,钛可以进入分子筛骨架,没有发现非骨架钛的存在。合成条件中除醇时间和模板剂TPAOH的含量对膜表面的分子筛颗粒大小及膜层的厚度有较大影响。模板剂的含量越高,分子筛颗粒越小。除醇有利于Ti~(4+)离子进入沸石骨架。
     2、在陶瓷载体上制备的TS-1沸石膜管式膜反应器对苯酚羟基化合成苯二酚反应具有明显的催化氧化活性。在苯酚/H_2O_2摩尔比为3,反应温度80℃的条件下,水做溶剂,反应4小时后苯酚的转化率能达到8%。利用Silicalite-1晶种引导生长的TS-1沸石催化膜和利用TS-1晶种引导生长的膜具有相近的催化活性。详细考察了各种条件对膜反应器催化活性的影响。
     3、在不锈钢微通道反应器上制备的TS-1沸石膜微反应器,对丁酮氨氧化反应具有较好的催化氧化性能。溶剂和停留时间对丁酮的转化率有较大的影响。
Membrane reactor can combine inorganic membrane and catalytic reaction in a system, which has the advantages of separation and catalytic process. It has been regarded as one of the three development directions of the subjects on catalysis in future. Membrane reactor has attracted the attentions of worldwide researchers and will bring about a revolutionary change over chemical industry, petrochemical-industry and biochemical industry.
     TS-1 zeolite can meet the rigor requirement of membrane reactors because of its high thermal stability, anti-corrosive and excellent catalytic performance. Moreover, it is friendly to environment and meets the development of chemical industry. The development of TS-1 zeolite catalyst is thought as the landmark of zeolite catalysis in the 1980s.
     In this paper, TS-1 zeolite film was prepared by the hydrothermal synthesis, and then was assembled into the membrane reactor. Finally, the catalytic performance of TS-1 zeolite film was investigated.
     The TS-1 zeolite film was synthesized on theα-Al_2O_3 ceramic tube and porous muti-channel stainless steel microreactor, respectively, by secondary growth. Herein, submicron Silicalite-1 seed substitutes TS-1 zeolite seed to induce the film growth. The influencing factors of the morphology of TS-1 zeolite film were studied by changing the synthesis conditions. The as-prepared films were characterized by SEM, FT-IR and XRD etc.. The catalytic performance of ceramic-tube-supported TS-1 film was evaluated by the reaction of hydroxylation of phenol with hydrogen peroxide. And also the catalytic performance of TS-1 film on the multi-channel microreactor was investigated by the reaction of ammoximation of 2-butanone with ammonia and hydrogen peroxide.
     The conclusion of the research is as follows:
     1. The submicron Silicalite-1 seeds can induce the growth of TS-1 zeolite to form a continuous layer of film on the ceramic tube. Ti~(4+) can enter into the framework of TS-1 zeolite film and anatase TiO_2 in the framework is not found. The time of removing alcohol and the content of template affect the morphology of the TS-1 film. The more content of the template is contained in the solution, the smaller zeolite grain obtained is. The removal of alcohol favors incorporating of Ti~(4+) into the framework.
     2. k has been shown that the ceramic-tube-supported TS-1 membrane reactor has high catalytic performance on the reaction of hydroxylation of phenol. The conversion of phenol reached around 8% at 80℃in water as a solvent after 4 hours of reaction time, when n(phenol)/n(H_2O_2) is 3. The film prepared by using Siliclite-1 seeds has similar catalytic performance to that by TS-1 zeolite seeds. In order to find the best reaction conditions, the influencing factors of the temperature, reaction time were investigated etc..
     3. The film prepared on the multi-channeI microreactor has good catalytic performance on the reaction of ammoximation of 2-butanone, too. The influencing factors of solvent and the residence time of the reaction were investigated.
引文
[1] 约瑟G,桑切斯 马可.催化膜及膜反应器.张卫东 高坚译.北京:化学工业出版社,2004
    [2] R.Sofia. Overview on industrial membranes. Catal Today, 1995,25:285-290.
    [3] 徐如人,庞文琴.沸石分子筛及多孔材料化学.科学出版社,2004.
    [4] Casanave D et al. Control of transport properties with a microporous reactor to enhance yields in dehydrogenation reactions. Catal Today, 1995, 25:309-314.
    [5] Ihegami T. Production of high concentrated ethanol in a coupled fermentation/pervaporation process using silicalite membrane. B iotechnol Tech,1997,11:921-924.
    [6] 张雄福等.沸石膜反应器乙苯脱氢反应性能.高等化学工程学报,2001,15(2):121-125.
    [7] 徐南平.无机膜的发展现状与展望.化工进展,2000,4:5-9.
    [8] Notzrbakhsh W. AIChE Symp Ser,1989,85:75.
    [9] Shanqiang Wu. Zeolite containing catalytic membranes as interphase contactors. Catal Today,2000,56:113-129.
    [10] M.C.Lovallo. Preferentially oriented submicron silicalite membranes. AIChE J, 1996,42:3020-3029.
    [11] Zhiping Lai, Michael Tsapatsis, Jeffrey P,Nicolich. Siliceous. ZSM-5 Membranes by Secondary Growth of b-Oriented Seed Layers. Adv.Funct.Mater,2004, 14(7):716-729.
    [12] Gang Li, Eiichi Kikuchi, Masahiko Matsukata. The control of phase and orientation in zeolite membranes by the secondary growth method.Microporous and Mesoporous Materials. 2003(62) :211-220.
    [13] Taramasso M, Perogo G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxide. USP: 4410501,1983.
    [14] Miuini R. Framework composition of titanium silicalite-1. J Catal, 1992,137:497-503.
    [15] Natori B. Titanium silicalite. Catal Today, 1993,18(2): 163-172.
    [16] 郭新闻等.一种合成丁酮肟的方法.中国,2004101554311,2002.
    [17] 夏丽贞.钛硅分子筛TS-1的合成、改性及其丁酮氨氧化反应改性的研究:(硕士学位论文).大连:大连理工大学,2005.
    [18] 张洁.TS-1催化丁酮氨氧化制丁酮肟反应过程.化学工业与工程.2005,22(4):279-281.
    [19] Clerici M G. Oxidation of saturated hydrocarbons with hydrogen peroxide, catalysed by titanium silicate. Appl Catal, 1991, 68: 249-261.
    [20] Huybrechts D R C,De Buycher L, Jacobs P A. Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite, Nature, 1990, 345:240-242;
    [21] Clerici M G,Bellussi G,Romano U.Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicate.J Catal, 1991,129:159-167:
    [22] Clerici M G, Ingallina P.Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite J. Catal, 1993,140:71-83.
    [23] Kumar S B,Mirajkar S P,Paris G C G,Kumar P,Kumar R.Epoxidation of styrene over a titanium silicate sieve TS-1 using dilute H_2O_2 as oxidizing agent.J Catal,1995,156:163-166.
    [24] Neri C,Buonomo F.Process for oxidizing vinylbenzene compounds to beta-phenylaldehydes, EPO0102097(1984).
    [25] Neri C, Buonomo F. Process for Oxidizing Alcohols to Aldehydes and /or Ketones. Eur. Pat. 0102655, 1984.
    [26] Yang W B,Liu X Y.Toluene hydroxylation with H_2O_2 catalyzed by titanium silicate(TS-1), Chinese J. Catat.(Eng.), 1998, 19(2):99-100.
    [27] Thangaraj A,Kumar R,Ratnasamy P. Direct Catalytic Hydroxylation of Benzene with hydrogen Peroxide over Titanium-Silicate Zeolites. Apply Catal., 1990, 57: L1-L3.
    [28] Roffia P,Leofanti G,Cesana A,et al. Cyclohexanone Ammoximation:A Break Through in the 6-Caprolactam Production Process.Stud Surf Sci Catal,1990, 50:43-51.
    [29] Thangaraj A,Sivasanker S,Ratnasamy P. Catalytic Properties of Crystalline Titanium-Silicalite Ⅲ Ammoximation of Cyclohexanone. J Catal, 1991,131 (2): 394-400.
    [30] Wan Y S S,Yeung K L,Gavriilidis A. TS-1 oxidation of aniline to azoxybenzene in a microstructured reactor. Applied Catalysis A, 2005, 281 (2):285-293.
    [31] Wan Y S S, Chau J L H, Yeung K L. 1-Pentene epoxidation in catalytic microfabricated reactors. Journal of Catalysis, 2004, 223(2):241-249.
    [32] Wan Y S S, Chau J L H, Gavriilidis A. TS-1 zeolite microengineered reactors for 1-Pentene epoxidation. Chemical Communications, 2002, 878-879.
    [33] Y Lee, W Ryu,S SKim, et al,Oriented Growth of TS-1 Zeolite Ultrathin Films on Poly(ethylene oxide) Monolayer Templates. Langmuir,2005,21:5651-5654.
    [34] Xiaodong Wang et al. Synthesis of b-Oriented TS-1 Films on Chitosan-Modified Al_2O_3 Substrates. Adv Mater,2006,18:3261-3265.
    [35] K T Jung, Y G Shul. preparation of Transparent TS-1 Zeolite Film by Using Nanosized TS-1 Particles. Chem Mater, 1997,9:420-422.
    [36] 陈晓辉等 钛硅分子筛膜的合成及其催化性能的研究 化工进展,2004,23(11):1222-1226.
    [37] 周继承,王祥生.钛硅新材料-钛硅分子筛合成及应用研究.化工进展,1998,10(4):381-394.
    [38] Kraushaar B,Van Hoof J H C A. New Method for the Preparation of Titanium Silicalite(TS-1). Catalysts Stud Surf Sci Catal, 1991, 69:79-92.
    [39] Thangaraj A, Sivasanker S. An improved Method for TS-1 Synthesis: ~(29)Si NMR Studies. J Chem Soc, Chem Commun, 1992, (2):123-124.
    [40] Thangaraj A,Eapan M J,Sivasanker S et al. Studies on the Synthesis of Titanium Silicalite TS-1. Zeolites, 1992,12(9) :943-950.
    [41] Wang liqin,Wang xiangsheng,Guo xinwen et al. Quick Synthesis of Titanium Silicalite-1. Chinese Journal of Catalysis,2001,12(6):513-514.
    [42] Vayssilov G N. Structural and Physicochemical Features of Titanium Silicalites. Catal Rev -Sci Eng, 1997, 39 (3): 209-251.
    [43] Taramasso M, Perego G, Notari B. Titanium Modified Silica. GB2071071 A. 1981.
    [44] Jorda E, Tuel A,Teissier R., Kervennal 1. TiF4: An Original and Very Interesting Precursor to the Synthesis of Titanium Containing Silicalite-1. Zeolites, 1997, 19 (4): 238-245.
    [45] Perego C, Carati A, Ingallina P, et al. Production of Titanium Containing Molecular Sieves and Their Application in Catalysis. Appl Catal A: General, 2001, 221 (1): 63-72.
    [46] 夏清华,王公慰,应慕良等.钛-硅沸石的结构表征及其催化性能.催化学报,1994,15,(2):109-114.
    [47] 陈光文,袁权.微化工技术[J].化工学报,2003,54(4):427-439.
    [48] 石春艳.微型反应器中沸石及其膜的制备及其反应性能研究.大连理工大学硕士论文.2006.
    [49] W.埃尔费尔德.微反应器-现代化学中的新技术.骆广生,王玉军,吕阳成译.北京:化学工业出版社,2004.
    [50] 黑瑟尔·沃尔克,勒韦·霍尔格.微反应器研究与应用新进展.现代化工,2004,24(7):9-18.
    [51] Lerou J J. Reactor system synthesis and design. AIChE Symp.Ser, 1995,91:39-40.
    [52] Fichtner M,Mayer J,Wolf D,et al. Microstructured rhodium catalysts for the partial oxidation of methane to syngas under pressure. Ind Eng Chem Res,2001,40:3475-3483.
    [53] Cominos V,Hardt S,Hessel V,et al. A methanol steam micro-reformer for low power fuel cell applications. Chem Eng Comm,2005,192(5):685-698.
    [54] Chen G W,Yuan Q,Li S L. Microchannel reactor for methanol auto thermal reforming. Chin J Catal,2002,23(6):491-492.
    [55] Madras G, Synthesis of biodiesel in supercritical fluids. Fuel,2004,83:2029-2033.
    [56] Chambers R D,Holling D,Spink R C H,et al. Elemental fluorine Part 13.Gas-liquid thin film microreactors for selective direct fluorination. Lab Chip 2001,1:132-137.
    [57] Jahnisch K,Baerns M,Hessel V,et al. Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. J.Fluorine Chem.2000,105(1): 117-128.
    [58] Hisamoto H,Saito T,Tokeshi M,et al. Fast and high conversion phase-transfer synthesis exploiting liquid/liquid interface formed in microchannel chip. Chem.Commun.2001, 2662-2663.
    [59] Skelton V,Greenway G M,Haswell S J,et al. The generation of concentration gradients using electroosmotic flow in micro reactors allowing stereoselective chemical synthesis.Analyst, 2001,126:11-13
    [60] Skelton V, Greenway G M,Haswell S J,et al. The preparation of a series of nitrostilbene ester compounds using micro reactor technology.Analyst 2001,126:7~10.
    [61] Pennernarm H,Watts P,Haswell S J,et al. Benchrnarking of microreactor applications. Org Process Res Dev. 2004,8(3):422-439.
    [62] Wiles C,Watts P,Haswell S J,et al. The aldol reaction of silyl enol ethers within a microreactor. Lab Chip, 2001,1:100-101.
    [63] 王桂茹.催化剂与催化作用.大连:大连理工大学出版社,2000.
    [64] Wang X,Zhu J ,Bau H ,et al. Fabrication of Microreactors using tapecasting methods[J]. Catalysis Letters ,2001,77(4) : 173-177.
    [65] Jensen K F. Microreactor engineering -is small better?. Chem Eng Sci ,2001,56(2):293-303.
    [66] Wan Y S S ,Chau J L H ,Gavriilidis A ,et al. Design and fabrication of zeolitebased microreactor and membrane microseparators[J]. Micropor Mesopor Mat ,2001,42 (2) :157-175.
    [67] Chau J L H ,Wan Y S S , Gavriilidis A ,et al. Incorporating zeolite in microchemical systems. Chem Eng J,2002,88(2): 187-200.
    [68] M A MantegazzaG. Selective oxidations with hydrogen peroxide and titanium silicalite catalyst. J Mol Catal:A-CHEM, 1999,146(1):223-228.
    [69] 刘红,卢冠忠,胡宏玖.苯酚羟基化反应催化剂研究进展.应用化工,2003,32(2):4-8.
    [70] 徐成华.气固相法合成Ti-ZSM-5催化苯酚羟基化的研究.石油与天然气化工,2000,29(6):280-283.
    [71] 徐成华.Ti-ZSM-S分子筛的制备、表征及其催化烯健烃选择氧化和苯酚羟基化的研究.中国科学院博士学位论文.2001.
    [72] 石春艳,蒋晖,张雄福.沸石及其膜在微型设备中的制备与应用进展.现代化工,2006,26:30-36.
    [73] 李平.TS分子筛的催化氧化性能研究与环己酮氨氧化反应.石油化工炼制与化工,2001,32(9):22-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700