人脐血源基质细胞新型微环境对残留白血病细胞的作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
残留白血病细胞或称白血病微小残留病(minimal residual disease;MRD)是白血病治疗达到完全缓解后体内残留的白血病细胞,多处于G0期,对化疗药物不敏感,是白血病难治、复发的主要根源。目前,尚未发现真正的白血病细胞特异性抗原,虽然采用多种方法联合但均不能满意杀灭和有效清除患者体内的MRD,而且采用化疗新药和更强烈的联合化疗方案多对正常造血功能造成严重的损伤。针对MRD,目前尚缺乏有效低毒的清除措施,已成为严重束缚白血病治疗取得突破性进展的关键性障碍之一。探索不同来源基质细胞所构建造血微环境对MRD的作用及机制,对进一步降低白血病复发、提高白血病长期生存率,具有重要的理论和实践意义。
     造血微环境(hematopoietic inductive microenvironment, HIM)是调控造血干/祖细胞生长发育的“土壤”,骨髓基质细胞(bone marrow stromal cells, BMSCs)是构成造血微环境的重要成分。白血病细胞是恶性克隆性增殖的造血细胞,其生存、分化、增殖同样依赖HIM的调控,白血病骨髓基质细胞微环境有助于白血病细胞的庇护、生长和逃避化疗药物的杀伤,是MRD产生的重要机制之一,因此从造血微环境入手探索清除MRD的有效方法是白血病治疗的新的切入点。
     本课题组的既往研究证实:在适当的细胞因子组合的条件下,可成功培养、扩增人脐血来源的基质细胞(human umbilical cord blood-derived stromal cells, hUCBDSCs);扩增后的hUCBDSCs在细胞组成和免疫表型上与人骨髓基质细胞(human bone marrow stromal cells, hBMSCs)相似,可以分泌多种细胞因子,具有与hBMSCs相似的支持和重建造血功能的物质基础,可称为人脐血源基质细胞造血微环境(hematopoietic inductive microenvironment from human umbilical cord blood-derived stromal cells, hUCBDSC-HIM)。
     人急性T淋巴细胞白血病细胞株Jurkat细胞分别与hUCBDSC-HIM和正常人骨髓基质细胞造血微环境(hBMSC-HIM)共培养发现:hUCBDSC-HIM具有较hBMSC-HIM对Jurkat细胞更强的抑制作用和促凋亡作用。
     鉴于此,本实验将系统、深入地研究不同来源基质细胞所模拟造血微环境对残留耐药Jurkat细胞的细胞周期分布、增殖、分化、凋亡及药物敏感性等生物学特性的影响,并对其机制进行初步探讨。
     研究内容及方法:
     1.不同来源骨髓基质细胞微环境对Jurkat细胞生物学特性的影响
     实验分组:①Jurkat细胞悬浮培养组;②Jurkat细胞/正常hBMSCs共培养组;③Jurkat细胞/白血病hBMSCs共培养组。
     倒置显微镜和扫描电镜观察Jurkat细胞与BMSCs的位相关系;MTT法检测Jurkat细胞的黏附率;Transwell法检测Jurkat细胞迁移侵袭功能变化;CCK-8法、Real-time Q-PCR法、Western blot法检测Jurkat细胞增殖特性的变化;流式细胞仪法检测Jurkat细胞周期及DNR摄药量变化;流式细胞仪法、透射电镜、Real-time Q-PCR法、Western blot法检测Jurkat细胞的凋亡;NBT还原法检测Jurkat细胞分化水平变化。
     2.残留耐药Jurkat细胞的培养及其耐药机制的初步探讨
     体外分离培养初发急性淋巴细胞白血病患者BMSCs以模拟骨髓造血微环境,在与Jurkat细胞长期共培养的过程中选用含DNR 50ng/ml的培养液进行培养,随着培养时间的延长,绝大部分Jurkat细胞漂浮死亡。极少数残留的Jurkat细胞逐渐恢复活力并获得抗药能力,可以在DNR终浓度为50ng/ml的培养液中存活、增殖,将该细胞记为Jurkat/DNR细胞。
     CCK-8法检测Jurkat及Jurkat/DNR细胞的增殖特性及对多种化疗药物的耐药系数;流式细胞仪法检测Jurkat及Jurkat/DNR细胞周期及DNR摄药量;通过检测Caspase-Glo 3/7活性、Real-time Q-PCR法、Western blot法检测Jurkat及Jurkat/DNR细胞的凋亡相关指标;Real-time Q-PCR法检测Jurkat及Jurkat/DNR细胞多药耐药相关基因:MDR1及MRP mRNA的表达。
     3.人脐血源基质细胞对残留耐药Jurkat细胞的作用
     实验分组:①Jurkat/DNR细胞悬浮培养组;②Jurkat/DNR细胞/正常hBMSCs共培养组;③Jurkat/DNR细胞/hUCBDSCs共培养组;④Jurkat/DNR细胞/白血病hBMSCs共培养组(仅在检测对IDA敏感性时设定)。
     收集悬浮培养及共培养10d的Jurkat/DNR细胞,检测其增殖、细胞周期分布、凋亡、分化、对IDA药物敏感性及多药耐药基因MRD1 mRNA表达水平的变化。
     结果:
     1.倒置显微镜及扫描电镜观察:随培养时间延长,正常hBMSCs及白血病hBMSCs黏附、龛合、包裹Jurkat细胞,对共培养的Jurkat细胞具有一定的屏蔽作用,在一定程度上影响其生物学特性:
     1.1黏附、迁移作用:白血病hBMSCs对Jurkat细胞的黏附、趋化作用强于正常hBMSCs;
     1.2增殖曲线:正常hBMSCs对Jurkat细胞的增殖抑制作用强于白血病hBMSCs;
     1.3细胞周期分布:白血病hBMSCs共培养组Jurkat细胞G0/G1+G2/M期细胞比例明显增高;正常hBMSCs共培养组S+G2/M期细胞比例明显增高;
     1.4凋亡:白血病hBMSCs抑制Jurkat细胞凋亡,而正常hBMSCs促Jurkat细胞凋亡;
     1.5细胞分化:白血病hBMSCs对共培养Jurkat细胞的促分化作用弱于正常hBMSCs;
     1.6对DNR的摄药量:共培养组Jurkat细胞的摄药量显著低于悬浮培养组,其中白血病hBMSCs共培养组Jurkat细胞的摄药量最低。
     2嵌合于基质细胞层中的Jurkat细胞在DNR的持续刺激作用下逐步产生耐药性,获得残留耐DNR的Jurkat细胞。
     Jurkat/DNR细胞与Jurkat细胞相比有以下特点:
     2.1增殖曲线:Jurkat/DNR细胞较Jurkat细胞的增殖速度明显减缓
     2.2细胞周期分布:G0/G1期细胞比例增高;异二倍体细胞比例增高;
     2.3凋亡:发生自发凋亡的细胞明显减少;
     2.4 DNR摄药量:单个Jurkat/DNR细胞内平均药物浓度明显减低;
     2.5对多种化疗药物产生多药耐药;
     2.6多药耐药相关基因:Jurkat/DNR细胞内可检测到MDR1 mRNA表达;MRP mRNA表达水平升高。
     3.人脐血源基质细胞对残留耐药Jurkat/DNR细胞的作用
     3.1增殖曲线:hUCBDSCs对Jurkat/DNR细胞的增殖抑制作用强于正常hBMSCs;
     3.2细胞周期分布:hUCBDSCs及正常hBMSCs均可促Jurkat/DNR细胞进入细胞周期,hUCBDSCs共培养组G0/G1期细胞比例最低;共培养组Jurkat/DNR细胞中异二倍体比例显著降低;
     3.3凋亡和分化:hUCBDSCs对共培养Jurkat/DNR细胞自发凋亡及分化的促进作用均强于正常hBMSCs;
     3.4对IDA的敏感性:hUCBDSCs及hBMSCs均可提高Jurkat/DNR对IDA的敏感性,而hUCBDSCs要优于hBMSCs;
     3.5 MDR1 mRNA的表达:共培养组Jurkat/DNR细胞MDR1 mRNA表达水平低于悬浮培养组,其中hUCBDSCs共培养组的表达水平最低。
     结论:
     1.白血病骨髓基质细胞微环境有助于白血病细胞的庇护、生长和逃避化疗药物的杀伤;正常骨髓源基质细胞较白血病源骨髓基质细胞对Jurkat细胞具有更强的促凋亡、分化及抑制增殖的作用。同时,正常hBMSCs可以增加Jurkat细胞对DNR的敏感性。
     2.白血病骨髓基质细胞模拟的造血微环境可诱导Jurakt细胞产生多药耐药,是残留耐药形成的一个重要原因,提示可能通过改造白血病患者造血微环境以抑制残留白血病的形成及减少复发。
     3.骨髓源基质细胞和脐血源基质细胞均可改造白血病造血微环境,在一定程度上逆转Jurkat/DNR细胞的耐药性。
     4.脐血源基质细胞对白血病造血微环境的改造作用及逆转Jurkat/DNR细胞耐药的作用更强。
Minimal residual disease (MRD) is the residual leukemia cells in vivo after complete remission of leukemia, and the cells are mostly in the G0 phase and not sensitive to chemotherapeutic drugs, which is the major source of refractoriness and relapse for leukemia. At present, we have not yet found a exact leukemic cell-specific antigen. Although we have applied a number of ways collaborated but the kill and remove effect of the MRD can not be satisfied and effective, and the application of chemotherapy drugs and a stronger collaborated chemotherapy brings serious damage to the normal hematopoietic function. For the removal of MRD, we are still lack of an effective and low toxicity method, which has become one of the serious key obstacles for the breakthrough of the treatment of leukemia. To explore the effect and mechanism of hemopoietic microenvironment built by matrix cells from different sources to the MRD has an important theoretical and practical significance for further reducing leukemia relapse and improving long-term survival rate of leukemia.
     Hematopoietic inductive microenvironment(HIM),which was mainly composed of bone marrow stromal cells(BMSCs), acted as the soil in regulating the growth and development of hematopoietic stem/progenitor cell.The development and proliferation of leukemic cells were dependent on the abnormal HIM.The BMSCs derived from leukemia that supported and protected leukemic cells involved in the occurrence and refractory of leukemia. One of the important mechanisms for the supply of MRD is that BMSCs can help leukemia cells to evade the chemotherapy drugs, so that to explore an effective way to clear MRD starting from the hematopoietic microenvironment is a new entry point.
     The group's past research has shown that: under the condition of the appropriate combination of cytokines, human umbilical cord blood-derived stromal cells (hUCBDSCs ) can be successfully cultivated and amplified; after the amplification, the cells composition and immunophenotype of the hUCBDSCs is similar to that of hBMSCs, which can secrete a variety of cytokines and carries the similar material basis for supporting and reconstructing the hematopoietic function with hBMSCs, so that it may be called hematopoietic inductive microenvironment from human umbilical cord blood-derived stromal cells (hUCBDSC-HIM).
     The co-culture of human acute T Lymphocytic leukemia cell line Jurkat cells respectively with hUCBDSC-HIM and hBMSC-HIM has found: hUCBDSC-HIM has a stronger inhibition and the phenomenon of apoptosis promotion to the Jurkat cells compared with hBMSC-HIM.
     Based on this point, the experiment will study the influences of hemopoietic microenvironment simulated by stromal cells from different sources to the biological characteristics of residual drug resistant Jurkat cells, such as generation cycle disposition, proliferation, differentiation, apoptosis and drug sensitivity systematically and in-depth, and carry on the preliminary study of its mechanisms.
     Contents and methods:
     1. Influence of microenvironment of normal and acute lymphoblastic leukemia bone marrow stromal cells to Jurkat cells’biological characteristics respectively
     Groups: Jurkat suspended culture group; Jurkat/nomal hBMSCs co-culture group; Jurkat leukemic hBMSCs co-culture group.
     The spatial relationship between the Jurkat cells and stromal cells was observed under the inverted microscope and scanning electron microscope. MTT method for the detection of the adhesion rate of Jurkat cell; Transwell method for the detection of Jurkat cell migration and invasion function changes; CCK-8 method, Real-time Q-PCR method, Western blot method for the detection of Jurkat cell proliferation characteristics change; flow cytometry for the detection of Jurkat cell cycle and DNR dose perturbation changes; flow cytometry method, transmission electron microscopy, Real-time Q-PCR method, Western blot method for the detection of Jurkat cells apoptosis; NBT reduction method for the detection of Jurkat cell differentiation level changes.
     2. Preliminary study on the culture and its drug resistance mechanism of residual drug resistance Jurkat cell
     We use the isolated culture of BMSCs in patients with primary acute lymphoblastic leukemia in vitro to simulate the bone marrow hematopoietic microenvironment. In the long process of co-culture with Jurkat cells, we choose the culture medium containing 50ng/ml DNR. With the culture time extended, the vast majority of Jurkat cells are floating dead. A very small number of residual Jurkat cells recover and got the drug resistant ability that can survive and proliferate in the culture medium with 50ng/ml final concentration of DNR, these cells are recorded as Jurkat / DNR cells. We use CCK-8 method to detect the proliferation characteristics and the resistance coefficient of a wide range of chemotherapy drug of Jurkat and Jurkat / DNR cell; flow cytometry method for the detection of generation cycle and the dose perturbation of the DNR for Jurkat and Jurkat / DNR cell; through the detection of Caspase - Glo 3 / 7 activity, Real-time Q-PCR method, Western blot method for the detection of apoptosis-related indicators of Jurkat and Jurkat / DNR cell; Real-time Q-PCR method for multidrug resistance-associated gene of Jurkat and Jurkat / DNR cell : expression of MDR1 and MRP mRNA.
     3. The influences of hUCBDSCs to the residual drug resistant Jurkat cells
     Groups: Jurkat / DNR cell suspension culture group; Jurkat / DNR cells / normal hBMSCs co-culture group; Jurkat / DNR cells / hUCBDSCs co-culture group; Jurkat / DNR cells / leukemia hBMSCs co-culture group (set only sensitive to IDA). Collect the Jurkat / DNR cells after suspension culture and co-cultured 10 days to detect their changes in proliferation, generation cycle disposition, apoptosis, differentiation, drug sensitivity of the IDA and the expression level of multidrug resistance gene MRD1 mRNA.
     Results:
     1. Inverted microscope and scanning electron microscopy: With the culture time extended, the normal hBMSCs and leukemia hBMSCs adhere to, combine with, and wrap the Jurkat cells, and they have the shielding function to the co-cultured Jurkat cells, and they will affect its biological characteristics in a certain extent.
     1.1 Adhesion and migration function: the adhesion and chemotaxis function to Jurkat cells of leukemia hBMSCs is stronger than normal hBMSCs.
     1.2 Inhibition of proliferation: Inhibition of of Jurkat cell’s proliferation by normal hBMSCs is stronger than leukemia hBMSCs.
     1.3 Generation cycle disposition: compared with the Jurkat cells in suspension culture, the Jurkat cells proportion in G0/G1 + G2 / M phase of the hBMSCs leukemia cells co-cultured group has significantly increased; the proportion of cells in S + G2 / M phase in the normal hBMSCs co-culture group has significantly increased.
     1.4 For the Jurkat cell apoptosis: hBMSCs leukemia inhibit Jurkat cell apoptosis, while normal hBMSCs promote Jurkat cell apoptosis.
     1.5 For the Jurkat cell differentiation: the promote-differentiation function of hBMSCs leukemia to the Jurkat cells co-cultured is weaker than normal hBMSCs.
     1.6 For the DNR dose changes: the dose of Jurkat cells in the co-cultured prostate group was significantly lower than the suspension culture group, of which Jurkat cells in the hBMSCs leukemia co-culture group is the lowest.
     2. Jurkat cells peg-and-socket joined in matrix cell gradually get the drug resistance continuously stimulated by the DNR, left the DNR resistance of Jurkat cells. Compared with Jurkat cells, Jurkat / DNR cells has the following characteristics:
     2.1 Proliferation curve: the proliferation speed of Jurkat / DNR cells significantly slow down than Jurkat cells.
     2.2 Generation cycle disposition: the proportion of cells in G0/G1 phase increased; the proportion of different diploid cells increased.
     2.3 Apoptosis rate: the occurrence of spontaneous apoptosis of cells significantly reduced.
     2.4 DNR dosage: the average drug concentration in a single Jurkat / DNR cell markedly reduced.
     2.5 Multi-drug resistance to a wide range of chemotherapy drug.
     2.6 Multi-drug resistance-associated gene expression: in the Jurkat / DNR cells, we can detect the expression of MDR1 mRNA; its expression level of MRP mRNA increased.
     3. hUCBDSCs to the residual drug resistanct Jurkat cells
     3.1 Proliferation curve: inhibition of cell proliferation of hUCBDSCs to Jurkat / DNR cells is stronger than normal hBMSCs.
     3.2 Generation cycle disposition: hBMSCs and normal hUCBDSCs can both promote Jurkat / DNR cells to the generation cycle, the proportion of cells in G0/G1 phase of hUCBDSCs co-culture group is the lowest; the proportion of different diploid cells in Jurkat / DNR cells in the co-culture group significantly reduce.
     3.3 To the cell apoptosis and differentiation: the promotion of hUCBDSCs to the spontaneous apoptosis and differentiation of co-cultured Jurkat / DNR cell is stronger than normal hBMSCs.
     3.4 Sensitivity to IDA: hUCBDSCs and hBMSCs can increase the IDA sensitivity of Jurkat / DNR, and hUCBDSCs is superior to hBMSCs.
     3.5 mRNA expression in MDR1: the expression of MDR1 mRNA level in co-culture group of Jurkat / DNR cell is lower than the suspension culture group, of which the expression level of the hUCBDSCs co-culture group is the lowest.
     Conclusion:
     1. Leukemia bone marrow stromal cells micro-environment can contribute to the shelter, growth and evasion of the anti-drug chemotherapy of leukemic cell; compared with Leukemia bone marrow stromal cells, normal bone marrow stromal cells has a stronger function in pro-apoptotic, differentiation and inhibit proliferation to Jurkat cells . At the same time, it can increase the sensitivity of the DNR of Jurkat cells.
     2. The hematopoietic micro-environment simulated by leukemia bone marrow stromal cells can induce Jurakt cells to form multi-drug resistance, which is an important reason for the formation of residual drug resistance, suggesting that it is possible to inhibit the formation of residual leukemia and reduced recurrence by transforming the hematopoietic microenvironment in patients with leukemia.
     3. Bone marrow-derived stromal cells and cord blood-derived stromal cells can both transform the hematopoietic microenvironment of leukemia, and reverse the drug resistance of Jurkat / DNR cells in a certain extent.
     4. Cord blood-derived stromal cells have a stronger effect in the transformation of hematopoietic microenvironment of leukemia and the reverse of Jurkat / DNR cell drug resistance.
引文
1. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia [J]. N Eng1 J Med. 2006; 354 (2): 166-178
    2. Leone G, Sica S, Voso MT, et al. Treatment of acute leukaemias with monoclonal antibodies: current status and future prospects [J]. Cardiovasc Hematol Agents Med Chem. 2006; 4 (1): 33-52
    3. Gaynon PS.Childhood acute lymphoblastic leukaemia and relapse [J]. Br J Haematol.2005; 131(5): 579-587
    4. Hahn T, Wall D, Camitta B, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute lymphoblastic leukemia in children: an evidence-based review [J]. Biol Blood Marrow Transplant.2005; 11(11): 823-861
    5. Koontz BF, Kirkpatrick JP, Clough RW, et al. Combined-modality therapy versus radiotherapy alone for treatment of early-stage Hodgkin's disease: cure balanced against complications [J]. J Clin Oncol. 2006; 24(4): 544-548.
    6. Direkze NC, Jeffery R, Hodivala-Dilke K, et al. Bone marrow-derived stromal cells express lineage-related messenger RNA species [J]. Cancer Res. 2006; 66(3): 1265-1269
    7. Ge Y, Zhan F, Barlogie B, et al. Fibroblast activation protein (FAP) is upregulated in myelomatous bone and supports myeloma cell survival [J]. Br J Haematol. 2006; 133(1): 83-92
    8. Hubin F, Humblet C, Belaid Z, et al. Murine bone marrow stromal cells sustain in vivo the survival of hematopoietic stem cells and the granulopoietic differentiation of more mature progenitors [J]. Stem Cells, 2005, 23(10): 1626-1633.
    9. Papadaki HA, Tsagournisakis M, Mastorodemos V, et al. Normal bone marrow hematopoietic stem cell reserves and normal stromal cell function support the use of autologous stem cell transplantation in patients with multiple sclerosis [J]. Bone Marrow Transplant, 2005; 36(12): 1053-1063.
    10. Gao L, Chen XH, Zhang X, et al. Human umbilical cord blood-derived stromal cell, a new resource of feeder layer to expand human umbilical cord blood CD34 cells in vitro.Blood cells, Molecules, and Diseases [J]. Blood Cells Mol Dis, 2006; 36(2): 332.
    11. Konopleva M, Konoplev S, Hu V, et al. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins [J]. Leukemia 2002; 16(9): 1713-1724.
    12. Dalton WS, Hazlehurst L, Shain K, et al. Targeting the bone marrow microenvironment in hematologic malignancies [J]. Semin Hematol 2004; 41(2):1-5.
    13. Wang L, Fortney JE, Gibson LF. Stromal cell protection of B-lineage acute lymphoblastic leukemia cells during chemotherapy requires active Akt [J]. Leukemia Research 2004; 28(7): 733-742.
    14. Spengeman JD, Green TD, McCubrey JA, et al. Activated EGFR Rromotes the Survival of B-Lineage Acute Leukemia in the Absence of Stromal Cells [J]. Cell Cycle 2005; 4(3):322-325.
    15. Jin HJ, Chen J, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats [J]. Biomaterials 2004; 25(6): 1039-1047.
    16.李永明,赵玉琪主编.实用分子生物方法手册.北京:科学出版社;1999.
    17. Kenneth J. Livak, Thomas D. Schmittgen. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2?ΔΔCT Method [J]. Methods, 2001; 25(4): 402-408.
    18. Gibson LF. Survival of B lineage leukemic cells: signals from the bone marrow microenvironment [J]. Leuk Lymphoma 2002; 43(1): 19-27.
    19. Granziero L, Circosta P, Scielzo C, et al. CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes [J]. Blood 2003; 101(5): 1962-1969.
    20. Ringshausen I, Dechow T, Schneller F, et al. Constitutive activation of the MAPkinase p38 is critical for MMP-9 production and survival of B-CLL cells on bone marrow stromal cells [J]. Leukemia 2004; 18(12): 1964-1970.
    21. Fortney JE, Zhao W, Wenger SL, et al. Bone marrow stromal cells regulate caspase 3 activity in leukemic cells during chemotherapy [J]. Leuk Res 2001; 25(10): 901-907.
    22. Lagneaux L, Delforge A, Bron D, et al. Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells [J]. Blood 1998; 91(7): 2387-2396.
    23. Panayiotidis P, Jones D, Ganeshaguru K, et al. Human bone marrow stromal cellsprevent apoptosis and support the survival of chronic lymphocytic leukemia cells in vitro [J]. Br J Haematol 1996; 92(1): 97-103.
    24. Wu S, Korte A, Kebelmann-Betzing C, et al. Interaction of bone marrow stromal cells with lymphoblasts and effects of predinsolone on cytokine expression [J]. Leuk Res, 2005; 29(1): 63-72.
    25. Epperly MW, Cao S, Goff J, et al. Increased longevity of hematopoiesis in continuous bone marrow cultures and adipocytogenesis in marrow stromal cells derived from Smad3 (-/-) mice [J]. Exp Hematol 2005; 33(3): 353-362.
    26. Firkin FC, Birner R, Farag S. Differential action of diffusible molecules in long-term marrow culture on proliferation of leukemic and normal haemopoietic cells [J]. Br J Haematol 1993; 84(1): 8-15.
    27. Mudry RE, Forteny JE, York T, et al. Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy [J]. Blood 2000; 96(15): 1926-1932.
    28. Hazlehurst LA, Damiano JS, Buyuksal I, et al. Adhesion to fibronectin via beta1 integrins regulates p27kip1 levals and contributes to cell adhesion mediated drug resistance (CAM-DR) [J]. Oncogene 2000; 19(38): 4319-4327.
    29. Nefedova Y, Landowski TH, Dalton WS. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms [J]. Leukemia 2003; 17(6): 1175-1182.
    30. Chung HK, Yi YW, Jung NC, et al. CR6-interacting factor 1 interacts with Gadd45 family proteins and modulates the cell cycle [J]. J Biol Chem 2003; 278(30): 28079-28088
    31. Pui C H, Crist W M, Look A T, et al. Biology and clinial significance of cytogenetix abnormalities in childhood acute lymphoblastic leukemia [J]. Blood, 1900, 76(8): 1449-1463.
    32.李忠俊,腾本秀,陈幸华等.白血病骨髓基质细胞对白血病细胞屏蔽效应的体外实验研究[J].癌症,2005;24(6):672-675.
    33. Migashita T, Reed JC. Bcl-2 oncoprotein blocks chemetherapy induced apoptosis in a human leukemia cell line [J]. Blood, 1993; 81: 151
    34. Reed JC. Bcl-2 and regulation of programmed cell death [J]. J Cell Biol. 1994; 124:1
    35. Gottesman MM, Fojo T and Bates SE [J]. Nat. Rev. Cancer, 2002; 2: 48-58.
    36. Blagosklonny MV. (2002). Leukemia, 16, 570-572.
    37.陈幸华.造血微环境与白血病[J].重庆医学,2005;34(9):1281-1282.
    38. Bradstock KF, Gottlieb DJ. Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease [J]. Leuk Lymphoma 1995; 18(1-2): 1-16.
    39. Graf M, Reif S, Hecht K, et al. Low L-selectin (CD62L) expression in acute myeloid leukemia correlates with a bad cytogenetic risk [J]. Eur J Haematol 2003; 71(5): 366-376.
    40. Litwin C, Leong KG, Zapf R, et al. Role of the microenvironment in promoting angiogenesis in acute myeloid leukemia [J]. Am J Hematol 2002; 70(1): 22-30.
    41. Montuori N, Selleri C, Risitano AM, et al. Expression of the 67-Kda laminin receptor in acute myeloid leukemia cells mediates adhesion to laminin and is frequently associated with monocytic differentiation [J]. Clin Cancer Res 1999; 5(6): 1465-1472.
    42.陈幸华,张曦,刘林等.造血微环境异常与白血病研究进展[J].重庆医学,2002;31(12):1172-1184.
    43.张曦,王苹,陈幸华等.白血病骨髓基质增强HL-60细胞抵抗IDA化疗药物研究[J].中国实验血液学杂志,2004;12(2):163-165.
    44.付相建,王苹,陈幸华等.急性白血病骨髓基质细胞对HL-60细胞增殖、分化的影响[J].重庆医学,2003;32(8):1016-1018.
    45. Bhatia R, McGlave PB, Dewald GW, et al. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages [J]. Blood, 1995; 85(12): 3636-3645.
    46. Damiano JS, Cress AE, Hazlehurst LA, et al. (1999). Blood, 93: 1658-1667.
    47.马月霞,宋增璇,何一心等.残留白血病细胞抗药再生长的实验研究[J].中华血液学杂志,1997;18(5):231-233.
    48. Bonanno E, Ercoli L, Missori P, et al. Homogeneous stromal cell population from normal human adult bone marrow expressing alpha-smooth muscle actin filaments [J]. Lab Invest 1994; 71(2): 308-315.
    49. Hall BM, Fortney JE, Taylor L, et al. Stromal cells expressing elevated VCAM-1 enhance survival of B lineage tumor cells [J]. Cancer Lett 2004; 207(2): 229-239.
    50. Schneder E, Yamazaki H, Sinaha BK, et al. Buthionine sulphoximine meliatedsensitization of etoposide resistant human breast cancer MCF7 cells overexpressing the multidrug resistance associated protein involves increased drug acumination [J]. Br Cancer, 1995; 72: 1459
    51. Bayascas, J.R. Isolation of AmphiCASP-3/7, an ancestral caspase from amphioxus (Branchiostoma floridae). Evolutionary considerations for vertebrate caspases [J]. Cell Death Differ, 2002; 9:1078
    52. Gopalakrishnan, S. M. Application of micro arrayed compound screening (microARCS) to identify inhibitors of caspase-3 [J]. Biomol. Screen, 2002; 7: 317
    53. Longhurst TJ, O’Neill GM, Harvie RM, et al. The anthracycline resistance associated gene, a novel gene associated with multidrug resistance in human leukemia cell line [J]. Br J Cancer, 1996; 74: 1331-1335.
    54. Hamada H, Tsuruo T. Characterization of the ATPase activity of the Mr 170000 to 180000 membrene glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cells [J]. Cancer Rea, 1988; 48: 4926-4932.
    55. Borowski E, Bontemps-Gracz MM, Piwkowska A. Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells [J]. Acta Biochim Pol, 2005; 52 (3): 609- 627.
    56. Calatozzolo C, Gelati M, Ciusani E, et al. Exp ression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST- pi in human glioma [J]. J Neurooncol, 2005; 74 (2): 113
    57. Meyer Zu Schwabedissen HE, Grube M, Heydrich B, et al. Exp ression, localization, and function of MRP5 (AB2CC5), a transporter for cyclic nucleotides, in human placenta and cultured human trophoblasts: Effects of gestational age and cellular differentiation [J]. Am J Pathol, 2005; 166 (1): 39
    58. Méndez-Ferrer S, Frenette PS. Hematopoietic stem cell traffickine: regulated adhesion and attraction to bone marrow microenvironment [J]. Ann N Y Acad Sci, 2007; 1116: 392-413.
    59. Epperly MW, Cao S, Zhang X, et al. Increased longevity of hematopoiesis in continuous bone marrow cultures derived from NOS1 (nNOS, mtNOS) homozygous recombinant negative mice correlates with radioresistance of hematopoietic and marrow stromal cells [J]. Exp Hematol, 2007; 35(1): 137-145.60. Ito Y, Hasauda H, Kitajima T, et al. Ex vivo expansion of human cord blood hematopoietic progenitor cells using glutaraldehyde-fixed human bone marrow stromal cells [J]. J Biosci Bioeng, 2006; 102(5): 467-469.
    61.张曦,王苹,陈幸华等.人脐血贴壁细胞生物学特点的观察[J].中国实验血液学杂志,2005;13(1):59-64
    62.高蕾,陈幸华,张曦等.人脐血基质细胞对脐血CD34+细胞体外扩增的作用[J].医学研究生学报,2005;18(6):486-489
    63. Dexter TM, Allen TG, Latjtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro [J]. J Cell Physiol, 1997, 91: 335-344.
    64.司徒镇强主编.细胞培养.第一版,北京.广州.上海.西安:世界图书出版公司. 1996;186-187:299-301.
    65.郑得先,吴克复,褚建新主编.现代实验血液学研究方法与技术.第一版,北京:北京医科大学中国协和医科大学联合出版社. 1999;5-36.
    66. Wang CY, James E, Jim L, et al. Spontaneous apoptosis in human colon tumor cell lines and the relation of WT P53 to apoptosis [J]. Chin Med J 1996; 109:537-541
    67.蔡文琴主编.现代实用细胞与分子生物学实验技术.第一版,北京:人民军医出版社,2003;223-235.
    68. Hazlehurst LA, et al. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death [J]. Oncogene, 2003; 22(47): 7396-7402.
    69. Kohler T, Plettig R, Wetzstein W, et al. Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells, influences of progenitor enrichment, interference with feeder layers, early-acting cytokines and agitation of culture vessels [J]. Stem cell, 1999; 17(1): 19-24.
    70. Despars G, Tan J, Periasamy P, et al. The role of stroma in hematopoiesis and dendritic cell development [J]. Curr Stem Cell Res Ther, 2007; 2(1): 23-29.
    71. Tse KF, Inavat MS, Morrow JK, et al. Reconstitution of erythroid, megakaryocyte and myeloid hematopoietic support function with neutralizing antibodies against IL-4 and TGFbeta1 in long-term bone marrow cultures infected with LP-BM5 murine leukemia virus [J]. Virus Res, 2005; 113(1): 1-15.
    72. Zweeman S, Kessler FL, Kerkhoven RM, et al. Reduced supportive capacity of bonemarrow stroma upon chemotherapy is mediated via changes in glycosaminoglycan profile [J]. Matrix Biol, 2007; 26(7): 561-571.
    73. Schmidmaier R, Baumann P, Emmerich B, et al. Evaluation of chemosensitivity of human bone marrow stromal cells-differences between common chemotherapeutic drugs [J]. Anticancer Res, 2006; 26(1A): 347-350.
    74. Borojevic R, Roela RA, Rodarte RS, et al. Bone marrow stroma in childhood myelodysplastic syndrome: composition, ability to sustain hematopoiesis in vitro, and altered gene expression [J]. Leuk Res, 2004; 28(8): 831-844.
    75. Narendran A, Hawkins LM, Ganjavi H, et al. Characterization of bone marrow stromal abnormalities in a patient with constitutional trisomy 8 mosaicism and myelodysplastic syndrome [J]. Pediatr Hematol Oncol, 2004; 21(3): 209-221
    76.张曦,陈幸华,刘林等.外周血干细胞移植患者骨髓基质细胞黏附功能的变化[J].医学研究生学报,2003;16(8):590-593.
    77.陈幸华,罗成基.骨髓基质细胞对造血调控作用的研究进展[J].国外医学临床生化学与检验学分册,2000;21(1):20-22.
    78. Nazareth MR, Broderick L, Simpson-Abelson MR, et al. Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells [J]. J Immunol, 2007; 178(9): 5552-3362.
    79. Tamiolakis D, Venizelos I, Nikolaidou S, et al. Normal development of fetal hepatic haematopoiesis during the second trimester of gestation is upregulated by fibronectin expression in the stromal cells of the portal triads [J]. Rev Esp Enferm Dig, 2007; 99(10): 576-580.
    80. Chen CP, Lee MY, Huang JP, et al. Trafficking of multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor receptor-1 and integrins [J]. Stem Cells, 2008; 26(2): 550-561.
    81. Maeda T, Schiozawa E, Mayumin H, et al. Histopathology of bone marrow reconsttution after umbilical cord blood transplantation for hematological diseases [J]. Pathol Int, 2008; 58(2): 126-132.
    82. Qin LX, Tang ZY. The prognostic molecular markers in hepatocellular carcinoma [J]. World J Gastroenterol, 2002; 8(3): 385
    83. Chen H, Wang LD, Guo M, et al. Alterations of p53 and PCNA in cancer and adjacenttissues from concurrent carcinomas of the esophagus and gastric cardia in the same patient in Linzhou, a high incidence area for esophageal cancer in northern China [J]. World J Gastroenterol, 2003; 9(1): 16
    84. Huang ZH, Fan YF, Xia H, et al. Effects of TNP-470 on proliferation and apoptosis in human colon cancer xenografts in nude mice [J]. World J Gastroenterol, 2003; 9(2): 281
    85.王嘉宁,郭宁.细胞凋亡的检测技术与方法[J].中国药理学与毒理学杂志,2005;19(6):466-470.
    1 Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta, 1976; 455: 152-162.
    2 Cole SPC, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science , 1992 : 258
    3 Michieli M, Damiani D, Ermacora A, et al. P-glycoprotein(PGP) ,lung resistance-related protein(LRP) and multidrug resistance-associated protein (MRP) expression in acute promyelocytic leukaemia.Br J Haematol, 2000; 108(4): 703
    4 Sauna ZE, Smith MM, Muller M, et al. The mechanism of action of multidrug resistance linked P-glycoprotein. J Bioenerg Biomembr, 2001; 33: 481-491.
    5 Ross DD, Karp J, Chen T, et al. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood, 2000; 96: 365-368.
    6 Han K, Kahng J, Kim M, et al. Expression of functionalmarkers in acute non-lymphoblastic leukemia. Acta Haematol ,2000; 104 :174-180
    7 Abd E1-Ghaffar HA, Aladle DA, Farahat SE, et al. P-glycoprotein (P-170) expression in acute leukemias. Hematology, 2006; 11: 35241.
    8 Zhang K, Mack P, Wong KP. Glutathione-related mechanisms in cellular resistance to anticancer drugs. Int J Oncol, 1998; 12(4): 871
    9 Meyer Zu, Schwabedissen HE, Grube M, et al. Expression, localization, and function of MRP5(AB-CC5), a transporter for cyclic nucleotides, in human placenta and cultured human trophoblasts: Effects of gestational age and cellular differentiation. Am J Pathol, 2005; 166 (1): 39
    10 Steinbach D, Wittig S, Cario G, et al. The multidrug resistance-associated protein 3(MRP3) is associated with a poor out come in chilhood ALL and may account for the worse prognosis in male patients and T - cell immunophenotype. Blood, 2003; 102: 4493-4498.
    11 Van der Kolk DM, Vellenga E, Muller M, et al. Multidrug resistance protein MRP1, glutathione, and related enzymes. Their importance in acute myeloid leukemia. Adv Exp Med Biol, 1999; 457: 187-198.
    12 Lohri A, VanHille B, Reuter J, et al. mRNA expression, measured by quantitative reverse transcriptase polymerase chain reaction of five putative drug resistance in normal andleudemia peripheral blood and bone marrow. Acta Haema tol, 1997; 98: 127.
    13 Valera ET, Scrideli CA, Queiroz RG, et al. Multiple drug resistance protein (MDR21), multidrug resistance - related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia. Sao Paulo Med J, 2004; 122: 166-171.
    14 Den Boer ML, Dieters R, Kazemier K, et al. Relationship between major vault protein Plung resistance protein, P-glycoprotein expression and drug resistance in childhood leukemia. Blood, 1998; 91: 2092-2098.
    15 Pirker R, Pohl G, Stranzl T, et al. The lung resistance protein (LRP) predicts poor outcome in acute myeloid leudimia. Adv Exp Med Biol, 1999; 457: 133-139.
    16 Zhang JB, Sun Y, Dong J, et al. Expression of lung resistance protein and multidrug resistance-accociated protein in naive childhood acute leukemia and their clinical significance. Ai Zheng, 2005; 24: 1015-1017.
    17 Chen YN, Mickley LA, Schwartz Am, et al. Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrance protein. J Biol chem,1990; 265 :10073-10080
    18 Rich M, Andejeski Y, Alciati MH, et al. Perspective from the department of defense breast cancer research program. Breast Dis, 1998; 10(5-6): 33
    19 Ross DD, Karp J, Chen T, et al. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood, 2000; 96: 365-368.
    20 Benderra Z, Faussat AM, Sayada L, et al. MRP3, BCRP, and P-glycoprotein activities are prognostic factors in adult acute myeloid leukemia. Clin Cancer Res, 2005; 11: 7764-7772.
    21 Saleem A, Ibrahim N, Patel M, et al. Mechanisms of resistence in a human cell line exposed to sequential topoisomerase poisoning. Cancer Res, 1997; 57(22): 5100-5106.
    22 Wodarz D, Komarova N L. Emergence and prevention of resistance against small molecule inhibitors. Semin Cancer Biol, 2005; 15(6): 506
    23 Gadducci A, COSio S, M Uraca S, et al. MOleCUlar mechanisms of apoptosis and Chemosensitivity to platinum and paClitaxel in ovarian cancer: biological data and Clinical implications. Eur J Gynaecol Oncol, 2002; 23(5): 390-396.
    24耿少卿. P53基因异常表达与肿瘤多向耐药性的相关研究.中国冶金工业医学杂志,2002;19(3):151
    25 Chin K V, Ueda K, Pastan I, et al. Modulation of activity of the promoter of the human MDR-1 gene by Ras and p53. Science, 1992; 255(5043): 459
    26 Kuhl JS, Krajewski S, Duran GE, et al. Spontaneous over expression of the long form of the Bcl-X protein in a highly resistant P388 leukaemia. Br J Cancer, 1997; 75(2): 268
    27 Ban N, TakahaShi Y, Takayama T, et al. Transfection of glutathione S-tranSferaSe (GST)- pianti-sense complementary DNA increases the sensitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide. Cancer Res, 1996; 56(15): 3577-3582.
    28 Novotny L, Szekeres T. Recent developments in cancer chemotherapy oriented towards new targets Expert Opin Ther Targets, 2005; 9(2): 343-57
    29 Hazlehurst LA. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene, 2003; 22(47): 7396-402.
    30 Dias S, Choy M, Alitalo K, et al. (2002).Blood, 99, 2179-2184.
    31 Tran J, Master Z, Yu JL, et al. (2002).Proc. Natl. Acad. Sci. USA, 99, 4349-4354.
    32 Xu W, Liu L, Smith GC, et al. (2000). Nat. Cell Biol, 2, 339-345
    33陈幸华.造血微环境与白血病.重庆医学,2005;34(9):1281-1282.
    34 Bradstock KF, Gottlieb DJ. Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease. Leuk Lymphoma 1995; 18(1-2): 1-16.
    35 Graf M, Reif S, Hecht K, et al. Low L-selectin (CD62L) expression in acute myeloid leukemia correlates with a bad cytogenetic risk. Eur J Haematol 2003; 71(5): 366-376.
    36 Litwin C, Leong KG, Zapf R, et al. Role of the microenvironment in promoting angiogenesis in acute myeloid leukemia. Am J Hematol 2002; 70(1): 22-30.
    37 Montuori N, Selleri C, Risitano AM, et al. Expression of the 67-Kda laminin receptor in acute myeloid leukemia cells mediates adhesion to laminin and is frequently associated with monocytic differentiation. Clin Cancer Res 1999; 5(6): 1465-1472
    38 Damiano JS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines.Blood. 1999; 93(5): 1658-1667.
    39 Jensen GS, Belch AR, Mant MJ, et al. (1993). Am. J. Hematol, 43, 29-36.
    40 Cook G, Dumbar Mand Franklin IA. (1996). Acta Haematol, 97, 81-89.
    41 Koopman G, Keehnen RM, Lindhout E, et al.(1994).J Immunol, 152, 3760-3767.
    42 Wang WM, Consoli U, Lane CM, et al.(1998).Cell Growth Differen.,9,105-112.
    43 Fortney JE, Zhao W, Wenger SL, et al. (2001). Leuk. Res., 25, 901-907.
    44龚玉萍,刘霞,贾永前等.环孢霉素A逆转P-gp多药耐药机理的研究.华西医科大学报,2002;33(3):394-396.
    45 Berweijer H, Sonneveld P, Bass F, et al. Expression of mdrl and mdr3 multidrug- resistance genes in human acute and chronic leukemias and association with stimulation of drug accumulation by cyclosporine. J Natl Cancer Inst, 1990; 82 (13): 204.
    46 Boekho rsr PA, Kapel J, Schoester M, et al. Reversal of typical multidrug resistance by cyclosporin and its non-immuno suppressive analogue SDZPSC933 in Chinese hamster ovary cells expressing the mdr-l pheno type. Cancer Chem ther Pharmaco, 1992; 30: 238-242
    47 Naito M, Tsuruo T. New multidrug-resistance reversing drugs, MS-209 and SDZ PSC833. Cancer Chemother Pharmacol, 1997; 40 (Suppl): 20
    48 Thomas H, Coley HM. Overcoming multidurg resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control, 2003; 10(2): 159
    49 F ischer V, Rodriguez GA, Heitz F, et al. The multidrug resistance modulator valspodar (PSC833) is metabo lized by human cytochrome P450 3A: implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos, 1998; 26: 802-811.
    50徐峰,蔡卓夫.肿瘤耐药逆转剂研究进展.中南药学,2004;2(5):301.
    51 Mistry P, Stewar AJ, Dangerfield W, et al. In vitro and invivo reversal of P-glycop rotein mediated multidrug resistance by a novel potent modulator, XR 9576. Cancer Res, 2001; 61: 749-758.
    52 Norimasa S, Tetsuro M, Tatsuto K, et al. Two dyridine analogues with more effective ability to reverse multidrug resistance and with lower calcium channel blocking activity than their dihydropyridine counterparts. Cancer Res, 1990; 50: 3055-3059.
    53 Muller F, Ferrandis GE, Cormil S I, et al. Evidence for transcriptional control of human mdr-1 gene expression by verapa milimultidrug resistant leukemia cell. Molecular Pharmacol, 1995; 47: 51-57.
    54 Krans BL, Guilband N, Peglion JL, et al. In vivo reversal of multidrug resistance by two new dihydropyridine derivatives, S16317 and S16324. Acta Oncol, 1994; 33: 631-636.
    55陈宝安,周云,程坚等.蛋白激酶C与K562/AO2细胞多药耐药相关性的研究.白血病·淋巴瘤,2005;14 (1):7-9.
    56 Mclellan L I, Roland WC. Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drut Resist Updates, 1999; 2: 153-164.
    57石淑文,郭淑芬.多药耐药细胞系K562 /HHT和K562/VCR的建立及耐药性逆转的研究.中华儿科杂志,1998;36(1):15-18.
    58林秀梅,谢兆霞,秦群.甲基莲心碱、红霉素逆转K562/A02细胞多药耐药及其机制的研究.中华血液学杂志,2005;26(5):305-307.
    59 Hamada K, Kita E, Sawaki M, et al. Anotumor effect of erythromycin in mice. Chemotherapy 1995; 41(1): 59-69.
    60刘勤江,石晓峰.红霉素在肿瘤治疗中的应用研究进展.中华临床医学新进展,1998;2:279-280.
    61梁蓉,杨平地,陈协群等.川芎嗪对白血病HL-60/VCR细胞多药耐药的逆转及其机制研究.中华血液学杂志,1999;20(6):323-324.
    62杨岚,杨平地,梁蓉等.川芎嗪联合环孢霉素A逆转白血病多药耐药的研究.癌症,2000;19(4):304-306.
    63刘叙仪,孟松娘,杨敬贤等.中药R3(补骨脂抽提剂)对耐阿霉素人乳腺癌细胞MCF-7/Adr多药耐药的逆转.中国肿瘤临床,1997;24(5):325-330.
    64 Takahashi M, Misawa Y, Watanabe N, et al. Role of pglycoprotein in human natural killer like cell line mediated cytotoxicity. Exp Cell Res, 1999; 253(2):396.
    65 Azuma E, Masuda S, Qi J, et al. Cytotoxic T lymphocytes recognizine pglycoprotein in murine multidrug resistant leukemias. Eur J Haematol, 1997; 59(1):14
    66陈虎,楼晓,江岷等.树突状细胞介导的抗白血病效应的临床研究.中国实验血液学杂志,2005;3:412-417.
    67 Barcia R N, Della V N S, Mcleod J D. P-glycoprotein decreases with T cell maturation but is not responsible for resistance to CD95 induced apoptosis. Immunobiology, 2003; 207(4):295
    68 Treichel R S, Bunuan M, Hahn N, et al. Altered conjugate formation and altered apoptosis of multidrug resistance human leukemia cell line affects susceptibility to killing by activated natural killer(NK) cells. Int J Cancer, 2004; 108(1):78
    69 Byrne D, Daly C, Nicamhlaoibh R. Use of ribozyme and antisense oligodeoxynucleotides to investigate mechanism of drug resistance. Cytotechnology, 1998; 27(1): 113-136.
    70 Vasanthakumar G, Ahmed AK. Modulation of drug resistance in a daunorubicin resistant subline with oligonucleotide methylphosphonates. Cancer Cormmun, 1989; 225: 6565-6576.
    71彭智,肖志坚,王一等. siRNA逆转K562/A02细胞多药耐药的研究.中华血液学杂志,2004;25(1):5
    72李宁,钱新华,王志远.短干涉RNA特异性抑制白血病细胞中肺耐药相关蛋白基因表达.南方医科大学学报,2006;26(1):1
    73李杰,郭伟剑,许良中.肿瘤坏死因子α和干扰素α逆转K562/A02耐药性的研究.中国肿瘤生物治疗杂志,2001;8(3):186
    74 Carpinteiro A, Peinert S, Ostertag W, et a1. Genetic protection of repopulating hematopoietic cells with an improved MDR 1-retrovirus allows administration of intensiied chemotherapy following stem cell transplantation in mice. Int J Cancer, 2002; 98(5): 785
    75 Ng KY, Liu Y. Theraputic ultrasound: its application in drug delivery. Med Res Rev, 2002; 22(2): 204-223.
    76翟宝进,邵泽勇,伍烽等. HIFU逆转人肝癌细胞HepG2/Adm多药耐药的实验研究.癌症;2003,22(12):1284-1288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700