亚洲百合鳞茎发育和低温贮藏过程中蔗糖代谢机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔗糖是高等植物光合作用的主要产物,是百合植株碳水化合物长距离运输至鳞茎的主要形态,系统研究蔗糖代谢机制对于明确百合鳞茎发育机理、生产优质种球具有重要意义。本试验研究了不同缓冲液、pH值、时间及温度对百合鳞茎中SAI(可溶性酸性转化酶)活性的影响;研究了不同规格亚洲百合‘穿梭’鳞茎生长发育及低温贮藏过程的蔗糖代谢。主要研究结果如下:
     首次建立了百合鳞茎SAI活性检测体系。以百合外层鳞片为试材,研究了不同提取及反应缓冲液、pH值和反应时间、温度对百合鳞茎中SAI活性的影响。结果表明,最适提取缓冲液为pH 8.0的Hepes-NaOH;最佳反应缓冲液为pH 4.8的HAc-K3PO4,最适反应温度为40℃,最适反应时间为30 min。该结果与其他植物中的SAI活性检测方法有所不同,说明不同植物的SAI对外界因素的敏感度不同,也进一步表明了建立百合鳞茎SAI活性检测体系的重要性。
     不同规格的百合鳞茎发育进程不同。对鳞茎Ⅰ[m=(15±1)g]而言,鳞茎体积的膨大和重量的增加是从现蕾期开始的,植株现蕾期至花后20 d为其快速生长期;而鳞茎Ⅱ[m=(4.5-4-1)g]体积的膨大和重量的增加则是从出苗后20 d开始,其快速生长期为出苗后20 d至80 d且鳞茎Ⅱ迅速增长时期较鳞茎Ⅰ早。在百合鳞茎生长发育过程中,鳞茎Ⅰ和鳞茎Ⅱ的淀粉、蔗糖含量变化趋势基本一致。在发育前期(鳞茎Ⅰ栽种期至开花期,鳞茎Ⅱ栽种期至出苗后60 d)淀粉降解,蔗糖总体呈下降趋势;鳞茎发育后期(鳞茎Ⅰ开花期至枯萎期,鳞茎Ⅱ出苗后60 d至枯萎期)蔗糖上升,淀粉含量上升,说明淀粉与蔗糖代谢密切相关。
     SAI和SuSy(蔗糖合成酶)是百合鳞茎蔗糖代谢关键酶。在鳞茎发育期间,SuSy分解方向的活性远远小于合成方向的活性,说明SuSy主要起到分解蔗糖的作用。SAI活性变化趋势与SuSy分解方向活性变化趋势基本一致,但其活性显著高于SuSy活性,一方面说明在百合鳞茎发育过程中SAI在蔗糖分解代谢上起主要作用,另外可以看出鳞茎中蔗糖代谢的分解酶类具有相同的变化趋势,协同作用参与蔗糖代谢过程。在鳞茎发育后期鳞茎中SAI和SuSy活性均呈上升趋势,促进鳞茎中的蔗糖降解为己糖,使鳞茎与地上器官之间形成蔗糖浓度梯度,促使地上部分的蔗糖向地下部分转移,分解成还原糖进而合成淀粉。
     低温贮藏过程中,百合种球中SuSy仍然主要起分解蔗糖的作用,SuSy合成方向活性较低,但在整个过程中其变化趋势与蔗糖的含量变化基本一致,说明其在蔗糖合成过程中起一定作用。顶芽中SuSy分解方向维持较高的酶活性,从冷藏20 d开始SAI活性呈持续上升的趋势,且在40~60 d这一阶段,SAI活性上升速度较快,说明顶芽的萌发与高活性的SAI有关,高活性的蔗糖分解酶可促使顶芽中的蔗糖分解为可直接利用的还原糖,进而供顶芽萌发所需。
     低温贮藏过程中,种球鳞片中淀粉含量持续下降,与外层鳞片相比,中层鳞片淀粉含量较高,且其下降幅度要大于外层鳞片,在冷藏第0 d开始,中层鳞片下部淀粉含量就开始急剧下降,说明中层鳞片内部物质代谢启动较早、快。种球鳞片中蔗糖含量显著上升,均在冷藏60 d达到高峰,但整个贮藏过程中,中层鳞片蔗糖含量要高于外层鳞片,说明中层鳞片是更为重要的蔗糖积累部位。不管是外层鳞片还是中层鳞片,与上部鳞片相比,中、下部鳞片有较高的淀粉和蔗糖含量、蔗糖合成酶合成方向活性和较低的蔗糖分解酶活性,说明中、下部鳞片是蔗糖积累和转运的重要部位。
Sucrose is the main photosynthesis product of higher plants and the main form of the carbohydrate long-distance transport between the bulblet and aerial part of lily. The study of sucrose metabolic mechanism is significant for definituding development mechanism and producing high quality bulb. In present study, we explore the effects of different buffers, pH values, durations and temperatures on SAI activity, and research the sucrose metabolic mechanism of lily bulb during bulb development and cooling storage. The main results are as follow.
     SAI activity detection system was established for the first time. The exterior scales of lily bulb were used in present study to explore the effects of different buffers, pH values, durations and temperatures on SAI activity. The results indicated that the optimal extraction and reaction buffers were Hepes-NaOH(pH 8.0) and HAc-K3PO4(pH 4.8), respectively. And SAI has an optimum reaction duration and temperature of 30 min and 40℃. These were different from other plants. SAI has different sensitive to external influence in different plants. It is important to activity establish the detection system for soluble acid invertase in lily bulb.
     The development of different size was varied. At flower bub stage, bulb I became bigger and heavier, but bulbⅡwas at 20 days after emergence. Bulb I had a rapid growth between flower bub and 20 days after anthesis, and a rapid growth of bulbⅡwas between 20 days after emergence and 80 days after emergence.
     During bulb development, bulb I and II had the similar trend of changes in starch and sucrose content. In early stage, there were a net breakdown of starch and a decline of sucrose; in later developmental stage, both starch and sucrose increased. Starch was closely related to sucrose metabolism.
     SAI and SuSy are the key enzymes of sucrose metabolism in lily bulb. During bulb development, cleavage activity of SuSy was far less than synthetic activity, it indicated that cleavage activity plays a major role. SAI activity and SuSy cleavage direction had a similar trend, but SAI had a higher activity than SuSy cleavage direction. SAI plays a leading role and sucrose lysosomal enzymes work together in sucrose metabolism during bulb development. The activity of SAI and SuSy increased, which results in the significant decrease of sucrose in later developmental stage. It formed a sucrose concentration gradient bettween bulb and aerial part, which promoted sucrose moving to bulb and provid the carbon skeleton for starch synthesis.
     During cooling storage, SuSy cleavage activity still plays a major role in SuSy. SuSy had a low activity in synthetic direction and the change trend was consistent with sucrose basically. It illustrated SuSy synthetic direction has a certain influence on formation of sucrose. The SuSy cleavage direction acticity kept a high level in apical bud. SAI activity rised sustaining after 20 days cooling storage. Moreover, it rised sharply during 40-60 days. It resulted that the sprout of buds was related to the higher activity of SAI. The sucrose lysosomal enzymes at a high level promoted that sucrose resolve into reducing sugar which could boost the buds sprouting.
     Starch content in bulb scales was continue to decline during cooling storage. Compared with exterior scales, starch content of middle scales is higher and the descending range is larger, starch content is have shown a sharp decline at the beginning of cooling storage. This indicated that nutrient metabolism started earlier and more quickly. Sucrose content in scales increased significantly and reached a peak after 60 days, sucrose content of middle scales is higher than exterior scales, it indicated that middle scales was more important position of sucrose accumulation. No matter exterior scales or middle scales, compared with apical parts, central and basal part have higher starch and sucrose content, SuSy synthetic activity and lower sucrose lysosomal enzymes, it shows that central and basal part are the important position of sucrose accumulation and transshipment.
引文
1.蔡宣梅,方少忠.2006.东方百合‘索蚌Sorbonne'生长发育进程及一些生理生化变化.西北农业学报,(1):176-179.
    2.蔡宣梅,方少忠.2009.东方百合不同品种鳞茎冷藏期间形态和生理变化.江西农业学报,(2):68-70.
    3.曹毅,周 荣,黎明星,张长进.2002.低温及乙烯利处理鳞茎对药百合的影响.种子,120:35.36.
    4.陈俊伟,张良诚,张上隆.2000.果实中的糖分积累机理.植物生理学通讯,36(6):497-503.
    5.成善汉,苏振洪,谢从华,柳俊.2004.淀粉-糖代谢酶活性变化对马铃薯块茎还原糖积累及加工品质的影响.中国农业科学,37(12):1904-1910.
    6.褚波,武忠亮,唐云明.2005.接骨草蔗糖酶同工酶的分离纯化及其部分性质研究.西南师范大学学报:自然科学版,30(6):1116-1121.
    7.杜泓璇.2009.一串红蔗糖酶的分离纯化、部分性质与功能基团研究和固定化条件优化[硕士论文].重庆:西南大学.
    8.高晓辰.2002.百合鳞茎发育和冷藏期间生理生化变化的研究[硕士论文].杭州,浙江大学.
    9.高旭,王永章,李培环,刘成连,原永兵.2010.温度、pH和金属离子对不同果实转化酶活性的影响.天津农业科学,16(3):16-19.
    10.郭小路,张万秋,阙瑞琦,邱慧,唐云明.2008.薄荷幼叶蔗糖酶的分离纯化与部分性质.西南大学学报:自然科学版,30(2):90-94.
    11.黄作喜,丁忠贵,张云林.2001.促进百合种球整齐发芽技术.林业科技开发,15(6):13-14.
    12.黄作喜,吴学尉,段辉国.2004.百合商品种球冷贮关键技术研究.北方园艺,(6):61-63.
    13.姜 晶,李天来.2005.番茄蔗糖代谢关键基因的分子生物学研究.生物技术,15(1):82-84.
    14.姜 晶,李天来,鲁少尉,郭金妹.2007.乙酰水杨酸在番茄果实发育期间对蔗糖代谢相关酶活性的影响.植物生理学通讯,43(4):649-652.
    15.李丹,王晔,赫磊,石晓艳,马凤鸣.2009.甜菜蔗糖代谢相关酶活性与糖积累关系的研究.作物杂志.3:27-31.
    16.李良俊,许超,陈建林等.2003.莲藕膨大过程中碳水化合物变化的初步研究.扬州大学学报:自然科学版,24(3):72-78.
    17.李兴军,汪国云.2000.杨梅花芽孕育期间叶片酸性转化酶活性及糖类含量的变化.四川农业大学学报,18(2):164-166.
    18.刘慧英,朱祝军.2002.转化酶在高等植物蔗糖代谢中的作用研究进展.植物学通报,19(6)666-674.
    19.刘建常,魏周兴.1994.兰州百合鳞茎增重规律的探讨.中国蔬菜,(5):27-30.
    20.刘卫群,张新要,李天福.2003.饼肥对烤烟碳水化合物代谢及酶活性的影响.烟草科技,11: 37-40.
    21.刘永忠,李道高.2003.柑橘果实糖积累与蔗糖代谢酶活性的研究.园艺学报,30(4):457-459.
    22.卢合全,沈法富,刘凌霄等.2005.植物蔗糖合成酶功能与分子生物学研究进展.中国农学通报,21(7):34-37.
    23.吕英民,张大鹏.2000.果实发育过程中糖的积累.植物生理学通讯,36(3):258-265.
    24.罗丽兰,石雷,张金政.2007.低温对解除百合鳞茎休眠和促进开花的作用.园艺学报,34(2):517-524.
    25.宁云芬.2001.新铁炮百合种球形成机理与繁育技术的研究[硕士论文].南宁,广西大学.
    26.潘秋红.2003.果实酸性转化酶研究[博士论文].北京:中国农业大!学.
    27.齐红岩,李天来,刘海涛.2005.番茄不同部位中糖含量和相关酶活性的研究.园艺学报,32(2):239-243.
    28.钱剑林,朱旭东,田松青,尤伟忠,毛安元.2004.东方百合'Sorbonne'试管成球和低温处理的初步探讨.园艺学报,31:828.
    29.钱树林.2007.唐菖蒲籽球发育特点及其碳水化合物代谢变化.中国农业大学学报,12(2):34-39
    30.秦巧平,张上隆,谢鸣.2005.果实糖含量及成分调控的分子生物学研究进展.果树学报,22(5):519-525.
    31.邱文伟.2005.不同生境下脐橙果实蔗糖代谢相关酶的研究[硕士论文].雅安:四川农业大学.
    32.沈淞海,沈海铭.1994.甘薯生长发育过程中可溶性糖含量与淀粉积累的关系.浙江大学学报,20(4):400-404.
    33.孙红梅.2003.低温解除百合鳞茎休眠的效应及其生理生化机制研究[博士论文].沈阳,沈阳农业大学.
    34.孙红梅,李天来,李云飞.2004.不同贮藏温度下兰州百合种球淀粉代谢与萌发关系初探.园艺学报,31(3):337-342.
    35.孙红梅,李天来,李云飞.2005a.百合鳞茎发育过程中碳水化合物含量及淀粉酶活性变化.植物研究,25(1):59-63.
    36.孙红梅,李天来,李云飞.2005b.低温解除休眠过程中兰州百合中部鳞片物质变化的生理机制.中国农业科学,38(2):376-380.
    37.孙晓杰.2008.东方百合鳞茎发育的激素与蛋白调控[硕士论文].杭州,浙江大学.
    38.唐云明.1995.柑叶片蔗糖酶的分离纯化及其部分性质的研究.植物学报,37(8):594-600.
    39.唐云明,黎南,陈定福.1996.甘薯叶片蔗糖酶的分离纯化及其部分性质.植物生理学报,22(1):45.50.
    40.涂淑萍,穆鼎,刘春.2005.百合鳞茎低温解除休眠过程中的生理生化变化研究.江西农业大学学报,27(3):404-407.
    41.王爱勤,周歧伟,何龙飞.1998.百合试管结鳞茎的研究.广西农业大学学报,17(1):71-75.
    42.王翠松,张红梅,李云峰.2003.马铃薯发育过程中的影响因子.中国马铃薯,17(1):29-33.
    43.王丽花,瞿素萍,王继华,汪禄祥,吴学尉.2008.东方百合种球'Siberia'低温贮藏过程中的形态和生理变化研究.西南农业学报,(6):1695-1697.
    44.吴朝海,唐道城,蔡成寿,李 慧,江学丽.2007.东方百合营养积累及糖分变化规律研究.2007年中国园艺学会观赏园艺专业委员会年会论文集.
    45.吴沙沙,吕英民,张启翔.2010.百合鳞茎发育过程中鳞片超微结构的变化.园艺学报,37(2):247-255.
    46.武忠亮.2007.烟草叶片蔗糖酶的分离纯化及部分性质研究[硕士论文].重庆:西南大学.
    47.夏宜平,高晓晨.2001.试论百合等球根花卉的商品种球国产化问题.中国花卉科技进展.216-223.
    48.夏宜平,黄春辉,何桂芳,郑慧俊.2006.东方百合鳞茎冷藏解除休眠的养分代谢和酶活性变化.园艺学报,33(3):571.576.
    49.杨琳,张延龙,牛立新.2005.低温对百合种球休眠的影响.陕西农业科学,3:49-51.
    50.苑智华,何秀丽,徐哲,义鸣放.2008.唐菖蒲球茎形成期蔗糖和淀粉代谢及其相关酶活性.林业科学,44(8):47-51.
    51.曾宪彬,曹显祖,梁建生.1993.甜菜块根中蔗糖酶的若干动力学性质.江苏农学院学报,14(1):21-25.
    52.张明方,李志凌.2002.高等植物中与蔗糖代谢相关的酶.植物生理:学通讯,38(3):289-295.
    53.张晓艳.2003.马铃薯块茎还原糖含量与各器官含磷量的关系.中国马铃薯,17(5):273-276.
    54.张秀梅,杜丽清,谢江辉.2006.糖代谢相关酶在}因菠萝果实糖积累中的作用.果树学报,23(5):707-710.
    55.张振清,夏叔芳.1984.大豆叶片蔗糖酶的分离纯化及其特性.植物生理学报,10(1):19-27.
    56.赵祥云,赵五一.2001.浅谈我国百合产业发展前景和发展策略.中国花卉科技进展.129-132.
    57.郑慧俊,夏宜平,黄春辉,柴明良.2006.东方百合鳞茎的山地膨大发育与养分积累研究.浙江大学学报:农业与生命科学版,32(5):535-540.
    58.周厚高,宁云芬,张施君.2003.新铁炮百合生长发育过程中的一些生理生化变化.广西植物,23(4):357-361.
    59.周生茂.2009.山药不同基因型地下块茎糖类和酚类物质形成、调控及相关基因分离的研究[博士论文].杭州:浙江大学.
    60.朱世东.1996.荸荠球茎膨大生理研究.安徽农业科学.24(1):50-53.
    61. Abreu R M, Barbosa J G, Reis F P, Puiatti M, De Alvares U S.2003. Influence of cold temperature on bulb dormancy break and venalization of four lily varieties. [Portuguese] Revista Geres, Universidada Fedural de Viosa, Vicose, Brazil,50 (288):261-271.
    62. Aguettaz P, Paffen A, Delvallee I, van derLinde P, De Klerk G J.1990. The development of dormancy in bulblets of Lilium speciosum generated in vitro. Ⅰ. The effects of culture conditions. Plant Cell Tissue Organ Cult.,22:167-172.
    63. Altaf H, Muhammad H R, Raheela P, Muhammad A.2008. Purification, kinetic and thermodynamic characterization of soluble acid invertase from sugarcane(Saccharum officinarum L.). Plant Physiology and Biochemistry,47(3):188-194.
    64. Choi S T, JungW Y, Ahn H G, Chang Y D.1998. Effects of duration of cold treatment and planting depth on growth and flowering of Lilium spp.J. Kor. Soc. Hort. Sci.,39(6):765-770.
    65. Dali N, Michaud D, Yelle S.1992. Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits. Plant Physiol,99:434-438.
    66. Davis C, Robinson S P.1996. Sugar accumulation in grape berries. Plant Physiol,111:275-283.
    67. Davies J N, Kempton R J.1975. Carbohydrate changes in tulip bulbs during storage and forcing. Acta Horticulturae,47:353-363.
    68. De Hertogh A.2004. Holland bulb for cerps guide. The International Flower Bulb Centre and the Dutch Bulb Exporters Association:95-100.
    69. De Klerk G J, Paffen A.1995. The effects of environmental conditions on sp routing of micropropagated lily bulbletswith various levels of dormancy. Acta Botanica Neerlandica,44(1): 33-39.
    70. Delvallee I, Paffen A, De Klerk G J.1990. The development of dormancy in bulblets of Lilium speciosum generated in vitro II. The effect of temperature. Physiol. Plant,80:431-436.
    71. Dickinson C D, Altabella T, Chrispeels M J.1991. Slow-growth phenotype of transgenic tomoto expressing apoplastic invertase. Plant Physiol,95:420-425.
    72. Djilianov D, GerritsM M, Ivanova A, Van Onckelen H A, De Klerk G J.1994. ABA content and sensitivity during the development of dormancy in lily bulblets regenerated in vitro. Physiol Plant,91: 639-644.
    73. Edurne B, Francisco J. Sucrose synthase catalyzes the denovo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant & Cell Physiology,44(5):500.
    74. Ehness R, Roitsch T.1997. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. The Plant Journal,11(3):539-548.
    75. Elliott K J, Butler W O, Dickinson C D, Konno Y, Vedvick T S, Fitzmaurice L, Mirkov E.1993. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Molecular Biology,21(3):515-524.
    76. Eschrich W.1980. Free space invertase, its possible role in phloem unloading. Ber Deut Bot Ges,93: 363-378.
    77. Estruch J J, Beltran J P. Changes in invertase activities precede ovary growth induced by gibberellic acid in pisum sativum. Plant Physiol,1996,81:319-326.
    78. Farrar J, Pollock C, Gallagher J.2000. Sucrose and the integration of metabolism in vascular plants. Plant Sci,154:1-11.
    79. Fieuw S, Willenbrind J.1987. Surose synthase and sucrose phosphate synthase in sugar beet plants (Beta vulgaris L. ssp. altissirna). J Plant Physiol,131:153-162.
    80. Gibeaut D M, Karuppiah N, Chang S R, Brock T G, Vadlamudi B, Kim D, Ghosheh N S, Rayle D L, Carpita N C, Kaufman P.1990. Cell wall and enzyme changes during graviresponse of the leaf-Sheet pulvinus of oat (Avenasativa). Plant Physiology,94:411-416.
    81. Gude H, Verbruggen J.2000. Physiological markers for lily bulb maturity. Acta Horticulturae,517: 343-350.
    82. Hashizume H, Tanase K, Shiratake K, Mori H, Yamaki S.2003. Purification and characterization of two soluble acid invertase isozymes from Japanese pear fruit. Phytochemistry,63(2):125-129.
    83. Hubbard N L, Huber S C, Pharr D M.1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits Plant Physiol, 91:1527-1534.
    84. Huber S C, Huber J L.1996. Role and regulation sucrose phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol,47:431-445.
    85. lsla M I, Vattuone M A, Ordonez R M.1999. Invertase activity associated with the walls of solanum tuberosum tubers. Phytochemistry,50:525-534.
    86. Iwatsubo T, Takahashi T, Nakagawa H, Ogura N, Sato T.1992. Purification and some properties of acid invertase of persimmon fruits. Bioscience, Biotechnology, and Biochemistry (Japan),56(12): 1959-1961.
    87. Jang J C, Sheen J. Sugar sensing in higher plants. Plant Cell,1994,6:1665-1679.
    88. Kawagishi K, Miura T.1996. Growth characteristics and effect of nitrogen and potassium topdressing on thickening growth of bulbs in spring-planted edible lily (Lilium leichtlinii var.maximowiczii Baker). Japanese Journal of Crop Science,65(1):51-57.
    89. Kim K S, Dayelaar E, De Klerk G J.1994. Abascisic acid controls dormancy development and bulb formation in lily plantlets regenerated in vitro. Physiologia Plantarum,90 (1):59-64.
    90. Klann E M, Hall B, Bennet A B. Antisense acid invertase (TIVI) gene alters soluble sugar composition and size in transgenic tomato fruit.1996. Plant Physiology,112:1321-1330.
    91. Koch K E.1996. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol.47:509-540.
    92. Komatsu A, Takanokura Y, Morigu chi T.1999. Differential expression of three sucrose phosphate synthase isoforms during accumulation in citrus fruit (Citrus unshiu Marc). Plant Sci,140:169-178.
    93. Konno Y, Vedvick T, Fitzmaurice L, Mirkov T E.1993. Purification, characterization, and subcellular localization of soluble invertase from tomato fruit. Journal of Plant Physiology,141(4):385-392.
    94. Langens Gerrits M M, Miller W B M, Croes A F, De Klerk G J.2003. Effect of low temperature on dormancy breaking and growth after planting in lily bulblets regenerated in vitro. Plant Growth Regulation,40:267-275.
    95. Legnani G, Watkins C B, Miller W B.2010. Effects of hypoxic and anoxic controlled atmospheres on carbohydrates, organic acids, and fermentation products in Asiatic hybrid lily bulbs. Postharvest Biology and Technology,56:85-94.
    96. Lester G E, Arias L S, Lim M G.2001. Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation. J Amer Soc Hort Sci,126: 33-36.
    97. Li X Q, Zhang D P.2003. Expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato. Plant & Cell Physiology,44(6):630.
    98. Lingle S E. Sugar metabolism during growth and development in sugarcane internodes. Crop Sci,1999, 39:480-486.
    99. Lingle S E, Dunlap J R.1987. Sucrose metabolism in netted muskmelon fruit during development. Plant Physiol,84:386-389.
    100. Liu C C, Huang L C, Chang C T, Sung H Y.2005. Purification and characterization of soluble invertases from suspension-cultured bamboo (Bambusa edulis) cells. Food Chemistry,96:621-631.
    101. Macrae E, Puick W P, Benker C.1992. Carbohydrate metabolism during postharvest ripening in kiwifruit. Planta,188:314-323.
    102. Miller W B, Langhans R W.1990. Low temperature alters carbohydrate metabolism in Easter lily bulbs. Hort Science,25:463-465.
    103. Miron D, Schafer A A.1991. Sucrose phosphate synthase, sucrose synthase and invertase activities in developing fruit of Lycopersicon esculentum Mill, and the sucrose accumulation Lycopersicon hirsutum Hub and Bonpl. Plant Physiol,95:623-627.
    104. Ohkawa K, Kano A, Nukaya A.1990. Time of flower bud differentiation in Asiatic hybrid lilies. Acta Horticulturae,26(6):211-220.
    105. Ohyama A, Hirai M, Nishimura S.1994. Purification and biochemical characterization of acid invertase in tomato fruit. Bulletin of the National Research Institute of Vegetables, Ornamental Plants and Tea. Series A:Vegetables and Ornamental Plants,9:61-67.
    106. Ohyama A, Ito H, Sato T. Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit. Plant Cell & Physiology,1995,36:369-376.
    107. Ordonez R M, Vattuone M A, Isla M.2005. Changes in carbohydrate content and related enzyme activity during Cyphomandra betacea (Cav.) Sendtn. fruit maturation. Postharvest Biology and Technology,35:293-301.
    108. Paffen A M G, Aguettaz P, Delvallee I, De Klerk G J, Bogers R J.1990. The development of dormancy in lily bulblets generated in vitro. Acta Horticulture,266:51-58.
    109. Pan Q H, Zou K Q, Peng C C, Wang X L, Zhang D P.2005. Purification, biochemical and immunological characterization of acid invertases from apple fruit. Journal of Integrative Plant Biology, 47(1):50-59.
    110. Pelleschi S, Rocher J P, Prioul J L.1997. Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ,20:493-503.
    111. Pfeiffer I, Kutsehera V.1995. Sucrose metabolism and cell elongation in developing sunflower hyPoeols. Journal of Experimental Botany.46:631-638.
    112. Ricardo C P P, Aprees T.1970. Invertase activity during the development of carrot roots. Phytochemistry,9:239-247.
    113. Roitsch T, Bittner M, Godt D E.1995. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol,108:285-294.
    114. Schaffer A A.1986. Invertase in young and mature leaves of citrus sinensis. Phytochemistry,25: 2275-2277.
    115. Schaffer A A, Aloni B, Fogelman E.1987. Sucrose metabolism and accumulation in developing fruit of cucumis. Phytochem,26:1883-1887.
    116. Shin K S, Chakrabarty D, Paek K Y.2002. Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro. Scientia Horticulturae,96:19-204.
    117. Smeekens S, Rook F.1997. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol.115:7-13.
    118. Stitt M, Schaewen A, Willmitzer L.1991. Sink regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell-wall involves a decrease of Calvin-cycle enzymes and an increase of glycolytic enzymes. Planta,183:40-50.
    119. Sturm A.1999. Invertases:primary structures, functions and roles in plant development and sucrose partitioning. Plant Physiol,121:1-7.
    120. Sturm A, Chrispeels M J.1990. cDNA cloning of carrot extracellular β-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell,2:1107-1119.
    121. Suzuki S, Kanahama K.2002. Effects of bulb storage temperature on flower bud formation and dormancy breaking in inter specific hybrids of Lilium formolongi×L. rubellum Baker. Tokyo: Horticultural Research (Japan), Yokendo Ltd., Publishers,1(3):165-167.
    122. Tang G Q, Lscher M, Sturm A.1999. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell,11:177-189.
    123.Tymowska L Z, Kreis M.1998a. The plant invertases:physiology, biochemistry and molecular biology. Advances in botanical research,28(1998):71-117.
    124. Tymowska L Z, Kreis M.1998b. Expression of the Arabidopsis thaliana invertase gene family. Planta, 207(2):259-265.
    125. Viola R, Roberts A G, Haupt S, et al.2001. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant cell,13(2):385-398.
    126. Wbodson W R, Wang H,1987. Invertases of carnation petals:partial purification, charaeterization and changes in activity during petal growth. Physiologia Plantarum,71:224-228.
    127. Xia Y P, Zheng H J, Huang C H.2005. Studies on the bulb development and its physiological mechanisms in Lilium Oriental hybrids. Acta Horticulturae,673:91-98.
    128. Xiong Zhi-ting, Wang Ting, Liu Kun, Zhang Zhi-zhen, Gan Jin-hua, Huang Yu, Li Ming-jing.2008. Differential invertase activity and root growth between Cu-tolerant and non-tolerant populations in Kummerowia stipulacea under Cu stress and nutrient deficiency. Environmental and Experimental Botany,17-27.
    129. Xu D P, Sung S J, Black C C. Sucrose metabolism in lima bean seeds. Plant Physiol,1989,89: 1106-1116.
    130. Xu J, Pemberton G H, Almira E C, Almira E C, Mccarty D R, Koch K E.1995. The Ivr 1 gene for invertase in maize. Plant Physiol,108(3):1293-1294.
    131. Yelle S, Chetelat R T, Dorais M.1991. Sink metabolism in tomato fruit IV. Genetic and biochemical analysis of sucrose accumulation. Plant Physiol,95:1026-1035.
    132. Zhu Y J, Albert H H, Moore P H. Differential expression of soluble acid invertase genes in the shoots of high-sucrose and low-sucrose species of saccharum and their hybrids. Austrilian Joumal of Plant Physiology,2000,27:193-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700