内蒙古白云鄂博REE-Nb-Fe矿床成因问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白云鄂博超大型稀土-铌-铁矿床的稀土储量居世界第一,铌储量居世界第二,其又是一个大型的铁矿床。该矿床的成因和成矿年龄受到中、外地质学家的关注,也是至今仍在争论的问题,其中两个主要问题是,成矿年龄和赋矿H8白云岩的成因和年龄。
     鉴于上述存在问题,本论文在全面总结前人的研究成果的基础上,对白云鄂博地区的一些基本问题进行了详细的研究,试图通过解决本地区的几个基本问题,进而讨论矿床的成因及年龄。
     通过详细的地层剖面对比,我们发现宽沟南北及白云鄂博和黑脑包两个地方的地层存在对比性。白云鄂博东南的黑脑包基底角闪片麻岩的时代为2.5Ga左右(2522±18Ma和2495±11Ma),形成于新太古代晚期。这和前人得到的白云鄂博基底中的糜棱岩化花岗片麻岩的形成年龄(2588±15Ma)和碳酸岩墙中捕获锆石的年龄(2.55Ga)相近。对基底的研究结果说明,在华北北缘白云鄂博地区除具有约2.0Ga的岩浆活动和约1.9Ga的强烈变质事件外,还存在有华北克拉通太古代古老岩石(2522±18Ma),从而证明白云鄂博矿床发育在华北克拉通基底之上。黑脑包处的腮林忽洞群不整合于基底片麻岩(毛忽洞组)之上,白云鄂博群不整合于基底杂岩(五台群?)之上,两者相似的基底年龄限制了腮林忽洞群和白云鄂博群具有相同的下限年龄,从而为两个群组的具有可比性提供了一定程度上的间接证明。
     不过,白云鄂博基底属于过铝质钙碱性系列岩石,其原岩为太古代沉积岩;而黑脑包基底属于准铝质高钾钙碱性系列岩石,其原岩可能是富钾的碱性火山岩。构造环境判别结果表明其构造环境可能是岛弧,说明在此时期内白云鄂博(华北北缘)属于岛弧环境,这些基底片麻岩的形成与岛弧作用引起的岩浆活动有关,不排除是造山后的结果。
     详细的年龄讨论以及碳酸岩墙中锆石的研究,表明白云鄂博地区的碳酸岩墙应属于同一期形成,形成年龄为1.30Ga~1.40Ga左右。其形成是中元古代(1.20~1.70Ga)华北克拉通从哥伦比亚超大陆分离而处于拉张环境形成大陆裂谷系时,碳酸岩浆的侵入形成。碳酸岩墙中的锆石年龄有两组,分别为2507±35Ma和1904±19Ma,这两组年龄和前人获得的基底的年龄1.9~2.0Ga和~2.5Ga相一致,说明碳酸岩墙中的锆石确实主要来自基底,是碳酸岩浆侵入过程中从基底捕获的。锆石中εHf(t)大部分为负值,分布于-20.4~1.7之间,单阶段模式年龄(tDM1)分布于2259Ma-3207Ma之间,平均为2572±120Ma,和锆石年龄一致。说明白云鄂博地区基底的形成与华北克拉通化过程密切,是亏损地幔的分异作用导致的本区基底的形成,这间接支持华北克拉通新太古代晚期包括BIF在内的表壳岩系可能形成于岛弧构造环境。
     同时,白云鄂博地区碳酸岩墙的地球化学研究表明,这些碳酸岩墙具有明显的火成碳酸岩特征,具有极高的稀土含量。而且,单矿物研究表明,白云石具有比方解石更强的容纳稀土元素的能力,碳酸岩中的稀土主要还是以副矿物的形式存在。白云鄂博矿床的成因和这些碳酸岩墙有密切的关系是毫无疑问的,碳酸岩浆及其流体具有强的成矿潜力。
     白云鄂博群年龄测试结果表明,宽沟北沉积灰岩的Pb-Pb年龄为1581±100Ma,其东南部黑脑包沉积白云岩的Pb-Pb年龄为1425±420Ma。黑脑包地区获得Pb-Pb年龄在误差范围内跟白云鄂博群H8沉积灰岩是一致的,同样说明了这两个群组之间存在可比性。黑脑包较小的年龄值说明腮林忽洞群顶部的微晶丘可能更相似于白云鄂博群的上部,而不是H8白云岩。H9板岩中的锆石分析结果表明其沉积年龄为1.65Ga左右,其中也出现有加里东和海西期年龄,这是本地区存在加里东期和海西期岩浆活动的证据。同位素年代学的结果支持白云鄂博群的形成时代为中元古代。
     白云鄂博矿区黑云母岩中的黑云母的Ar-Ar年龄为289.1±1.8Ma,说明黑云母为海西期岩浆活动作用的结果,而海西期岩浆活动已被公认跟白云鄂博的成矿没有关系,因此,黑云母岩的存在不能成为H8是碳酸岩的证据。采自条带状矿石中钠闪石脉中的钠闪石的Ar-Ar年龄为389.5+3.0Ma,这个年龄代表的是改造事件的晚期年龄。Sm-Nd年龄研究结果表明在白云鄂博矿区,稀土的主要成矿时代是1.200a左右,稍晚于碳酸岩的年龄,而且,成矿可能只有一次。虽然不少稀土矿物的Th-Pb年龄显示有加里东期的成矿作用,但同样矿物的Pb-Pb年龄却相似于Sm-Nd年龄,说明其Th-Pb体系在加里东时期受到过扰动,得到的年龄更像是一次改造事件,而不是成矿事件。年龄的讨论说明,在白云鄂博矿区,稀土的主要成矿时代是1.20Ga左右,晚于碳酸岩的年龄,而且,成矿作用可能只有一次,不存在加里东期成矿作用。
     H8白云岩全岩地球化学研究表明,粗粒白云岩,尤其是那些稀土含量较低的,具有和沉积碳酸盐岩相似的特征,而细粒白云岩则跟火成碳酸岩的特征相似,利用某些微量元素能够很好的将沉积碳酸盐岩和碳酸岩区分开。单矿物地球化学研究表明,虽然全岩的成分上看,粗粒白云岩和细粒白云岩具有较不相同的特征,表现为细粒白云岩的特征更相似于碳酸岩,粗粒白云岩则更相似于沉积碳酸盐岩,但他们的白云石单矿物的特征是相似的,完全不同于碳酸岩。H8白云岩(包括细粒白云岩)中的白云石中的稀土元素含量较低,总稀土含量最高的只有146ppm,远远低于碳酸岩中方解石或者白云石的稀土含量:并且,在粗粒白云岩中白云石的核部保留有沉积碳酸盐岩的信息,这些都表明白云岩是沉积交代成因的。
     全岩和黄铁矿的硫同位素组成不呈塔式模型分布,出现两个比较明显的峰值,一个在0‰左右,平均值为+0.02‰,具有深源特征:另一个在+8‰左右,平均值为+6.88‰,明显高于幔源硫。重晶石具有明显的比全岩高的834S值,平均值为+12.50‰。通过大本模式计算得到的δ34S∑S值分别为6.1‰和10.1‰。计算得到的值都具有幔源硫交代或混合地壳或海水的特点。我们认为,全岩及硫化物的硫有两个来源:地幔和海水,因混合得不均匀,形成双峰。重晶石硫主要是海水硫,但有幔源硫的加入。H8白云岩中碳氧同位素范围落在岩浆碳酸岩到元古宙海相碳酸盐岩之间,可解释为沉积碳酸盐岩受到地幔流体的交代。
     富钾板岩若为火山岩或变质火山岩,则其中应该存在1.6Ga左右的岩浆锆石,但出现典型岩浆环带的锆石被证实形成于海西期,且不存在16亿年的锆石,结合白云鄂博群形成环境属浅海相(郭光裕等,1982;中国科学院地球化学研究所,1988),因此,富钾板岩是火山岩或火山变质岩的可能性不大。同时,地球化学研究结果也表明H9富钾板岩的形成以正常沉积为主,后来受到碳酸岩浆或(和)流体的交代作用。
     综合以上研究,我们认为白云鄂博赋矿白云岩是沉积碳酸盐受地幔碳酸岩浆及派生的流体交代的产物,其中粗粒白云岩是弱矿化的结果而细粒白云岩则是强烈矿化的结果。中元古代约1300~1400Ma时,白云鄂博地区处于拉张和沉降环境,白云鄂博裂谷系活化,地幔物质上涌,伴随火成碳酸岩浆活动,上涌的稀土含量极高的碳酸岩浆及其流体交代白云鄂博群H8白云岩形成稀土矿床。加里东期时,华北地块向西伯利亚板块俯冲并随后发生碰撞拼合,使白云鄂博地区褶皱隆起,发生花岗岩岩浆活动,此变形和岩浆活动造成白云鄂博矿床强烈扰动,形成晚期的黄铁矿、辉钼矿和钠闪石,并使部分同位素体系重置,显示加里东期的表面年龄。
The Bayan Obo REE-Nb-Fe deposit is the largest LREE deposit and the second largest Nb deposit in the world, and it is also a large Fe deposit. The genesis and forming age of the deposit have been debated for decades by geologists both of China and worldwide. The two most important problems are the mineralization age and how and when the H8dolomite was formed.
     In order to clarify the above questions, on the basis of a comprehensive summarizing and reviewing of existing results, a lot of works have been done. We try to solve some basic problems in the Bayan Obo area, and then analyze the REE mineralization age and its genesis.
     Through detailed strata research, it is found that strata in north and south Kuangou fault are the same, and the Bayan Obo Group is correlated with Sailinhudong Group in the Heinaobao, southeast Bayan Obo deposit. Zircons from basement rocks in the Heinaobao yield an age of~2.5Ga (two LA-ICP-MS results are2522±18Ma and2495±11Ma, respectively), they are formed at late New Archean, this age is similar with the age of basement rocks and zircons from carbonatite in the Bayan Obo. The chronology studies of basement rocks show that there is not only magmatic activity and intense metamorphic thermal event during early Proterozoic(1.9~2.0Ga), Archean rocks (2522±18Ma) of North China craton are normal in this area, the Bayan Obo deposit is indeed developed upon the North China Craton basement. The same basement age is indirect evidence for that stratum develop upon them (thus the Bayan Obo Group and Sailinhudong Group) are comparable.
     Basement in the Bayan Obo are peraluminous cal-alkaline series rocks, and their protolith is Archaean sedimentary rocks; while basement in the Heinaobao are aluminous high-K calc-alkaline series, whose protolith is probably K-rich alkaline volcanic rock. Tectonic study indicated an island arc environment, the formation of these basement rocks is related to the island arc related magmatism.
     Carbonaities in the Bayan Obo are formed in the age of1.3~1.4Ga, and there is no other carbonatite magmatism in this area in the long geologic period. In the Mesoproterozoic(1.20~1.70Ga), North China Craton broke away from Columbia supercontinent, carbonaitie magma intruded into basement and Bayan Obo Group in rift environment. Zircons from carbonatite gain two ages of2507±35Ma and1904±19Ma, respectively. Both ages are consistent with the age of basement rocks. Furthermore, inclusions in these zircons are silicate, indicating that zircons in the carbonatite are entrapped from the basement during carbonatitie magma intrusive process. Most zircons in the carbonatite have variableεHf(t) values of-20.4to1.7, with Paleoproterozoic to Neoarchean Hf model ages of2259Ma to3207Ma (with an average of2572±120Ma). The Hf model age is the same with the zircon age, indicating the formation of basement is closely related to cratonization of North China craton, indirectly supported that supracrustal sequences in the late New Archean of North China craton (including BIF) are in an island arc environment.
     Geochemical studies of carbonatite dykes in the Bayan Obo show obviously igneous carbonatite features, with extremely high REE contents. Moreover, mineral analysis indicate that dolomite has a stronger ability to hold rare earth elements than calcite, and rare earth elements in the carbonatite exist in the form of accessory minerals. Carbonatite magma and fluids have high ore-forming potential, there is no doubt that the Bayan Obo REE-Nb-Fe deposit is related to carbonatite.
     The207Pb-206Pb isochron age (158±100Ma) of the sedimentary limestone of the Bayan Obo Group in the north Kuangou fault may represent its deposition time, indicating the Bayan Obo Group was deposited in Mesoproterozoic. The207Pb-206Pb isochron age of sedimentary dolomite of the Sailinhudong Group in the Heinaobao is1425±420Ma, though it is a little younger than the age of sedimentary limestone in the Bayan Obo, similar age indicate that Bayan Obo Group is comparable with Sailinhudong Group, and comparative studies between H8dolomite and sedimentary carbonate rocks in the Heinaobao is reasonable. Zircon SIMS U-Pb age dating of K-rich slate show that they was form at1.65Ga, one Group of age concentrates in the Late Archean-Early Paleoproterozoic (2519.9Ma), consisting with the zircon ages of basement rocks in the Bayan Obo region, and the age of518.8Ma represent the Caledonian magmatic event. Chronology studies support that the Bayan Obo Group was formed in Mesoproterozoic.
     The Ar-Ar age of biotite from biotitite from Bayan Obo is289.1±1.8Ma, indicating it is the result of Hercynian magmatism, since Hercynian magmatism is generally accepted to have nothing to do with REE mineralization, the exist of biotitite should not be the evidence of H8dolomite is carbonatite. Riebeckite from riebeckite vein of banded type ore has Ar-Ar age of389.5±3.0Ma, represented the age of reworking process rather than second mineralization age. Sm-Nd isochron ages of H8dolomite in the Bayan Obo are concentrated in-1.20Ga, younger than the age of carbonatite, as Bayan Obo is an REE deposit, it is clear that the Sm-Nd age stand for mineralization age. Though many REE minerals have Th-Pb isochron ages of Caledonian, their Pb-Pb ages are similar to the Sm-Nd isochron age. This shows that Th-Pb system was reset in Caledonian, thus these ages are more likely the age of reworking process rather than another mineralization. Besides, the mineralization process has only occur once, about1.2Ga, after carbonatite intrusion.
     The whole rock geochemical studies of H8dolomite show that coarse-grained dolomite especially those with low rare earth content, have similar characteristics to sedimentary carbonate rocks, fine-grained dolomite have nearly the same features as igneous carbonatite, and using some trace elements can easily distinguish sedimentary carbonate rock and carbonatite. Though the whole rock geochemical features between coarse and fine grained dolomite are different, their carbonate minerals (dolomite) have similar geochemical characteristics, which are completely different from the carbonatite. Rare earth element content of dolomite mineral in the H8dolomite (both coarse and fine-grained dolomite) is low, with the highest total rare earth content is146ppm, much lower than the calcite or dolomite in carbonatite. Moreover, dolomite from coarse-grained dolomite retain signatures of sedimentary carbonates in the core, indicating that dolomite is the result of mineralization of sedimentary carbonate rocks by REE-rich fluids derived from carbonatite magma. Moreover, SrO content in carbonate minerals is a more sensitive indicator than MnO to distinguish carbonatite from sedimentary carbonate rocks.
     The sulfur isotopic composition of the intensively REE-mineralized dolomites and pyrite separated from those dolomites show two obvious peaks; one peak in δ34S values is around0‰, which is characteristics of a mantle-source; another is around+8‰, being significantly higher than the mantle sulfur source value and falling into the sedimentary carbonate field. The sulfur isotopic composition of barite samples indicates that they are richer in34S than the dolomites, with an average δ34S value of+12.50‰, this value is lower than+17‰that was suggested by Holser et al.(1996) to be the composition of sulfates precipitated from Precambrian seawater. The calculated834S∑s results using Ohmoto model are6.1‰and10.1‰, respectively, both values have characteristics of mantle source that exchanged and/or mixed with the sulfur source in the crust or seawater. Sulfur in the whole rock and sulfides came from two sources:the mantle and seawater. Metasomatism unevenly formed two sulfur isotope peaks in the mineralized dolomites.
     The sedimentary age of K-rich slate are about1.65Ga, if slate is volcanic rock or metavolcanic rock, there should be zircon with age of~1.65Ga, whereas typical magmatic zircon is formed at Hercynian, and there is no1.6Ga zircon. Geochemical studies of H9K-rich slate show that they normal metamorphic sedimentary rocks, and they also have suffered from carbonatite magma.
     In summary, mineralized dolomites in the Bayan Obo REE-Nb-Fe deposit are the product of sedimentary carbonate hydrothermally metasomatised by carbonatite magma and/or associated fluids, and coarse-grained dolomite marbles are the result of weak mineralization of sedimentary carbonate rocks, and fine-grained dolomite marbles are the product of intensive mineralization. The Bayan Obo rift mobilized at about1.3~1.4Ga, accompanied by extremely high REE carbonatite magmatism, H8sedimentary carbonate of the Bayan Obo Group was mineralization and metasomatised to form the whole deposit. In Caledonian era, the North China Block subducted toward the Siberian plate, and then collided each other and combined together. Meanwhile, the Bayan Obo deposit was strongly disturbed, later phase minerals, such as pyrite and riebeckite, were formed, and some isotopic systems were reset and show Caledonian apparent ages.
引文
Anderson, T.,1986. Magmatic fluids in the Fen carbonatite complex, SENorway:evidence of mid-crustal fracitonal from solid and fluid inclusions in apatite. Contrib Mineral Petr 93, 491-503.
    Ayers, J.C., Watson, E.B.,1991. Solubility of apatite, monazite, zircon and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philosophical Transactions: Physical Sciences and Engineering 335,365-375.
    Brenan, J.M., Shaw, H.F., Ryerson, F.J., Phinney, D.L.,1995. Mineral-aqueous fluid partitioning of trace elements at 900℃ and 2.0GPa:contraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta 59.
    Buhn, B., Rankin, A.H.,1999. Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions. Geochim Cosmochim Ac 63,3781-3797.
    Campbell, L.S.,1998. Zircon-fluid interaction in the Bayan Obo REE-Nb-Fe ore deposit, Inner Mongolia, China. Water-Rock Interaction,521-523 1020.
    Campbell, L.S.,1999. Discussion on Le Bas et al. (1997)'Oxygen, carbon and strontium isotope study of the carbonatitic dolomite host of the Bayan Obo Fe-Nb-REE deposit, Inner Mongolia, China:Mineralogical Magazine,61,531-41. Mineralogical Magazine 63,927-931.
    Campbell, L.S., Compston, W., Sircombe, K.,2000.232Th-208Pb (SHRIMP) dates of zircons from the Bayan Obo REE-Nb-Fe deposit, China, Joint Meeting of the Volcanic & Magmatic Studies Group. The Mineralogical Society and Mineral Deposits Studies Group, Durham, UK.
    Campbell, L.S., Henderson, P.,1997. Apatite paragenesis in the Bayan Obo REE-Nb-Fe ore deposit, inner Mongolia, China. Lithos 42,89-103.
    Cantrell, K.J., Byrne, R.H.,1987. Rare earth element complexation by carbonate and oxalate ions. Geochimica et Cosmochimica Acta 51.
    Chao, E.C.T., Back, J.M., Minkin, J.A., Ren, Y.C.,1992. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REE-Fe-Nb ore deposit, Inner-Mongolia, P.R. China. Applied Geochemistry 7,443-458.
    Chao, E.C.T., Tasumoto, M., Minkin, J.A., Ren, Y.C.,1993. Multiple lines of evidence for establishing the mineral paragenetic sequence of the Bayan Obo rare earth ore deposit of Inner Mongolia, China, in:Maurice, Y.T. (Ed.), The 8th Symposium of International Association on the Genesis of Ore Deposits. E Schweizerbart, Stuttgart, pp.53-73.
    Chao, E.C.T.B., J. M. Minkin, J. A. Tatsumoto, M. Wang, J. W. Conrad, J. E. Mckee, E. H. Hou, Z. L. Meng, Q. R. Huang S. G.,1997. The sedimentary carbonate-hosted Giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China:A cornerstone example for giant polymetallic ore deposit of hydrothermal origin. U.S. Geological Survey Bulletin 2143.
    Chi, R., Li, Z.J., Peng, C., Zhu, G.C., Xu, S.M.,2005. Partitioning properties of rare earth ores in China. Rare Metals 24,205-209.
    Chou, I.M., Eugster, H.P.,1977. Solubility of magnetite in supercritical chloride solutions. Am J Sci 277,1296-1314.
    Conrad, J.E.M., E. H.,1992.40Ar-39Ar dating of vein amphibole from the Bayan Obo iron-rare earth element-niobium deposit, Inner Mongolia, China:constrains on mineralization and deposition of the Bayan Obo Group. Economic Geology 87,185-188.
    Drew, L.J., Qingrun, M., Weijun, S.,1990. The Bayan Obo Iron Rare-Earth Niobium Deposits, Inner-Mongolia, China. Lithos 26,43-65.
    Fan, H.R., Hu, F.F., Wang, K.Y., Xie, Y.H.,2005. Aqueous-carbonic-REE fluids in the giant Bayan Obo deposit, China:implications for REE mineralization. Mineral Deposit Research:Meeting the Global Challenge, Vols 1 and 2,945-948 1613.
    Fan, H.R., Xie, Y.H., Wang, K.Y., Tao, K.J.,2004a. REE daughter minerals trapped in fluid inclusions in the giant Bayan Obo REE-Nb-Fe deposit, Inner Mongolia, China. Int Geol Rev 46, 638-645.
    Fan, H.R., Xie, Y.H., Wang, K.Y., Wilde, S.A.,2004b. Methane-rich fluid inclusions in skarn near the giant REE-Nb-Fe deposit at Bayan Obo, Northern China. Ore Geology Reviews 25, 301-309.
    Fein, J.B., Walther, J.V.,1987. Calcite solubility in supercritical CO2-H2O fluids. Geochimica et Cosmochimica Acta 51,1665-1673.
    Franchini, M., Lira, R., Meinert, L., Rios, F.J., Poklepovic, M.F., Impiccini, A., Millone, H.A., 2005. Na-Fe-Ca alteration and LREE (Th-Nb) mineralization in marble and granitoids of Sierra de Sumampa, Santiago del Estero, Argentina. Economic Geology 100,733-764.
    Giere, R.,1996. Formation of rare earth minerals in hydrothermal systems, In:Wall, A.P., Williams, C.T. (Eds.), Rare Earth Minerals:Chemistry Origin and Ore Deposits. Chapman and Hall, Lodon, pp.105-150.
    Gittins, J.,1989. The origin and evolution of carbonatite magma, In:Bell, K. (Ed.), Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp.580-600.
    Giester, G., Ni, Y.X., Jarosch, D., Hughes, J.M., Ronsbo, J., Yang, Z.M., Zemann, J.,1998. Cordylite-(Ce):A crystal chemical investigation of material from four localities, including type material. Am Mineral 83,178-184.
    Goff, B.H., Weinberg, R., Groves, D.I., Vielreicher, N.M., Fourie, P.J.,2004. The giant Vergenoeg fluorite deposit in a magnetite-fluorite-fayalite REE pipe:a hydrothermally-altered carbonatite-related pegmatoid? Miner Petrol 80,173-199.
    Haas, J.R., Shock, E.L., Sassani, D.C.,1995. Rare earth elements in hydrothermal systems: estimates of standard partial model thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta 59, 4329-4350.
    Hoernle, K.A., Tilton, G.R.,1991. Sr-Nd-Pb isotope data for Fuerteventure (Canary Islands) basal complex and subaerial volcanics:applications to magma genesis and evolution. Schweizerische Mineralogische und Petrographische Mitteilungen 71,3-18.
    Hou, G., Santosh, M., Qian, X., Lister, G.S., Li, J.,2008. Tectonic constraints on 1.3~1.2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm. Gondwana Research 14,561-566.
    Hu, F.F., Fan, H.R., Liu, S., Yang, K.F., Chen, F.K.,2009. Samarium-Neodymium and Rubidium-Strontium Isotopic Dating of Veined REE Mineralization for the Bayan Obo REE-Nb-Fe Deposit, Northern China. Resour Geol 59,407-414.
    Kanazawa, Y., Kamitani, M.,2006. Rare earth minerals and resources in the world. J Alloy Compd 408,1339-1343.
    Kim, S.J., Lee, H.K., Yin, J.W., Park, J.K.,2005. Chemistry and origin of monazites from carbonatite dikes in the Hongcheon-Jaeun district, Korea. J Asian Earth Sci 25,57-67.
    Kusky, T., Li, J.,2003. Paleoproterozoic tectonic evolution of the North China craton. Journal of Asian Earth Sciences 22,383-397.
    Kwak, T.A.P., Brown, W.M., Abeysinghe, P.B., Tan, T.H.,1986. Fe solubilities in very saline hydrothermal fluids:their relation to zoning in some ore deposits. Economic Geology 81, 447-465.
    Le Bas, M.J.,2006. Re-interpretation of zircon date in a carbonatite dyke at the Bayan Obo giant REE-Fe-Nb deposit, China. Acta Petrol Sin 22,517-518.
    Le Bas, M.J., Keller, J., Tao, K.J., Wall, F., Williams, C.T., Zhang, P.S.,1992. Carbonatite Dykes at Bayan Obo, Inner-Mongolia, China. Miner Petrol 46,195-228.
    Le Bas, M.J., Spiro, B., Yang, X.M.,1997. Oxygen, carbon and strontium isotope study of the carbonatitic dolomite host of the Bayan Obo Fe-Nb-REE deposit, Inner Mongolia, N China. Mineralogical Magazine 61,531-541.
    Le Bas, M.J., Xueming, Y., Taylor, R.N., Spiro, B., Milton, J.A., Peishan, Z.,2007. New evidence from a calcite-dolomite carbonatite dyke for the magmatic origin of the massive Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China. Miner Petrol 90,223-248.
    Le Bas, M.J., Yang, X.M., Zhang, P.S., Tao, K.J.,1996. Geochemical characteristics of Fe-REE carbonatitic complex at Bayan Obo, Inner Mongolia, China. ABSTRACT of 30th IGC 2, 4-14.
    Li, Q.-L., Chen, F., Guo, J.-H., Li, X.-H., Yang, Y.-H., Siebel, W.,2007. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia):Evidence for early Proterozoic evolution of the northern North China Craton. Journal of Asian Earth Sciences 30,573-590.
    Liu, L.S., Gao, L., Du, A.D., Sun, Y.L.,1996. The Re-Os isotope age of molybdenite from Bayan Obo REE ore deposit. Mineral Deposits 15,188-191.
    Liu, Y.L., Williams, I.S., Chen, J.F., Wan, Y.S., Sun, W.D.,2008. The significance of paleoproterozoic zircon in carbonatite dikes associated with the bayan obo REE-Nb-Fe deposit. Am J Sci 308,379-397.
    Meen, J.K., Eggler, D.H., Ayers, J.C.,1989. Experimental evidence for very low solubilities of rare earth elements in CO2 rich fluids at mantle conditions. Nature 340,301-302.
    Meng, Q.R., Drew, L.J.,1992. Study on oxygen and carbon isotope and the implication for genesis of Bayan Obo ore-bearing H8 dolomite. Contributions to Geology and Mineral Resources Research 7,46-54.
    Miyawaki, R., Shimazaki, H., Shigeoka, M., Yokoyama, K., Matsubara, S., Yurimoto, H.,2011. Yangzhumingite, KMg(2.5)Si(4)O(10)F(2), a new mineral in the mica group from Bayan Obo, Inner Mongolia, China. Eur J Mineral 23,467-473.
    Nakai, S., Masuda, A., Shimizu, H., Lu, Q.,1989. La-Ba dating and Nd and Sr isotope studies on the Bayan Obo rare earth element ore deposits, Inner Mongolia, China. Economic Geology 84, 2296-2299.
    Nie, F.J., Jiang, S.H., Su, X.X., Wang, X.L.,2002. Geological features and origin of gold deposits occurring in the Baotou-Bayan Obo district, south-central Inner Mongolia, People's Republic of China. Ore Geology Reviews 20,139-169.
    Philpotts, J.T., T. Li, X. H. Wang, K. Y,1991. Some Nd and Sr isotopic systematics for the REE-enriched deposit at Bayan Obo, China. Chemical Geology 90,177-188.
    Qin, C.J., Qiu, Y.Z., Zhou, G.F., Wang, Z.G., Zhang, T.R., Xiao, G.W.,2007. Fluid inclusion study of carbonatite dykes/veins and ore-hosted dolostone at the Bayan Obo ore deposit. Acta Petrol Sin 23,161-168.
    Rankin, A.H., Ni, P., Zhou, J.,2003. Fluid inclusion studies on carbonatite dyke and associated quartzite in Bayan Obo, Inner Mongolia, China. Acta Petrol Sin 19,297-306.
    Shimazaki, H., Miyawaki, R., Yokoyama, K., Matsubara, S., Yang, Z.M.,2008. Zhangpeishanite, BaFCl, a new mineral in fluorite from Bayan Obo, Inner Mongolia, China. Eur J Mineral 20, 1141-1144.
    Smith, M.P.,2007. Metasomatic silicate chemistry at the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China:Contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos 93,126-148.
    Smith, M.P., Henderson, P.,1999. Fluid inclusion constraints on the genesis of the Bayan Obo Fe-REE-Nb deposit. Mineral Deposits:Processes to Processing, Vols 1 and 2,103-106 1468.
    Smith, M.P., Henderson, P.,2000. Preliminary fluid inclusion constraints on fluid evolution in the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Econ Geol Bull Soc 95,1371-1388.
    Smith, M.P., Henderson, P., Zhang, P.S.,1999. Reaction relationships in the Bayan Obo Fe-REE-Nb deposit Inner Mongolia, China:implications for the relative stability of rare-earth element phosphates and fluorocarbonates. Contrib Mineral Petr 134,294-310.
    Wang, J. W.T., M. Li, X. B. Premo, W. R. Chao, E. C. T.,1994. A precise 232Th-208Pb chronology of fine-grained monazite:Age of the Bayan Obo REE-Fe-Nb ore deposit, China. Geochim Cosmochim Ac 58,3155-3169.
    Wang, K.Y., Fan, H.R., Yang, K.F., Hu, F.F., Ma, Y.G.,2010. Bayan Obo Carbonatites:Texture Evidence from Polyphase Intrusive and Extrusive Carbonatites. Acta Geol Sin-Engl 84, 1365-1376.
    Wieler, R., Eikenberg, J.,1999. An upper limit on the spontaneous fission decay constant of Th-232 derived from xenon in monazites with extremely high Th/U ratios. Geophys Res Lett 26, 107-110.
    Webster, J.D., Holloway, J.R., Hervig, R.L.,1989. Partitioning of lithophile trace elements between H2O and H2O+CO2 fluids and topaz rhyolite melt. Economic Geology 84,116-134.
    Williams, J.A.E., Samson, L.M., Olivo, G.R.,2000. The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Economic Geology 95,327-342.
    Williams Jones, A.E., Wood, S.A.,1992. A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochimica et Cosmochimica Acta 56,725-738.
    Wolff, J.A.,1994. Physical properties of carbonatite magma inferred from molten salt data, and application to extraction patterns from carbonatite-silicate magma chambers. Geological Magmazine 131,145-153.
    Wood, S.A.,1990. The aqueous geochemistry of the rare earth elements and yttrium2. Theoretical predictions of speciation in hydrothermal solutons to 350℃ at saturation water vapor pressure. Chemical Geology 88,99-125.
    Wyllie, P.J.,1987. Discussion of recent papers on carbonated peridotite, bearing on mantle metasomatism and magmatism. Earth and Planetary Science Letters 82,391-397.
    Wyllie, P.J., Jones, A.P., Deng, J.,1996. Rare earth elements in carbonate-rich melts from mantle to crust, In:Jones, A.P., Wall, F., Williams, C.T. (Eds.), Rare Earth Minerals:Chemistry, Origin and Ore Deposits. Chapman & Hall, London, pp.77-104.
    Wu, C.Y.,2008. Bayan Obo Controversy:Carbonatites versus Iron Oxide-Cu-Au-(REE-U). Resour Geol 58,348-354.
    Xu, C., Campbell, I.H., Kynicky, J., Allen, C.M., Chen, Y.J., Huang, Z.L., Qi, L.A.,2008a. Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos 106,12-24.
    Xu, J.S., Yang, G.M., Li, G.W., Wu, Z.L., Shen, G.F.,2008b. Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe Mine, China:Both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup. Am Mineral 93,740-744.
    Yang, K.F., Fan, H.R., Santosh, M., Hu, F.F., Wang, K.Y.,2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China:Constraints for the mechanism of super accumulation of rare earth elements. Ore Geology Reviews 40,122-131.
    Yang, X.M., Le Bas, M.J.,2004. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China:implications for petrogenesis. Lithos 72,97-116.
    Yang, X.M., Yang, X.Y., Chen, T.H., Zhang, P.S., Tao, K.J., Le Bas, M.J., Henderson, P.,2000a. Geochemical characteristics of a carbonatite dyke rich in rare earths from Bayan Obo, China. J Rare Earth 18,1-8.
    Yang, X.M., Yang, X.Y., Zhang, P.S., Le Bas, M.J.,2000b. Ba-REE fluorcarbonate minerals from a carbonatite dyke at Bayan Obo, Inner Mongolia, North China. Miner Petrol 70,221-234.
    Yang, X.M., Yang, X.Y., Zheng, Y.F., Le Bas, M.J.,2003. A rare earth element-rich carbonatite dyke at Bayan Obo, Inner Mongolia, North China. Miner Petrol 78,93-110.
    Yang, X.Y., Sun, W.D., Zhang, Y.X., Zheng, Y.F.,2009. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China. Geochim Cosmochim Ac 73, 1417-1435.
    Yang, X.Y., Zheng, Y.F., Yang, X.M., Zhang, Y.X., Peng, Y., Qui, L.W.,2005. Trace and rare earth element geochemistry of micrite mound carbonates and other related REE mineralized carbonates from Bayan Obo area in Inner Mongolia. J Rare Earth 23,129-137.
    Yang, Z.M., Smith, M., Henderson, P., LeBas, M.J., Tao, K.J., Zhang, P.S.,2001. Compositional variation of aeschynite-group minerals in the Bayan Obo Nb-REE-Fe ore deposit, Inner Mongolia, China. Eur J Mineral 13,1207-1214.
    Yang, Z.Y., Drew, L.J.,1994. On the hot-water sedimentary origin of dolomite-host rock of Bayan Obo deposits, Inner Mongolia, China. Contributions to Geology and Mineral Resources Research 9,39-48.
    Ying, J.F., Zhou, X.H., Zhang, H.F.,2004. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos 75,413-426.
    Yuan, Z.X., Bai, G., Wu, C.Y.,1992. Geological features and genesis of the Bayan Obo REE ore deposit, Inner Mongolia, China. Applied Geochemistry 7,429-442.
    Yuan, Z.X., Bai, G., Zhang, Z.Q.,2000. Trachytic rock and associated fenitization in the Bayan Obo ore deposit, Inner Mongolia, China:Evidence for magmatic-hydrothermal mineralization related to a carbonatitic complex. Acta Geol Sin-Engl 74,148-153.
    Yuan, Z.X., Bai, G., Zhang, Z.Q.,2005. A preliminary investigation of autometasomatic phenomena in the host rocks to the Bayan Obo Fe-Nb-REE deposit, Inner Mongolia, China. Mineral Deposit Research:Meeting the Global Challenge, Vols 1 and 2,503-505 1613.
    Zhang, H.T., So, C.S., Yun, S.T.,1999. Regional geologic setting and metallogenesis of central Inner Mongolia, China:guides for exploration of mesothermal gold deposits. Ore Geology Reviews 14,129-146.
    Zhang, P.S., Tao, K.J., Yang, Z.M., Yang, X.M., Song, R.K.,2002. Rare earths, niobium and tantalum minerals in Bayan Obo ore deposit and discussion on their genesis. J Rare Earth 20, 81-86.
    Zhang, Y.B., Sun, S.H., Xu, C.Y., Wang, H., Zhao, C.S., Zhu, Z.H.,2003. Carbonatitic volcanic genesis of Hetaoqing Fe-Cu deposit in central Yunnan, China. Resour Geol 53,261-272.
    Zhao, GC, Sun, M., Wilde, S.A., Li, S.Z.,2003. Assembly, accretion and breakup of the paleo-mesoproterozoic Columbia supercontinent:Records in the North China Craton. Gondwana Res 6,417-434.
    Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z.,2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sci Rev 67,91-123.
    Zhao, G., Sun, M., Wilde, S.A., Li, S., Zhang, J.,2006. Some key issues in reconstructions of Proterozoic supercontinents. Journal of Asian Earth Sciences 28,3-19.
    白鸽,袁忠信,1983.白云鄂博矿床成因分析,中国地质科学院矿床地质研究所所刊,第4号.地质出版社,北京,pp.1-17.
    白鸽,袁忠信,1985.碳酸岩地质及其矿产.中国地质科学院矿床地质研究所所刊,北京.
    白鸽,袁忠信,吴澄宇,1996.白云鄂博矿床地质特征和成因论证.地质出版社,北京.
    白瑾,黄学元,戴凤岩,1993.中国前寒武纪地壳演化.地质出版社,北京.
    陈辉,1993.白云鄂博矿床氢、碳、氧同位素及其成因意义,第五届全国矿床会议论文集.地质出版社,北京,pp.561-562.
    陈辉,邵济安,1987.白云鄂博地区碳酸岩的形成方式及构造背景in:地质矿产部沈阳地质矿产研究所(Ed.),中国北方板块构造论文集,第2集.地质出版社,北京,pp.73-79.
    丁悌平,蒋少涌,田世洪,万德芳,白瑞梅,2003.白云鄂博矿区赋矿“白云质大理岩”成因的稳定同位素证据.地球学报24,535-542.
    丁振举,刘丛强,姚书振,等,2000.海底热液系统高温流体的稀土元素组成及其控制因素.地球科学进展15,307-312.
    丁道衡,1933.绥远白云鄂博铁矿报告.中央地质调查所地质报告23号.
    中国科学院地球化学研究所,1988.白云鄂博矿床地球化学.科学出版社,北京.
    方涛,裘愉卓,1997.白云鄂博矿床稀土矿物稳定同位素特征及其意义.矿床地质16,31-40.
    方涛,裘愉卓,裘秀华,1994.白云鄂博矿床稀土氟碳酸岩矿物碳、氧同位素特征及其成因意义.科学通报19,1982-1985.
    方涛,裘愉卓,陈成业,1995.白云鄂博矿区磷灰石氧同位素研究.矿物学报15,162-167.
    王一先,裘愉卓,高计元,张乾,2002.内蒙古白云鄂博矿区元古代非造山岩浆岩及其对成矿的制约.中国科学(D辑)32,21-32.
    王中刚,李绍柄,1973.沉积变质-热液交代型稀土铁矿床的地球化学.地球化学,5-11.
    王希斌,郝梓国,李震,等,2002.白云鄂博-一个典型的碱性-碳酸岩杂岩的厘定[J].地质学报76,501-524.
    王惠初,袁桂邦,辛后田,2001.内蒙古固阳村空山地区麻粒岩的锆石U-Pb年龄及其对年龄解释的启示.前寒武纪研究进展24,28-34.
    王楫,孙玉芳,陆松年,李惠民,1991.白云鄂博群单颗粒锆石U-Pb年龄测定结果及其地质意义,中国北方前寒武纪同位素地质年代学学术讨论会论文摘要汇编,pp.25-27.
    王凯怡,范宏瑞,谢奕汉,2002.白云鄂博碳酸岩墙的稀土和微量元素地球化学及对其成因的启示.岩石学报18,340-348.
    王凯怡,范宏瑞,谢奕汉,李惠民,2001.白云鄂博超大型REE-Fe-Nb矿床基底杂岩的错石U-Pb年龄.科学通报46,1390-1393.
    王继春,肖荣阁,苏士杰,廖蕾,刘少华,梁锋,2011.内蒙古白云鄂博地区新元古界温都尔庙群洋壳残片特征及地质意义.地质找矿论丛26,51-57.
    工辑,王保良,徐成海,1989.内蒙古渣尔泰山群与白云鄂博群时代对比及含矿性.内蒙古人民出版社,呼和浩特.
    王辑,李双庆,1987.狼山-白云鄂博裂谷系及其成矿特征,in:地质矿产部沈阳地质矿产研究所(Ed.),中国北方板块构造论文集.地质出版社,北京.
    伍家善,耿元生,沈其韩,1998.中朝古大陆太古宙地质特征及构造演化.地质出版社,北京.
    任英忱,张英臣,张宗清,1994.白云鄂博稀上超大型矿床的成矿时代及其主要地质热事件.地球学报,95-101.
    李士勤,1983.再论内蒙白云鄂博含稀有金属碳酸岩及其铌-稀土-铁矿床成因,中国北方板块构造文集.科学出版社,北京,pp.156-185.
    李江海,牛向龙,程素华,钱祥麟,2006.大陆克拉通早期构造演化历史探讨:以华北为例.地球科学31,285-293.
    李江海,侯贵廷,黄雄南,张志强,钱祥麟,2001.华北克拉通对前寒武纪超大陆旋回的基本制约.岩石学报17,177-186.
    李江海,钱祥麟,黄雄南,刘树文,2000.华北陆块基底构造格局及早期大陆克拉通化过程.岩石学报16,1-10.
    李胜荣,高振敏,1995.湘黔地区牛蹄塘组黑色岩系稀土特征-兼论海相热水沉积岩稀土模式.矿物学报15,225-229.
    李敏英,1959.白云鄂博铁矿地质与勘探.地质出版社,北京.
    李毓英,1959.白云鄂博铁矿地质与勘探.地质出版社,北京.
    李继亮,1983.白云鄂博群的酸性火山岩.地质科学,36-44.
    肖荣阁,史淑玲,安国英,张汉成,费红彩,2003.内蒙古白云鄂博矿区富钾板岩的热水沉积成因特征.现代地质17,281-286.
    周振玲,李功元,宋同云,刘宇光,1980.内蒙白云鄂博白云石碳酸岩的地质特征及其成因探讨.地质论评26,35-42.
    孟庆昌,1981.与碳酸岩有关的白云鄂博矿床.地质与勘探,10-17.
    孟庆润,1982.论白云鄂博铁矿围岩-白云岩的沉积成因及其沉积环境分析.地质论评28,481-488.
    孟庆润,Drew,L.J.,1992.内蒙白云鄂博“H8含矿白云岩”氧碳同位素研究及其成因.地质找矿论丛 7,46-54.
    季强,章雨旭,1997.从层序底层学研究试论华北地区寒武系与奥陶系分解.地质论评43,241-248.
    侯宗林,1989.白云鄂博铁-铌-稀土矿床基本地质特征、成矿作用、成矿模式.地质与勘探25,1-5.
    范宏瑞,胡芳芳,杨奎峰,王凯怡,刘勇胜,2009.内蒙古白云鄂博地区晚古生代闪长质-花岗质岩石年代学框架及其地质意义.岩石学报25,2933-2938.
    范宏瑞,胡芳芳,陈福坤,杨奎锋,王凯怡,2006.白云鄂博超大型REE-Nb-Fe矿区碳酸岩墙 的侵位年龄—兼答Le Bas博士的质疑.岩石学报22,519-520.
    范宏瑞,杨奎锋,胡芳芳,王凯怡,翟明国,2010.内蒙古白云鄂博地区基底岩石锆石年代学及对构造背景的指示.岩石学报26,1342-1350.
    范宏瑞,谢奕汉,王凯怡,杨学明,2001.碳酸岩流体及其稀土成矿作用.地学前缘8,289-295.
    范宏瑞,陈福坤,王凯怡,谢奕汉,Wilde, S., Satir, M.,2002白云鄂博REE-Fe-Nb矿床碳酸岩墙锆石U-Pb年龄及其地质意义.岩石学报18,363-368.
    范宏瑞,谢奕汉,王凯怡,杨学明,2001.碳酸岩流体及其稀土成矿作用.地学前缘8,289-295.
    倪培,Rankin, A.H.,周进,2003.白云鄂博地区碳酸岩墙及岩墙旁侧石英岩中的包裹体研究.岩石学报19,297-306.
    徐备,陈斌,1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化.中国科学(D辑)27,227-232.
    秦朝建,裘愉卓,2001.岩浆(型)碳酸岩研究进展[J].地球科学进展,501-507.
    秦朝建,裘愉卓,周国富,王中刚,张台荣,肖国望,2009a.白云鄂博矿床包头矿石英脉包裹体研究.增刊236-237.
    秦朝建,裘愉卓,温汉捷,王中刚,周国富,刘世荣,郑文勤,2009b.白云鄂博矿床石墨的发现及其地质意义.矿物学报增刊,234-235.
    耿元生,万渝生,沈其韩,2002.华北克拉通早前寒武纪基性火山作用与地壳增生.地质学报76,199-208.
    袁忠信,白鸽,吴澄宇等,1991.内蒙白云鄂博铌-稀土-铁矿床的成矿时代和矿床成因.矿床地质10,59-70.
    袁忠信,白鸽,吴澄宇等,1995.内蒙白云鄂博矿区H9火山岩石特征及其意义.矿床地质14,197-205.
    郝梓国,王希斌,李震,等,2002.白云鄂博碳酸岩型REE-Nb-Fe矿床-一个罕见的中元古代破火山机构成岩成矿的实例[J].地质学报76,525-540.
    高怀忠,1999.关于热水沉积物稀土配分模式的讨论.地质科技情报18,40-42.
    高劢,乔秀夫,刘墩一,彭阳,1995.直接测定内蒙古腮林忽洞组碳酸盐岩Pb-Pb同位素年龄.中国区域地质4,348-352.
    涂光炽,1998.试论非常规超大型矿床的物质组成、地质背景、形成机制的某些特征-试论非常规超大型矿床.中国科学28,1-6.
    曹荣龙,朱寿华,1996.地幔流体与金属成矿作用,in:杜乐天等(Ed.),地幔流体与软流层(体)地球化学.地质出版社,北京,pp.436-459.
    曹荣龙,朱寿华,王俊文,1994.白云鄂博铁-稀土矿床的物质来源和成因理论问题.中国科 学,1298-1307.
    郭光裕,朱作山,白宇辉,陈锐,周天元,1982.白云鄂博矿区宽沟南北地层分层对比.物探化探计算技术,1-14.
    郭敬辉,翟明国,许荣华,2002.华北桑干地区大规模麻粒岩相变质作用的时代-锆石U-Pb年代学.中国科学(D辑)31,10-18.
    陶克捷,杨主明,张培善,1998.白云鄂博矿区周围火成碳酸岩岩墙地质特征.地质科学33,73-83.
    章雨旭,江少卿,张绮玲,赖小东,彭阳,杨晓勇,2008.论内蒙古白云鄂博群和白云鄂博超大型稀土-铌-铁矿床成矿的年代.中国地质35,1129-1137.
    章雨旭,彭阳,乔秀夫,1998a.白云鄂博矿床赋矿白云岩成因新认识.地质论评44,70.
    章雨旭,彭阳,乔秀夫,1998b.白云鄂博赋矿微晶丘的论证.矿床地质17,691-696.
    彭阳,季强,章雨旭,1998.北京西山邻区寒武系顶部微晶丘特征及其层序地层学意义.地质论评44,35-42.
    舒勇,郑永飞,魏春生,剧建波,杨学明,杨晓勇,2001.白云鄂博碳酸岩墙碳氧同位素地球化学.地球化学30,169-176.
    翟明国,2004.华北克拉通2100~1700Ma地质事件群的分解和构造意义探讨.岩石学报20,1343-1354.
    翟明国,2008.华北克拉通中生代破坏前的岩石圈地幔与下地壳.岩石学报24,2185-2204.
    翟明国,卞爱国,2000.华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解.中国科学(D辑)30,129-137.
    潘启宇,1997.白云鄂博铌、稀土铁矿的成矿地质条件及矿床成因.内蒙古地质地1期,1-17.
    魏菊英,上官志冠,1983a.白云鄂博铁矿围岩白云岩的氧碳同位素组成及其成因,岩石学研究(第2辑).地质出版社,北京,pp.14-21.
    魏菊英,上官志冠,1983b.内蒙白云鄂博铁矿床中磁铁矿和赤铁矿的氧同位素组成.地质科学,217-224.
    魏菊英,蒋少涌,万德芳,1994.内蒙白云鄂博稀土、铁矿床的硅同位素组成[J].地球学报,102-110.
    乔秀夫,高林志,彭阳,章雨旭,1997.内蒙古腮林忽洞群综合底层和白云鄂博矿床赋矿微晶丘.地质学报71,202-211.
    刘文均,1991.沉积地球化学常用数据的应用问题.山西地质6,109-123.
    刘玉龙,杨刚,陈江峰,2005a.白云鄂博超大型稀土-铌-铁矿床黄铁矿Re-Os定年.科学通报50-172-175.
    刘玉龙,陈江峰,李惠民,2005b.白云鄂博矿床白云石型矿石中独居石单颗粒U-Th-Pb-Sm-Nd定年.岩石学报21,881-888.
    刘玉龙,陈江峰,李惠民,肖国望,张台荣,2006.白云鄂博矿田碳酸岩墙年代学再研究.地质论评52,415-422.
    刘星,刘晓华,张福,2009.内蒙古白云鄂博铁矿成因研究.内蒙古科技与经济24,40-46.
    刘健,李印,凌明星,孙卫东,2011.白云鄂博矿床基底岩石的年代学研究及其地质意义.地球化学40,209-222.
    刘淑春,章雨旭,郝梓国,1999.白云鄂博赋矿白云岩成因研究历史、问题及新进展.地质论评45,477-486.
    刘喜山,1994.大青山造山带中基底再造杂岩的特征及其指示意义.岩石学报10,413-426.
    刘兰笙,高翎,杜安道,1996.白云鄂博稀土矿床中辉钼矿的铼-锇同位素年龄.矿床地质15,188-192.
    刘铁庚,1985.白云鄂博白云石碳酸岩的地质地球化学特征.岩石学报,15-28.
    刘铁庚,1986.内蒙白云鄂博白云岩的成因探讨-氧和碳同位素成分证据.地质论评32,150-159.
    刘铁庚,张正伟,叶霖,胡静,扬占峰,李称心,冯建荣,2011.白云鄂博铌稀土矿12矿段的地质地球化学特征及其成因意义.矿物学报S1,270.
    卢良兆,1991.内蒙集宁地区太古宙麻粒岩相变质作用的PTt轨迹及其大地构造意义.岩石学报4,1-12.
    吴朝东,杨承运,陈其英,1999.新晃贡溪-天柱大河边重晶石矿床热水沉积成因探讨.北京大学学报(自然科学版)35,774-785.
    孙未君,孙郁馥,支根成,1981.内蒙白云鄂博富钾板岩的物质组成及综合利用的可能性.河北地质学院学报 1,11-20.
    孙剑,朱祥坤,陈岳龙,房楠,2011.白云鄂博多金属矿床铁同位素研究.矿物学报增刊,1016-1017.
    张宗清,唐索寒,陈启桐,王进辉,袁忠信,白鸽,1997.白云鄂博矿区H9变质岩的Sm-Nd年龄、成因及与成矿关系.地球学报18,267-274.
    张宗清,袁忠信,唐索寒,等,2003.白云鄂博矿床年龄和地球化学.地质出版社,北京.
    张宗清,叶笑江,袁忠信等,1994.白云鄂博稀土矿床的形成年龄新数据.地球学报,85-93.
    张建生,雷瑞英,1997.白云鄂博矿区“白云岩”成因的初步研究.内蒙古地质第1期,49-59.
    张培善,陶克捷,1996.白云鄂博矿物学.地质出版社,北京,pp.1-182.
    张培善,陶克捷,杨主明,杨学明,宋仁奎,2001.白云鄂博稀土、铌钽矿物及其成因探讨.中国稀土学报19,97-102.
    张培善,陶克捷,杨主明等,1998.中国稀土矿物学.地质出版社,北京,pp.1-234.
    张风仙,2010.白云鄂博矿床地质特征浅析.山西科技25,17-20.
    张强,刘耀,张速旺,2009a.浅析白云鄂博矿区的地质发展史.科技信息25,755.
    张强,刘耀,张速旺,张凤仙,2009b.浅析白云鄂博矿区铁矿床成因与花岗岩关系.科技信息27,340.
    张绮玲,章雨旭,江少卿,2010.白云鄂博矿床的流体包裹体研究.矿产勘查 1,50-59.
    张维杰,李龙,耿明山,2000.内蒙古固阳地区新太古代侵入岩的岩石特征及时代.地球科学25,221-226.
    张鹏远,李双庆,王长尧,1993.白云鄂博地区地质构造特征,中国地质科学院天津地质矿产研究所所刊.地质出版社,北京,pp.1-86.
    杨子元,Drew, L.J.,1992.论白云鄂博矿床含矿围岩-白云岩的热水沉积成因.地质找矿论丛
    9.39-48.
    杨子元,孙未君,Drew, L.J.,1993.白云鄂博的钾-钡长石系列与钡交代作用.地质找矿论丛8,89-94.
    杨奎峰,2008.内蒙古白云鄂博地区元古代构造-岩浆演化史与超大型REE-Nb-Fe矿床成因.中国科学院地质与地球物理研究所,pp.1-108.
    杨奎锋,范宏瑞,胡芳芳,王凯怡,2010.白云鄂博地区碳酸岩脉侵位序列与稀土元素富集机制.岩石学报26,1523-1529.
    杨学明,杨晓勇,张培善,1998a.白云鄂博碳酸岩矿物的矿物化学成分标型特征.高校地质学报4,34-42.
    杨学明,杨晓勇,张培善,陶克捷,等,1998b.白云鄂博REE-Nb-Fe矿床成因的氧、碳和锶同位素及微量元素地球化学证据.地球物理学报41,216-227.
    杨学明,杨晓勇,张培善等,1998c.白云鄂博碳酸盐矿物的成因矿物学研究.高校地质学报4.
    杨学明,杨晓勇,张培善等,1998d.碳酸盐是大陆岩石圈构造背景和地幔交代作用的指示岩石.地球物理学报41,217-235.
    杨学明,杨晓勇,郑永飞,等,2000.白云鄂博富稀土元素碳酸岩墙的碳和氧同位素特征[J].高校地质学报6,205-209.
    杨学明,杨晓勇,陈天虎,等,1999.白云鄂博富稀土碳酸岩的地球化学特征[J].中国稀土学报17,289-295.
    杨学明,杨晓勇,陈天虎,张培善,陶克捷,Le Bas, M.J., Henderson, P.,1998e白云鄂博富稀土碳酸岩岩墙的地球化学特征及稀土富集机制.矿床地质12,527-532.
    杨晓勇,章雨旭,郑永飞,杨学明,徐宝龙,赵彦冰,彭阳,郝梓国,2000.白云鄂博赋矿白云岩与微晶丘和碳酸岩墙的碳氧同位素对比研究.地质学报74,169-180.
    简平,张旗,刘敦一,金维浚,贾秀勤,钱青,2005.内蒙古固阳晚太古代赞岐岩(sanukite)角闪花岗岩的SHRIMP定年及其意义.岩石学报21,151-157.
    许成,黄智龙,漆亮,李文博,刘丛强,2001a.四川牦牛坪稀上矿床萤石REE配分模式的影 响因素.矿物学报21,557-559.
    许成,黄智龙,漆亮,肖化云,李文博,刘丛强,2001 b.四川牦牛坪稀土矿床成矿流体来源与演化初探----萤石稀土地球化学的证据.地质与勘探37,24-28.
    许成,黄智龙,漆亮,肖化云,李文博,刘丛强,2002a.四川牦牛坪稀土矿床萤石稀土元素、同位素地球化学.地球化学31,180-190.
    许成,黄智龙,刘丛强,漆亮,李文博,管涛,2003.四川牦牛坪稀土矿床萤石Sr、Nd同位素对地幔成矿流体的指示意义.地球科学----中国地质大学学报28,41-46.
    许成,黄智龙,刘从强,漆亮,李文博,管涛,2002b.四川牦牛坪稀土矿床碳酸岩地球化学.中国科学(D辑)32,635-643.
    费红彩,肖荣阁,侯增谦,2007.内蒙白云鄂博Fe-Nb-REE矿床铁氧化物对矿床成因的指示意义.中国稀土学报25,334-343.
    赵百胜,刘家军,王建平,彭润民,等,2007.白云鄂博群黑色岩系微量元素地球化学特征及地质意义.现代地质21,87-94.
    赵景德,任英忱,1991.以多种证据建立的白云鄂博矿床成矿物质顺序.地质找矿论丛,1-17.
    车勤建,1995.沉积型(贡溪式)重晶石矿床模式.大地构造与成矿学19,288-189.
    郑永飞,周根陶,龚冰,1997.碳酸盐矿物的氧同位素分馏的理论研究.高校地质学报3,241-255.
    郑永飞,陈江峰,2000.稳定同位素地球化学.科学出版社,北京,pp.218-247.
    钟长汀,邓晋福,万渝生,毛德宝,李惠民,2007.华北克拉通北缘中段古元古代造山作用的岩浆记录:S型花岗岩地球化学特征及锆石SHRIMP年龄.地球化学26,633-637.
    钱宪和,1991.微晶灰岩与微晶丘,它们的问题与成因.台北:“经济都中央地质调查所”特刊,213-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700