中国夏季降水的气候变率及其可能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要利用1951~2004年中国740站点的逐日降水资料,并配合其他要素场和环流场资料,采用多种统计分析方法,研究了中国夏季降水季节内、年际和年代际的多时间尺度变率。首先对中国雨季的进退过程、阶段性和区域性特征进行了分析;以后,依次对中国夏季降水的气候季节内振荡、准两年振荡和年代际三个不同时间尺度波动的周期特征、时空分布、环流背景、外强迫因子的影响等进行了详细分析,并提出了这三种变率产生的可能机制;最后对三种尺度波动的相互关系进行了讨论。主要得到的结论如下所示:
     (1)通过对中国雨季的定义,发现中国的主雨季最早爆发于华南中部,最晚结束于华西地区,能持续4到14候不等,雨量能占年总降水的30%~60%。主雨季在东部为季风雨季,自南向北推进;在西部雨季有较强的局地性,北方略早于南方,主要受到西风带系统的影响。中国雨季表现出了显著的阶段性和区域性特征。
     (2)通过对中国4~9月降水气候季节内振荡的研究,发现10~30天振荡在华北和华南最明显,而30~60天振荡在长江中下游最显著。30~60天振荡在4~9月经历了三次明显的自南向北传播:第一次始于4月初,与春雨的发生有关;第二次最强,从6月初至8月中,低频中心分别与华南前汛期、江淮梅雨和华北雨季相对应;第三次发生于8月初,与长江及其以南地区的秋雨有关。气候季节内振荡对中国各主要雨季的强度、活跃和中断均有显著的调制作用。30~60天振荡在100。E以东有较明显的西传特征。10~30天振荡的传播特征较不明显。中国夏季降水季节内振荡维持和传播的可能机制为:低纬热源的季节内振荡激发出EAP遥相关波列,波列的低频气旋和反气旋之间形成经向排列的辐合辐散带,由于气流的上升和下沉造成自东亚到北太平洋的低频雨带。低纬热源季节内振荡的维持和北传导致包括中国东部低频雨带在内的东亚到北太平洋低频雨带维持和北传。
     (3)通过对中国夏季降水准两年振荡特征及其可能机制的研究,发现中国75%以上站点的夏季降水序列中都存在显著的准两年振荡,该振荡能解释中国夏季降水35%,甚至55%以上的年际变化方差。强准两年振荡地区主要分布在内蒙中部,从甘肃和陕西到淮河流域和长江中下游一带。中国夏季降水准两年振荡的可能机制是:太平洋-亚澳季风系统的准两年振荡会影响赤道西太平洋热力状况发生TBO,由异常热源激发EAP和EU波列,同时对低纬和中高纬环流产生影响,造成暖湿气流和冷空气异常而引起中国降水的TBO。赤道太平洋暖池区的异常热源性质,强度和位置是决定中国夏季降水准两年模态的主要因素,而该异常热源的特征与太平洋-亚澳季风系统TBO的强度和状态等密切相关。
     (4)通过对中国东部夏季降水年代际变率和可能原因的分析,发现其主要有准10年,30~40年和准80年周期,并在70年代末出现了突变。另外,华北和华南夏季降水还各在60年代中期和90年代初有一突变点。中国东部夏季降水在20世纪70年代末发生了从“北旱南涝”到“南涝北旱”转型,其可能机制是:一方面,青藏高原冬春季积雪由20世纪70年代末以前的偏少突变为偏多,造成东亚大陆的夏季热力作用偏弱;另一方面,赤道中东太平洋春夏季海温分别在20世纪60年代中期、70年代末和90年代初各出现了一次显著升高,使得低纬海洋的热力作用偏强。海陆热力差异的年代际减弱造成亚洲夏季风环流偏弱,从而中国的东部雨带偏南。另外,青藏高原积雪对中国东部夏季降水年代际变化的影响总体上比赤道中太平洋海温显著,赤道中太平洋海温在20世纪90年代初的突变增强与中国华南夏季降水在同期的年代际增多有密切关系。
     (5)通过对中国夏季降水三种尺度波动相互关系的分析,发现在年际和年代际偏涝的背景下,长江中下游季节内振荡周期偏长,以30~60天振荡;而偏旱背景下周期偏短,以10~30天为主。偏旱背景下季节内振荡的北传比偏涝背景下强。中国雨带和东亚东部环流的季节内循环模态不受旱涝背景影响,但偏涝背景下的季节内降水和环流强度都强于偏旱背景。中国东部夏季降水由多变少时振荡强度由强变弱,反之。年代际异常是年际异常的集中反映,而年代际变率为年际变化提供了背景,即:在年代际异常的调制下,年际变化具有总是出现某种(正或负)异常的趋向性。20世纪70年代末,华南和华北的3~7年周期显著增强而长江中下游的2~3年周期显著增强。年代际背景对中国夏季降水年际空间模态的影响不明显。
Climate variability of summer rainfalls in China on multiple-time-scale, including climatic intra-seasonal oscillation (CISO), interannual variation and inter-decadal variation, is studied in this paper via various statistical analysis methods mainly based on 740 stations daily rainfall datasets in China from 1951 to 2004. Firstly, the staggered and regional advance and retreat of rainy seasons in China are analyzed. Secondly, the periodicity, temporal and spacial distribution, relating circulation and impacting external forcing factors of the CISO, interannual and interdecadal variations of summer rainfalls in China are studied, respectively. Finally, relationships among the aforementioned three variations are further discussed. The major conclusions are as follows:
     (1) On the basis of the definition of starting and ending dates of rainy seasons in China, it is found that the major rainy season breaks out earliest in middle South China and ends latest in the northern part of Sichuan province and the southern part of Gansu and Shanxi provinces. The duration of rainy seasons span from 4 to 14 pentads, while the amounts of which account for 30%~60% of the annual total amounts. The major rainy season in the eastern part of China, mainly affected by the East Asian monsoon, advances from the south to the north, while in the western part, it is some earlier in the north than in the south, with strong local features due to impacts of the westerlies. The spring and autumn rainy seasons are also prominent in China.
     (2) The 10~30-day period is much significant in South China and North China, while the 30~60-day period is more obvious in the middle and lower reaches of the Yangtze River valley. Three significant propagations of the 30~60-day oscillation from the south to the north are observed from April to September, with the first one beginning in early April and being related to the start and maintenance of the spring rainfalls in China. The second propagation begins in early June and ends in middle August, with three strong oscillation centers corresponding well to the pro-flooding rainy season in South China, the Meiyu in the middle and lower reaches of the Yangtze River valley and the rainy season in North and Northeast China, respectively. And the last one starts from early August and has close relationship with the autumn rainfalls in areas to the south of the Yangtze River. The CISO modulates significantly the intensity, activity and break of rainy seasons in China. The 30~60-day oscillation also shows obvious westward propagation in areas to the east of 100。E. However, the propagation of the 10~30-day oscillations is not significant. The possible mechanism of the maintenance and propagation of the CISO of summer rainfalls in China lies in that the strong CISO in the low-latitude inspires the EAP (East Asia - Pacific) wave train, whose anomalous cyclones and anti-cyclones form longitudinal anomalous convergence and divergence belts, resulting in the corresponding anomalous rainy belts from East Asian to North Pacific for the convergence causes the ascending airflow, while the divergence causes the descending airflow. Then, the maintenance and propagations of the CISO of the anomalous heating sources in the low-latitude may control the persistence and northward propagation of anomalous rainy belts from East Asia to North Pacific.
     (3) Significant TBO is observed in summer rainfalls in over 75% of stations in China. And it can account for over 35%, even 55% of the total interannual variance. Regions where summer rainfalls show strongest TBO in China are mainly located in middle Inner Mongolia and from Gansu and Shanxi provinces to the Yangtze and Huaihe River valley. The TBO in summer rainfalls of China is caused possibly by the TBO in the Pacific-Asian and Australian monsoon system through affecting the anomalous thermal situation in the western tropical Pacific. As the TBO of the anomalous heating resource there inspires the EAP and the EU wave trains, impacting the circulation at both the low and mid-high latitude and then causing the anomalies of the warm-wet airflow and the cold-dry airflow simultaneously, summer rainfalls in China oscillate on the biennial period. Moreover, the character, intensity and location of the anomalous heating resource of the warm pool in the tropical Pacific are key factors controlling the major mode of the TBO of summer rainfalls in China.
     (4) The quasi-10-year, 30~40-year and quasi-80-year periods are observed in summer rainfalls of East China, with the abrupt change in late 1970s. Additionally, other abrupt change points are observed in North China in middle 1960s and in South China in early 1990s. In late 1970s, summer rainfalls in East China changed from the so-called flooding in the south and drought in the north mode to the opposite one. On one hand, the winter and spring snow depth on the Tibet Plateau changed abruptly at late 1970s and began to increase from then on, resulting in the weakening of the heating force of the East Asian continent. On the other hand, the SST of the middle and eastern tropical Pacific in springs and summers shows three abrupt increases in middle 1960s, late 1970s and early 1990s, respectively, causing the strengthening of the heating force of the oceans. Then, the heating contrast between the continent and ocean in East Asia weakened on inter-decadal scale. Accordingly, the Asian summer monsoon weakened. The weakening of the Asian summer monsoon circulation directly results in the southward shift of the rainy belts in East China on inter-decadal scale. And the research further shows that the snow depth on Tibet Plateau has more important impact on the inter-decadal variation of summer rainfalls in East China than the SST in the middle and eastern tropical Pacific wholly, while the abrupt increase of the SST at early 1990s is closely related to the abrupt increase of summer rainfalls in South China during the same period.
     (5) By discussing the interactions among three aforementioned variations of summer rainfalls in China on multiple-time-scale, it is found that the intensity of the intraseasonal oscillation has significant positive correlation with rainfall amounts. And, in both the flooding year and the flooding decade, the period of intraseasonal oscillation is relatively longer, with the 30~60-day dominating, while it is relatively shorter under a drought climatic background, mainly being 10~30-day. A more significant northward propagation can be observed under a drought background than a flooding one. However, the anomalous rainfalls and circulations on the intraseasonal scale are stronger under the flooding background than the drought background, with both modes of anomalous rainfalls and circulations being similar. As the decrease of summer rainfalls in East China, the intraseasonal oscillation weakens, and vise versa. The integrated interannual variations compose the interdecadal variation, and the interdecadal anomaly is the climatic background of the interannual variation. That is, with the modulation of the interdecadal variation, the interannual variation always shows some trend of being positive or negative anomaly. After late 1970s, the 3~7-year period of summer rainfalls in South China and North China, as well as the 2~3-year period in the middle and lower reaches of the Yangtze River valley, became more significant. But the interdecadal background has few impacts on the temporal and spacial modes of summer rainfalls in China on the interannual scale.
引文
1. 包澄澜,热带天气学,北京:科技出版社,1980:130~132
    2. 白人海,大西洋海表温度异常与中国东北地区夏季降水的关系,海洋通报,2001,20(1):23~29.
    3. 白虎志,董文杰,华西秋雨的气候特征及成因分析,高原气象,2004,23(6):884~889
    4. 陈丽臻,张先恭,长江流域两个典型旱、涝年大气 30~60 天低频波差异的初步分析,应用气象学报,1994,5(4):483~488
    5. 陈隆勋,朱乾根,罗会邦等,东亚季风,北京:气象出版社,1991:200~202
    6. 陈隆勋,邵永宁,张清芬,任阵海,田广生,近四十年来我国气候变化的初步分析,应用气象学报,1991,2(2):164~173
    7. 陈隆勋,李薇,赵平,陶诗言,东亚地区夏季风爆发过程,气候与环境研究,2000,5(4): 345~355
    8. 陈菊英,中国旱涝的分析和长期预报研究,北京:农业出版社,1991:11~18
    9. 陈烈庭,阎志新,青藏高原冬春季积雪对大气环流和我国南方汛期降水的影响,中长期水文气象预报文集(第一集),北京:水利电力出版社,1979:185~194
    10. 陈烈庭,吴仁广,青藏高原雪盖与中国季风雨年际和年代际变化的关系,东亚季风和中国暴雨,北京:气象出版社,1998:230~239
    11. 陈烈庭,东太平洋赤道地区海水温度异常对热带大气环流及我国汛期降水的影响,大气科学,1977,2(1):1~12
    12. 陈烈庭,热带印度洋-太平洋海温纬向异常及其对亚洲夏季风的影响,大气科学,1988,12(特刊):142~148
    13. 陈兴芳,宋文玲,近 10 年我国降水的 QBO 分析,应用气象学报,1997,8(4):469~476
    14. 陈兴芳,赵振国,中国汛期降水预测研究及应用,北京:气象出版社,2000:76~83
    15. 陈兴芳,宋文玲,欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用,高原气象,2000,19(2):214~223
    16. 曹丽青,余锦华,葛朝霞,华北地区大气水汽含量特征及其变化趋势,水科学进展,2005, 16(3):439~443
    17. 丁一汇,村上胜人,东亚季风,北京:气象出版社,1994:74~92
    18. 丁一汇,薛纪善,王守荣等,1998 年亚洲季风活动与中国暴雨洪涝,丁一汇,李崇银编,南海夏季风爆发和演变及其与海洋的相互作用,北京:气象出版社,1999:1~4
    19. 丁一汇,王守荣,中国西北地区气候与生态环境概论,北京:气象出版社,2001
    20. 丁裕国,余锦华,施能,近百年全球平均气温年际变率中的 QBO 长期变化特征,大气科学,2001,25(1):89~102
    21. 丁裕国,刘晶淼,余锦华,近百年全球平均气温年际变化型态的低频变率特征,热带气象学报,2001,17(3):193~203
    22. 戴新刚,汪萍,丑纪范,华北汛期降水多尺度特征与夏季风年代际衰变,科学通报,2003,48(23):2483~2487
    23. 高由禧,东亚季风的若干问题,北京:科技出版社, 1962,78~88
    24. 高由禧,东亚的秋高气爽,气象学报,1958,29(4):83~92
    25. 高由禧,郭其蕴,我国的秋雨现象,气象学报,1958,29(4):264~273
    26. 高辉,薛峰,王会军,南极涛动年际变化对江淮梅雨的影响及预报意义,科学通报,2003,48(2):87~92
    27. 龚道溢,王绍武,ENSO 对中国四季降水的影响,自然灾害学报,1998,7(4):44~52
    28. 龚道溢,北极涛动对东亚夏季降水的预测意义,气象,2003,29(6):3~6
    29. 龚强,王盘兴,汪宏宇等,东北夏季降水异常的年代际、年际构成及成因分析,南京气象学院学报,2005,28(2):233~240
    30. 郭其蕴,王继琴,近 30 年来我国夏季风盛行期降水的分析,地理学报,1981,36:187~195
    31. 何金海,于新文,1979 年夏季我国东部各纬带水汽输送周期振荡的初步分析,热带气象,1986(2):9~15
    32. 何金海,Murakami T 和 Nazakawa T. 1979 年夏季亚洲季风区域 40~50 天周期振荡的环流及水汽输送场的变化,南京气象学院学报,1984,2:163~175
    33. 何金海,智协飞,T. Nakazawa,中国东部地区降水季内变化的季节锁相,热带气象学报,1995,11(4):370~374
    34. 何敏,我国主要秋雨区的分布及长期预报,气象,1984,10(9):10~13
    35. 何敏,宋文玲,南海夏季风对中国夏季降水的影响及预测,丁一汇,李崇银编,南海夏季风爆发和演变及其与海洋的相互作用,北京:气象出版社,1999:112~116
    36. 何敏,宋文玲,许力,南海季风指数的定义及预测,何金海,丁一汇等编,南海夏季风建立日期的确定与季风指数,北京:气象出版社,2001:109~110
    37. 何素兰,马天健,近 40 年我国降水及变率的分布特征,我国短期气候变化及成因研究,气象出版社,1996
    38. 贺懿华、王晓玲、金琪,南海热带对流季节内振荡对江淮流域旱涝影响的初步分析,热带气象学报,2006,22(3):259~264
    39. 黄荣辉,陈际龙,黄刚等,中国东部夏季降水的准两年周期振荡及其成因,大气科学,2006,30(4):545~559
    40. 黄荣辉,徐予红,周连童,我国夏季降水的年代际变化及华北干旱化趋势,高原气象,1999,18(4):465~476
    41. 黄荣辉,张庆云,华北降水的年代际变化及其对经济的影响,关于华北地区水资源合理开发利用论文集,北京:水利电力出版社,1990:95~101
    42. 黄嘉佑,准两年周期振荡在我国降水量中的表现,大气科学,1988,12(3):267~273
    43. 黄静,朱乾根,长江流域旱涝年低频风场分布和演变的差异,南京气象学院学报,1996,19(3):276~282
    44. 简茂球,罗会邦,乔云亭,印度洋-太平洋各季海温年际变异模的相关性及其与我国夏季降水的关系,热带气象学报,2006,22(2):131~137
    45. 琚建华,钱诚,曹杰,东亚夏季风的季节内振荡研究,大气科学,2005,29(2):187~194
    46. 况雪源,丁裕国,施能,中国降水场 QBO 分布形态及其长期变率特征,热带气象学报,2002,18(4):359~367
    47. 李崇银,华北地区汛期降水的一个分析研究,气象学报,1992,50(1):41~49
    48. 李崇银,李桂龙,龙振夏,中国气候年代际变化的大气环流形势对比分析,应用气象学报,1999, 10(增刊):1~8
    49. 李崇银,大气季节内振荡研究的新进展,自然科学进展,2004,14(7):734~741
    50. 李麦村,吴仪芳,黄嘉佑,我国东部季风降水与赤道东太平洋海温的关系,大气科学,1987,11(4):365~371
    51. 李维京,赵振国,李想等,中国北方干旱的气候特征及其成因的初步研究,干旱气象,2003,21(4):1~5
    52. 李维京,1998 年大气环流异常及其对中国气候异常的影响,气象,1999,4:20~57
    53. 李永平,端义宏,刘秦玉等,热带海洋 SST 与北半球大气环流的低频振荡特征,海洋与湖沼,1999,30(1):97~103
    54. 李峰,何金海,东亚夏季风与北太平洋 SSTA 关系的年代际变化特征及其机制研究,南京气象学院学报,2001, 24(2):199~206
    55. 林学椿,于淑秋,近 40 年我国气候趋势,气象,1990,10:16~21
    56. 梁平德,印度夏季风与我国华北降水量,气象学报,1988:1~5
    57. 龙振夏等,热带低层大气 30~60d 低频动能的年际变化与 ENSO 循环,大气科学,2001,25(6):798~808
    58. 陆尔,丁一汇,1991 年江淮特大暴雨与东亚大气低频振荡,气象学报,1996,54(6):730~736
    59. 陆日宇,华北汛期降水量变化中年代际和年际尺度的分离,大气科学,2002,26(5):611~624
    60. 陆日宇,华北汛期降水量年代际和年际变化之间的线性关系,科学通报,2003,48(7):718~722
    61. 刘宗秀,廉毅,沈柏竹等,北太平洋涛动区 500 hPa 高度场季节变化特征及其对中国东北区降水的影响,应用气象学报,2003,14(5):553~561
    62. 吕俊梅,亚洲夏季风的季节内、年际和年代际变异及其成因研究,博士论文,2005
    63. 南素兰,李建平,春季南半球环状模与长江流域夏季降水的关系:印度洋和南海海温的“海洋桥”作用,气象学报,2005,63(6):847~856
    64. 彭京备,陈烈庭,张庆云,青藏高原异常雪盖和 ENSO 的多尺度变化及其与中国夏季降水的关系,高原气象,2005,24(3):366~377
    65. 平凡,罗哲贤,琚建华,长江流域汛期降水年代际和年际尺度变化影响因子的差异,2006,
    66. 任宏利,张培群,李维京等,西北东部春季降水及其水汽输送的低频振荡特征,高原气象,2006,25(2):285~292
    67. 施雅风,沈永平,胡汝骥,西北气候由暖干向暖湿转型的信号/影响和前景初步探讨冰川冻土,2002,24(3):219~226
    68. 施能,朱乾根,吴彬贵,近 40 年东亚夏季风及我国夏季大尺度天气气候异常,大气科学,1996,20(5):575~583
    69. 施晓晖,全球变化背景下东亚区域气候年代际时空演变的统计-动力特征,博士论文,2006
    70. 孙淑清,马淑杰,南海夏季风持续异常的特征及其与大尺度环流的关系,丁一汇,李崇银编,南海夏季风爆发和演变及其与海洋的相互作用,北京:气象出版社,1999:89~93
    71. 孙力,安刚,廉毅等,中国东北地区夏季旱涝的大气环流异常特征,气候与环境研究,2002,7(1):102~113
    72. 孙国武,中国西北干旱气候研究,北京:气象出版社,1997
    73. 孙林海,宋文玲,冬季积雪对我国夏季降水预测的评估分析,气象,2001,27(8):24~27
    74. 陶诗言,朱文妹,赵卫,论梅雨的年际变异,大气科学,1988,12(特刊):13~21
    75. 陶诗言,季风研究中有待解决的问题,见:国家自然科学基金委员会等编,现代大气科学前沿和展望,北京:气象出版社,1996:35~36
    76. 王会军,薛峰,索马里急流的年际变化及其对半球间水汽输送和东亚夏季降水的影响,地球物理学报,2003,46(1):18~25
    77. 王绍武,朱锦红,国外关于年代际气候变率的研究,气象学报,1999, 57(3): 376~384
    78. 王绍武,近百年气候变化与变率的诊断研究,气象学报,1994,52(3):261~273
    79. 王绍武,龚道溢,叶瑾琳等,1880 年以来中国东部四季降水量序列及其变率,地理学报,2000,55(3):281~293
    80. 王继志,李麦村,源于澳洲过赤道气流与中国季风环流和降水,大气科学,1982,6:1~10
    81. 王启,丁一汇,江滢,亚洲季风活动及其与中国大陆降水关系,应用气象学报,1998,8(增刊):84~89
    82. 王遵娅,丁一汇,何金海,虞俊,近 50 年来中国气候变化特征的再分析,气象学报,2004,62(2):228~236
    83. 王建新,吕君宁,石永贵,长江中上游地区汛期降水的准两年振荡,南京气象学院学报,1995,18(2):229~233
    84. 温敏,亚澳“大陆桥”对流活动特征及对东亚夏季风建立的影响,博士研究工作报告,2005
    85. 魏凤英,现代气候统计诊断与预测技术,气象出版社,1999:62~73
    86. 吴国雄,张永生,青藏高原的热力和机械强迫作用及其亚洲季风的爆发Ⅱ爆发时间,大气科学,1999,23(1):52~61
    87. 吴国雄,刘屹岷,刘新等,青藏高原加热如何影响亚洲夏季的气候格局,大气科学,2005,29(1):47~56
    88. 吴尚森,梁建茵,李春晖,南海夏季风强度与我国汛期降水的关系,热带气象学报,2003,19(增刊):25~36
    89. 吴祥定,林振耀,历史时期青藏高原变化特征的初步分析,气象学报,1986,39(1):90~97
    90. 吴志伟,江志红,何金海,近 50 年华南前汛期降水、江淮梅雨和华北雨季旱涝特征对比分析,大气科学,2006,30(3):391~401
    91. 谢庄,崔继良,刘海涛等,华北和北京的酷暑天气 1.历史概况及个例分析,气候与环境研究,1999, 4(4):323~333
    92. 徐予红,陶诗言,东亚夏季风的年际变化与江淮流域梅雨旱涝,见:黄荣辉主编 灾害性气候的过程及诊断,北京:气象出版社,1996:31~39
    93. 徐海明,何金海,董敏,江淮入梅的年际变化及其与北大西洋涛动和海温异常的联系,气象学报,2001,59(6):694~706
    94. 徐国强,朱乾根,大气低频振荡研究回顾与概述,气象科技,2003,31(4):193~200
    95. 薛峰,王会军,何金海,马斯克林高压和澳大利亚高压的年际变化及其对东亚夏季风降水的影响,科学通报,2003,48(3):287~291
    96. 姚秀萍,董敏,东北三江流域夏季旱涝基本特征分析,应用气象学报,2000,11(3):297~303
    97. 杨秋明,中国降水准 2 年主振荡模态与全球 500hPa 环流联系的年代际变化,大气科学,2006,30(1):131~145
    98. 叶瑾琳,陈振华,龚道溢等,近百年中国四季降水量异常的空间分布特征,应用气象学报 1998,9(增刊):57~64
    99. 殷宝玉,王连英,黄荣辉,东亚夏季风降水的准两年振荡及其可能的物理机制,见:黄荣辉等编,灾害性气候的过程及诊断论文集,北京:气象出版社,1996:196~205
    100. 俞亚勋,王劲松,李青燕,西北地区空中水汽时空分布及变化趋势分析,冰川冻土,2003,25(2):149~156
    101. 余贞寿,孙照渤,王学忠,东部夏季降水变化及其与北太平洋 SSTA 的联系,南京气象学院学报,2005,28(2):189~196
    102. 赵汉光,我国降水振荡周期特征的初步分析,大气科学,1986,10(4):426~430
    103. 赵汉光,华北的雨季,气象,1994,20(6):3~8
    104. 郑彬,施能,南海夏季风对华南夏季降水年代际变化的影响,南京气象学院学报,2006,29(4):477~483
    105. 翟盘茂,中国降水极值变化趋势检测,气象学报,1999,57(2):208~216
    106. 朱乾根,智协飞,中国降水的准两年周期变化,南京气象学院学报,1991,14(3):261~268
    107. 朱乾根,林锦瑞,寿绍文,唐东曻,天气学原理和方法,北京:气象出版社,1992:484~486
    108. 朱益民,杨修群,太平洋年代际振荡与中国气候变率的联系,气象学报,2003,61(6):642~654
    109. 祝从文,何敏,何金海,热带环流指数与夏季长江中下游旱涝的年际变化,南京气象学院学报,1998,21(1):15~22
    110. 章名立,我国东部近百年雨量的变化,科学通报,1989,8:605~607
    111. 张庆云,陶诗言,亚洲中高纬度环流对东亚夏季降水的影响,气象学报,1998,56(2): 199~211
    112. 张丕远,葛全胜,气候突变—概念介绍及个例分析,地理研究,1990,9(2):1~9
    113. 张顺利,陶诗言,青藏高原积雪对亚洲夏季风影响的诊断及数值研究,大气科学,2001,25(3):372~390
    114. 张秀丽,郭品文,何金海,1991 年夏季长江中下游降水何风场的低频振荡特征分析,南京气象学院学报,2002,25(3):388~394
    115. 张琼,刘平,吴国雄,印度洋和南海海温与长江中下游旱涝,大气科学,2003,27(6):
    992~1006
    116. 竺可桢,东南季风与中国之雨量,中国近代科学论著丛刊,气象学,1919-1949,北京:科学出版社,1955
    117. 周静亚,杨大升,黄嘉佑,夏季热带及副热带环流系统周期振荡与我国降水的功率谱分析,热带气象,1986,2:185~203
    118. Angell J K, Korshover J, The biennial wind and temperature oscillation of the equatorial stratosphere and their possible extension to higher latitudes. Mon Wea Rev, 1962, 90(1): 127~132
    119. Arthur N. Samel, Wei-Chyung Wang, and Xin-Zhong Liang, The Monsoon Rainband over China and Relationships with the Eurasian Circulation, J Climate, 1999, 12(1): 115~131
    120. Barnett T P, The interaction of multiple time scales in the tropical climate system, J Climate, 1991, 4: 269~285
    121. Belmont A D, Dartt D G, Variation with longitude of the quasi-biennial oscillation, Mon Wea Rev, 1968, 96(5): 767~777
    122. Chang C P, Zhang Y S, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs, J Climate, 2000, 13: 4310~4340
    123. Chang C P, Li T, A theory of the tropical tropospheric biennial oscillation. J Atmos Sci, 2000, 57: 2209~2224
    124. Chen L X, Jin Z, The medium-range variations of the summer monsoon circulation system over Eas t Asia, Adv Atmos Sci, 1984, 2: 124~233
    125. Chen L X, Zhu C W, Wang Wen, et al, Analysis of the Characteristics of 30~60 day low-frequency oscillation over Asia during 1998 SCSMEX, Adv Atmos Sci, 2001, 18(4): 623~638
    126. Chen G. T. J, Research on the phenomena of Meiyu during the past quarter century: An overview In the East Asian Monsoon Ed by C. P. Chang, Singapore: World Scientific, 2004: 566
    127. Chen T C, Wang S Y, Huang W R, et al, Variation of the East Asian summer monsoon rainfall, J Climate, 2004, 17(4): 744~762
    128. Chen T C, Murakami M, The 30–50-day variation of convective activity over the western Pacific Ocean with the emphasis on the northwestern region, Mon Wea Rev, 1988, 116: 892~906
    129. Ding Y H, Monsoons over China, London: Kluwer Academic Publishers, 1994: 135~136
    130. Ding Y. H., Summer monsoon rainfall in China, J Meteor Soc Japan, 1992(70): 373-396
    131. Ding Yihui, Sun Ying, Inter-decadal variability of the temperature and precipitation patterns in the East-Asian monsoon region, International Symposium on Climate Change, 2003
    132. Fu C B,The possible linkage between variability of Meiyu over the Yangtze River valley and state of the Antarctic snow and ice, Chinese Sci Bull,1981,26:484~486
    133. Gao X J, Zhao Z C, Changes of extreme events in regional climate simulations over East Asia, Adv Atmos Sci, 2002, 19(5): 927~942
    134. Gong D Y, Ho C H, Shift in the summer rainfall over the Yangtze River valley in the late 1970s, Geophy Res Lett, 2002,29(10): 1436
    135. Hartmann D L, Michelson M L, Klein S A, Seasonal variations of tropical intraseasonal oscillations: A 20–25-day oscillation in the western Pacific, J Atmos Sci, 1992, 49: 1277–1289
    136. Hendon H, Liebmann B, The intraseasonal (30–50-day) oscillation of the Australian summer monsoon, J Atmos Sci, 1990, 47: 2909~2923
    137. Huang J Y, Wang S W, Investigations of variations of the subtropical high in the western Pacific during historic times, Climate Changes, 1985, 7: 427~440
    138. Huang R H, Interactions between the 30–60-day oscillation, the Walker circulation and the convective activities in the tropical western Pacific and their relations to the interannual oscillation, Adv Atmos Sci, 1994, 11: 367~384
    139. Huang R H, Sun F Y, Impact of the tropical western Pacific on the East Asian summer monsoon, J Meteor Soc Japan, 1992, 70(1b): 243~256
    140. James W A. Long-period variations in seasonal sea-level pressure over the Northern Hemisphere, Mon Wea Rev, 1971,99(1): 49~66
    141. Kalnay E, Kanamitsu M, Kistler R, et al. The NCAR/NCEP 40-year reanalysis project. Bull. Amer. Meteor. Soc., 1996 (77): 437~471
    142. Kendall M G, Rank Correlation Methods, Charles Griffin, London, 1975
    143. Krishnamurti T N, Bhalme H, Oscillation of a monsoon system. Part Ⅰ: Observational aspects, J Atmos Sci, 1976,33: 1937~1953
    144. Lau K M, Chan P. H, Aspects of 40–50-day oscillation during the northern summer as inferred from outgoing long wave radiation, Mon Wea Rev, 1986, 114: 1354~1367
    145. Lau K M, Yang G J, Shen S H, Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia, Mon Wea Rev, 1988, 116: 18~37
    146. Lau K M, Yang S, Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM, J. Climate, 1996, 9: 965~985
    147. Lau K M, Yang S, Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 1997, 14: 141~162
    148. Li G L, Li C Y, Activities of low-frequency waves in the tropical atmosphere and ENSO. Adv Atmos Sci, 1998, 15(2): 193~203
    149. Liu Y, Giorgi F, Washington W M, Simulation of summer monsoon climate over East Asia with an NCAR regional climate model, Mon. Wea. Rev, 1994,122: 2331~2348
    150. Madden R A, Julian P R, Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific, J Atmos Sci, 1971,28: 702~708
    151. Madden R A, Seasonal variations of the 40–50-day oscillation in the tropics, J Atmos Sci, 1986, 43: 3138~3158
    152. Mann H.B. (1945), Nonparametric Tests against Trend, Econometrica 13, 245-259
    153. Matsumoto J. Seasonal transition of summer rainy season over Indo-China and adjacent monsoon region. Adv. Atmos. Sci., 1997,14: 231~245
    154. Meehl G A, Arblaster M, The tropospheric biennial oscillation and Asian-Australian monsoon rainfall, J Climate, 2002, 16: 722~744
    155. Meehl G A, Loschnigg J, Coupled ocean-atmosphere dynamical processes in the tropical India and Pacific Ocean regions and the TBO, J Climate, 2003, 16: 2138~2158
    156. Miao J H, Lau K M, Interannual variability of East Asian monsoon rainfall, Quart J Appl Meteor, 1990,1:377~382
    157. Mooly D A, Parthasarathy B, Variability of the India summer monsoon and tropical circulation feature, Mon Wea Rev, 1983, 111(7): 967~978
    158. Mooley D A, Parthasarathy B, Fluctuations in all-India summer monsoon rainfall during 1871~1978. Climate Change, 1984, 6: 287~301
    159. Murakami T, Chen L X, Xie A, Relationship among seasonal cycle, low-frequency oscillation, and transient disturbances as revealed from outgoing longwave radiation data, Mon Wea Rev, 1986, 114: 1456~1465
    160. Ninomiya K, Muraki T. The early summer rainy season (Baiu) over Japan. In: Chapter 4. New York: Oxford University Press, 1987: 93~121
    161. Nitta T, Observational study of heat resource over the eastern Tibetan Plateau during the summer monsoon, J Meteor Soc Japan, 1983, 61: 590~605
    162. Nitta T, Hu Z Z, Summer climate variability in China and its association with 500 hPa height and tropical convection, J. Meteor. Soc. Japan, 1996, 74: 425~445
    163. Qian W H, Kang H S, .Lee D K, Distribution of seasonal rainfall in the East Asian monsoon region, Theor Appl Climatol, 2002,000:1~18
    164. Qian W H, Lin X, Regional trends in recent temperature indices in China, Climate Research, 2004, 27:119~134
    165. Rasmusson E M, Wang X, Ropelewski C F, The biennial component of ENSO variability, J Mar Sys, 1990,1: 71~96
    166. Rayner N A, Horton E B, Parker, et al., 1996: Version 2.2 of the Global Sea-Ice and Sea Surface Temperature Data Set, 1903-1994. Climate Research Technical Note 74, unpublished document available from Hadley Center for Climate Prediction and Research, Meteorological Office, London Road, Bracknell, RS12 2SY, U.K
    167. Reed B G, Campbell W J, Rasmussen L A, et al. Evidence of the downward-propagating annual wind reversal in the equatorial stratosphere. J Geophys Res, 1961, 66(6): 813~818
    168. Reed R, Cambell W J, Rasmusson L A, et al. Evidence of a downward propagating annual wind reversal in the equatorial stratosphere, J Geophys Res, 1961, 66: 813~818
    169. Samel A N, Wang S W, Wang W C, A comparison between observed and GCM simulated summer monsoon characteristics over China, J. Climate, 1995, 8: 1690~1696
    170. Samel A N, Wang W C, Liang X Z, The monsoon rainband over China and relationships with the Eurasian circulation, J. Climate, 1999, 12: 115~131
    171. Sikka D R, Gadgel S, On the maximum cloud zone and ITCZ over Indian longitudes during the southwest monsoon, Mon Wea Rev, 1980, 108: 1840~1853
    172. Tanaka M, Intraseasonal oscillation and the onset and retreat dares of the summer monsoon over east, southeast Asia and the western Pacific region using GMS high cloud amount data. J Meteor Soc Japan, 1992 (70): 613-629.
    173. Tao S Y, Chen L X, A review of recent research on the east Asian summer monsoon in China. Monsoon Meteorology Ed by Chang C P and Krishnamurti T N, New York: Oxford University Press, 1987: 60-92.
    174. Tian S F, Yasunari T, Climatological aspects and mechanism of spring persistent rains over central China, J Meteo Soc Japan, 1998, 76, (1): 57~71
    175. Tian S F, Yasunari T, Time and space structure of interannual variations in summer rainfall over China, J Meteor Soc Japan, 1992, 70: 585~596
    176. Trenberth K E, Shin W T K, Quasi-biennial fluctuations in sea level pressure over the northern hemisphere, Mon Wea Rev, 1984,112(4): 761~777
    177. Vernekar A D, Ji Y M,Simulation of the onset and intraseasonal variability of two contrasting summer monsoon, J Climate,1999, 12(6):1707~1725
    178. Wang B, Rui H, Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985, Meteor Atmos Phys, 1990, 44: 43~62
    179. Wang B, Ding Y H, An overview of the Madden–Julian oscillation and its relation to monsoon and mid-latitude circulation, Adv Atmos Sci, 1992, 9: 93~111
    180. Wang B, Xu X H, Northern hemisphere summer monsoon singularities and climatological intraseasonal oscillation, J Climate, 1997, 10: 1071~1085
    181. Wang B, Wu R, Fu X, Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Climate, 2000,13: 1517~1536
    182. Wang B, Lin H, Rainy season of the Asian-Pacific summer monsoon, J Climate, 2002,15:386~398
    183. Wang H J, The weakening of the Asian monsoon circulation after the end of 1970’s, Adv Atmos Sci, 2001,18(3): 376~386
    184. Walsh J E, Mosterk A, A quantitative analysis of meteorological anomaly patterns over the United St ations, Mon Wea Rev, 1980, 108(5): 615~630
    185. Webster P J, Yang S, Monsoon and ENSO: Selectively interactive systems, Quart. R. Meter. Soc, 1992, 118: 877~926
    186. Xue F,Guo P W,Yu Z H,Influence of interannual variability of Antarctic sea-ice on summer rainfall in eastern China, Adv Atmos Sci,2003,20(1):97~102
    187. Xue F, Interannual to interdecadal variation of East Asian summer monsoon and itsassociation with the global atmospheric circulation and sea surface temperature. Adv Atmos Sci, 2001, 18(4): 567~575
    188. Yang H, Li C Y, The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjiang-Huaihe river basin, Adv Atmos Sci, 2003, 20(4): 540~553.
    189. Yanai M, Li C, Song Z, Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon, J Meteor Soc Japan, 1992, 70: 319~351
    190. Yanai M, Li C, Mechanisms of heating and the boundary layer over the Tibetan Plateau, Mon Wea Rev, 1994, 122: 305~323
    191. Yamamoto R.T. Iwashima and N. K. Sanga. An analysis of climatic jump. Meteor. Soc. Japan, 1986, 64(2): 273~281
    192. Yasunari T, A quasi-stationary appearance of 30~40 day period in the cloudiness fluctuations during the summer monsoon over India, J Meteor Soc Japan, 1980, 58: 225~229
    193. Yasunari T, Suppiah R, Some problems on the interannual variability of Indonesian monsoon rainfall, Tropical Rainfall Measurements, edited by Theon J S, Fugono N, Deepak, Hampton, 1988:113~122
    194. Yasunari T, Global structure of the El nino/Southern Oscillation. Part Ⅱ. Time evolution, J Meteor Soc Japan, 1987, 65: 81~102
    195. Yu Y Q, Guo Y F, The interannual variability of climate in a coupled ocean-atmosphere model, Adv Atmos Sci, 1995, 12(3): 273~288
    196. Zhai P M, Sun A J, Ren F M, et al, Change of climate extremes in China, Climatic Change,1999 42:203~218
    197. Zhai P M,Pan X H, Change in extreme temperature and precipitation over northern China during the second half of the 20th century, Acta Geogr Sinica, 2003, 58 (Suppl): 1~10
    198. Zhu B Z, Wang B, The 30–60-day convection seesaw between the tropical Indian and western Pacific Oceans, J Atmos Sci, 1993, 50: 184~199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700