热变形及调质工艺对石油储罐用钢组织和力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
战略石油储备建设,关系到国家经济安全。建造储存容积在10万m3以上的大型浮顶油罐所需的石油储罐用钢板应具有强度高、韧性好和焊接性能良好等特点。迄今为止,我国石油储罐所用的高强度钢板90%以上都依赖进口,其价格昂贵而又不能保证供货时间。为了国家和企业利益,国家发改委力主石油储罐用钢板的国产化,一方面满足国内市场需求,为国家石油战略储备提供保障;另一方面,完善国内宽厚板生产技术及其理论,提高企业技术水平。大型储罐在进行纵焊缝焊接过程中,当板厚为21mm时采用V型坡口气电立焊一次焊接成型时,线能量为90~100kJ/cm。因此开发大型储罐用大线能量焊接用钢的许多工艺技术尚待开发研究。本文结合东北大学-首秦金属材料有限公司4300mm宽厚板研发中心对石油储罐用钢板的研究开发,对实验钢的热变形及调质工艺进行研究。论文的主要工作如下:
     (1)采用热模拟实验,测定了实验钢的临界点温度;绘制了实验钢的静、动态CCT曲线,研究了冷却速度、形变对奥氏体连续冷却转变的影响。结果表明,随着冷速的增加,实验钢的相变开始温度逐渐降低;变形提高了实验钢的相变开始温度。
     (2)研究未再结晶区总压下量对实验钢组织和力学性能的影响。结果表明未再结晶区总压下量在60%左右时,实验钢具有最佳的综合力学性能。
     (3)研究热轧后离线调质处理和在线淬火+离线回火热处理对实验钢组织和力学性能的影响。结果显示,实验钢离线950℃+40min淬火、650℃+50min回火与在线835℃淬火、离线650℃+50min回火两种工艺,力学性能相差不大,且均能满足国标要求。
     (4)研究了不同的线淬火温度对实验钢组织和力学性能性能的影响,结果表明,淬火温度在910℃、880℃、850℃时,实验钢的各种力学性能基本保持不变,实验钢最合适的淬火温度区间为850℃-910℃。
     (5)对SG610D钢板进行工业试制,研究钢板轧态及调质态的组织和力学性能。并与日本同类钢板的力学性能进行对比。结果表明,试制钢板调质后力学性能与轧态相比有很大提高;对比实验显示,试制调质钢的力学性能基本达到日本同类产品水平,可用于国内建造大型石油储罐。
The building of strategic oil reserves is very important to the national economic security. The construction of large floating roof oil storage tanks with volume more than 100,000 m3 requires steels with high strength, good toughness and favorable welding properties. However, more than 90% high-strength oil storage tank steels depend on imports; it's expensive and can not ensure date of delivery. For profit of business and our country, the National Development and Reform Commission urges to manufacture domestic oil storage tank steels in China, on one hand to meet the needs of the domestic market, build strategic oil reserve for the country's security; On the other hand, to improve domestic production technologies and theories of the heavy plate and elevate the technical level of enterprises. Considering the welding process of large-scale tank's, when the plate thickness is 21mm was used V-groove and Gas-electric welding, and the input energy is 90~100kJ/cm. Therefore many technologies of large-scale input energy storage tank steels needed to research and developed. In this paper, combine Northeastern University with 4300mm heavy plate R&D center of ShouQin Metal Materials Co.,Ltd, to research oil storage tank steel plate, and systematic study on thermal deformation of tested steel. The main thesis is as follows:
     (1) Using thermal simulation experiment to determine the critical temperatures of tested steel; drawing static and dynamic CCT curves and researching the cooling rate, holding temperature and deformation on the impact of continuous cooling transformation. The results showed that the beginning transformation temperatures decrease with the increasing of cooling rates; deformation increases the beginning transformation temperatures.
     (2) Studying on the relationship between total reduction in non-recrystallization zone and mechanical properties and microstructure of tested steels. The results showed that the tested steel with total reduction about 60% in non-crystallization zone has the best mechanical properties.
     (3) Studying on the influence of reheat quenching or direct quenching on mechanical properties and microstructure of tested steel; It showed that the steels with tow processes:the offline quenching and tempering(950℃+40min,650℃+50min) and online quenching, offline tempering(835℃,650℃+50min), have similar mechanical properties.
     (4) The different online quenching temperatures on the influence of microstructure and mechanical properties of tested steel have been studied. The results show that with the quenching temperatures at 910℃,880℃and 850℃, the mechanical properties of steel remains basically unchanged, the most appropriate quenching temperatures of tested steel is between 850℃and910℃.
     (5) Carrying out industrial trial of SG610D steel, studying on the microstructure and mechanical properties of the steels with rolled state and quenched and tempered state. Comparing with rolled state, the mechanical properties of tested steel with quenched and tempered has greatly improved; Comparative experiment showed that the mechanical properties of SG610D steel with quenched and tempered achieve the requirement of similar products of Japan. SG610D steel can be used for domestic construction of large oil storage tank.
引文
[1]肖乾.科学构建我国的战略石油储备体系[J],化学工程,2009,02:89-91.
    [2]张爱国,郁珺等.我国石油储备的进展及存在问题的对策[J],中国石化,2008,4:25-27.
    [3]李敏,郑香增.大线能量焊接用钢的研究概况[J],山东冶金,2008,30(3):8-12.
    [4]章小浒,王正东,涂善东.原油储罐用钢的开发与应用最新进展[J],压力容器,2006,23(6):38-43.
    [5]贺秀丽,关小军等.大型石油储罐用钢板的特征及开发现状[J],山东冶金,2006,28(3),61-63.
    [6]陈学东,袁榕等.高强钢在石化企业压力容器和管道中的科学应用[J],压力容器,1998,(6):12-20.
    [7]季伟明.高效焊接技术在10万m3油罐施工中的综合应用[J],石油工程建设,2000,(6):16-19.
    [8]汪辉,郑云龙等12MnNiVR钢板焊接裂纹敏感性的试验研究[J],压力容器,2003,(6):19-24.
    [9]陈晓,王青,李经涛等.石油储备库建设技术研讨会论文集[C],北京,2004,6:167-182.
    [10]章小浒,许强等.十万立方米原油储罐用钢板的国产化研究[J],石油化工设备技术,2001,22(5):32-36.
    [11]王蕾,陈晓,习天辉.大线能量低焊接裂纹敏感性钢的研究[J],材料导报,2002,(5):24-26.
    [12]郗祥远,钟桂香,樊永红等.大型原油储罐钢材国产化的探讨与分析[J],石油化工建设,2007,29(5):23-24.
    [13]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995:101-105.
    [14]齐俊杰,黄运华,张跃.微合金化钢[M],北京:冶金工业出版社,2006,86-90.
    [15]崔文芳,刘春明,吴江华.低碳钢超细晶铁素体的形成[J],材料研究学报,2006,20(3):240-244.
    [16]刘东生.钢铁材料变形奥氏体相变的研究及应用[D],沈阳:东北大学,1999.
    [17]冯光宏,杨钢,杨德江等.加速冷却对低碳锰铌钛钢力学性能的影响[J],钢铁,2000,35(3):22-25.
    [18]刘相华,佘广夫,焦景民等.超快速冷却装置及其在新品种开发中的应用[J],钢铁,2004,39(8):71-79.
    [19]M.Chapa, S.F.Medina, V.Lopez, etal. Influence of Al and Nb on optimum Ti/N ratio in controlling austenite grain growth at reheating temperatures[J], ISIJ International,2002,42 (11):1288-1296.
    [20]彭良贵,刘相华,王国栋.超快冷却技术的发展[J],轧钢,2004,21(1):1-2.
    [21]杨春嵋,胡贻苏,辛义德.含Nb-V高强度钢强韧化机理研究[J],重庆大学学报(自然科学版),1998,21(6):73-78.
    [22]G.Li, T.M.Maccagno, D.O.Bai, etal. Effect of initial grain size on the static recrystallizationkinetics of Nb microalloyed steels[J], ISIJ International,1996,36 (12):1479-1485.
    [23]东涛,孟繁荣,王族滨等.神奇的Nb-铌在微合金钢中的应用[M],北京:中信美国钢铁公司(北京)CITIC-CBMM铌钢发展奖励基金,1996:199-215.
    [24]S.P.Medina, J.E.Hiancilla. Influence of alloying element in solution on static recrystallization kinetics of hot deforming steels [J], ISIJ International,1996,36(8):1063-1069.
    [25]杨春嵋,胡贻苏,辛义德.含Nb-V高强度钢强韧化机理研究[J],重庆大学学报(自然科学版), 1998,21(6):73-78.
    [26]科恩.钢的微合金化及控制轧制[M],北京:冶金工业出版社,1984:301.
    [27]孔君华,郑琳,郭斌等.钼在高钢级管线钢中的作用研究[J],钢铁,2005,40(1):66-68.
    [28]张亚丽,贺慧.调质型耐磨钢WNM400的研制开发[J],宽厚板,2008,14(6):8-12.
    [29]刁天辉,陈晓等.大线能量焊接用钢热影响区组织和性能的研究进展,特殊钢.2003(5):1-5.
    [30]章小浒,李晓燕.大焊接线能量储罐用钢的开发与应用[J],压力容器,2003,(1):16-19.
    [31]唐文军,江来珠.Nb对压力容器用高强度钢B610E组织和性能的影响[J],压力容器,23(1):10-15.
    [32]张莉芹,袁泽喜等.大线能量低焊接裂纹敏感性钢的焊接(一),压力容器,2002,(7):29-34.
    [33]钱百年等.C、Al、Ti对钢焊接热影响区韧性的影响[J],材料研究学报,1995,9(2):12-15.
    [34]孙重安,王培玉.非调质低焊接裂纹敏感性高强钢WDB620[J],云南水力发电,2004,20(3):67-68.
    [35]李书瑞,董汉雄等.大型原油储罐用WH610D2钢板的性能[J],轧钢,2008(5):59-61.
    [36]陈晓,卜勇等,大线能量低焊接裂纹敏感性钢性能及组织研究[J],钢铁研究,2002(6):21-25.
    [37]陈晓.低焊接裂纹敏感性WDL系列钢的力学性能及组织结构[J],钢铁,1996,(12):39-44.
    [38]王蕾,陈晓,习天辉.大线能量低焊接裂纹敏感性钢的研究,材料导报[J],2002(5):24-26.
    [39]章小浒,李晓燕.大焊接线能量储罐用钢的开发与应用[J],压力容器,2003,20(1):16-19.
    [40]张汉谦.大型储罐用高强度钢板的开发和应用进展[J],能源工程焊接国际论坛,IFWT,2005.
    [41](日)林谦次等,高宏适译.储罐、压力容器用高性能钢板[J],鞍钢技术,2006(1):57-62.
    [42]肖英龙.储罐和压力容器用高性能厚板的开发[J],宽厚板,2005,11(4):40-47.
    [43]颜晓峰,章洪涛等.含铌16Mn钢的奥氏体晶粒粗化和NbC固溶析出行为[J],钢铁研究学报,2000,12(2):49-53.
    [44]杨颖,侯华兴等.再加热温度对含Nb,Ti钢第二相粒子固溶及晶粒长大的影响[J],钢铁研究学报,2008,20(7):38-42.
    [45]彭晟等.高强度船板钢奥氏体晶粒长大的规律[J],钢铁,2009,44(2):72-74.
    [46]刘宗昌.材料组织结构转变原理[M],北京:冶金工业出版社,2006,16-30.
    [47]崔忠圻.金属学与热处理[M],北京:机械工业出版社,1986,270.
    [48]康沫狂等.钢种贝氏体[M],上海:上海科学技术出版,1990,213-219.
    [49]R.H.Edwards, N.F.Kennon. Kinetics of bainite formation from deformed austenite [J], Journal of the Australian Institute of Metals,1974,19 (1):45-50.
    [50]V.M.Khlestov, E.V.Konopleva, H.J.McQueen. Canadian Metallurgical Quarterly, Volume 35, Issue 2, April-June 1996, Pages 169-180.
    [51]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D],沈阳:东北大学,2003.
    [52]S. Serajzadeh, A. Karimi Taheri. A study on austenite decomposition during continuous cooling of alow carbon steel [J], Materials and Design,2004,25:673-679.
    [53]崔约贤,王长利.金属断口分析[M],哈尔滨:哈尔滨工业大学出版社,1998,34-36.
    [54]航空航天工业部航空装备失效分析中心编著.金属材料断口分析及图谱[M],北京:科学出版社,1991,36-37.
    [55]刘云旭.金属热处理原理[M],北京:机械工业出版社,1981,140.
    [56]江卫华,蔡庆伍,陈银莉等.SPV490钢轧后在线热处理工艺研究[J],热加工工艺,2006,35(6):35-40.
    [57]成琦玲,周敏文.钢板轧制后直接淬火工艺研究[J],鞍钢技术,1997(12):29-34.
    [58]尼托等,周玉红译.采用直接淬火和回火工艺生产高强度钢板[J],宽厚板,1997,3(4):39-42.
    [59]王立群,刘微,陈新旺.含铌钢碳氮化物二相粒子在控轧控冷工艺中析出规律研究[J],宽厚板,2005,11(2):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700