直线电机往复泵的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统往复泵一般通过曲柄连杆机构将旋转电机的电能转化为直线运动的机械能,效率低,输出流量、压力脉动大,易损件寿命低。直线电机可以将电能直接转化为直线运动的机械能,将直线电机作为往复泵的动力端可以很好的解决以上问题。该课题已完成直线电机往复泵的理论分析和结构设计,本论文在此基础上安装试验台完成试验,验证其理论设计要求,检验直线电机往复泵的实际工作性能、运动特性。
     针对直线电机的控制策略以及恒定输出流量的要求,确定了直线电机往复泵的运动方案。针对往复泵、直线电机的尺寸,以及柱塞运动规律,完成直线电机往复泵试验台的管路设计;完成试验用管路装置、流量压力测量装置、数据采集系统的选用;完成直线电机往复泵试验台的安装与调试;对直线电机的控制参数进行调节与优化;比较不同的直线电机控制模式,选取有效的控制模式提高控制精度;针对数据采集过程中出现的信号扰动进行处理与优化;本文依据试验目的,在不同冲次、不同负载的工况下对直线电机往复泵进行了试验研究;对采集到的柱塞运动、压力、流量数据进行分析与比较;探讨了造成系统输出流量、压力波动的原因。
The electrical motor of traditional reciprocating pump transforms electric energy into rectilinear mechanical energy by crank link gear. Its efficiency is low. The delivery rate and pressure pulsate greatly. The working time of replacement parts is low. The linear motor transforms electric energy into rectilinear mechanical energy directly. The foregoing problem will be resolved when using linear motor as driving force of the reciprocating pump.
     In this paper, a test system was installed to check the design target, test the practical working performance and motion property of linear motor reciprocating pump. Based on the theory analysis and structural design, a motion plan has been determined for the control strategy of linear motor and the goal of constant output flow rate.The design of pipe line was finished in connection with the objective of testing the flow rare, pressure and the characteristics of plunger motion. The selection of pipeline, measuring device of flow rate and pressure, data collection system was finished in this paper. The installation and debug of the experiment system was finished. The control parameter of linear motor was adjusted and optimized. An effective control model has been chosen to enhance the controlling resolution. The disturbing signal occurred in the data collection has been optimized. In this paper, the experiments have been carried on in different frequency of stroke and different pressure. The data of plunger motion, pressure and flow rate was analyzed and compared with each other. We investigated the reason for the fluctuation of output flow rate and pressure. Some effective improvement measures have been put forwarded in this paper.
引文
[1]张慧峰.新型凸轮传动三缸单作用恒流量往复泵的研制[J].石油钻探技术.2001, 29(4):46-48
    [2]胡建波,姚春东.液压驱动高压往复泵[J].机床与液压.2004, (7):117-119
    [3]许建中,曹和平,林鹏进等.SYB─Ⅰ型三缸液压往复式堵水调剖泵[J].石油机械.2001, 29(6):28-29
    [4]张云霞,张金中.直线电机往复工作理论研究与结构设计[D],山东:中国石油大学(华东),2007
    [5]万邦烈,李继志.石油工程流体机械[M].第2版.北京:石油工业出版社,1999:4-9, 46-56, 71-75
    [6]姚春东.钻井往复泵液压驱动系统[J].液压与气动.2002, (10):32-34
    [7]王德福,王海坤,张平等.TDB液压堵水调剖泵[J].石油机械.2000, 28(1):36-38
    [8]吴非.液压驱动双缸双作用往复泵[J].机床与液压.2005, (11):98-99
    [9]王新华,王建新,齐明侠等.液压驱动往复泵活塞运动特性分析[J].石油机械.2002, 30(5):22-24
    [10]董怀荣,张慧峰,裴峻峰.凸轮机构三缸单作用恒流量往复泵特性分析[J].江苏石油化工学院学报, 2002, 14(2):4-6
    [11]王复东,李宗清,祝远征等.SL3ZB—37HJ型恒排量往复泵的研制与应用[J].石油机械.2000, 28(4):38-40
    [12]李琴,董怀荣,王平等.恒流量往复泵柱塞运动规律试验研究[J].2004, 25(6):101-108
    [13]叶云岳.新型直线驱动装置与系统[M].北京:冶金工业出版, 2000: 14-21
    [14] Budig. P. K. The Application of Linear Motors. Power Electronics and Motion Control Conference. Proceedings PIEMC. The 3rd international. 2000, 3(15-18):1336-1341
    [15] T. Mizuno and H. Yamada. New Products of Motor Driven Systems and Its International Feeling in Japan.全国直线电机学术年会,温州,2000:1-4
    [16] Michael R. Doyle, Douglas J. Samuel, Thomas Conway, Robert R. Klimow-ski. Electromagnetic aircraft launch system--EMALS. IEEE Transactions M agnetics.1995, 31(1):528-533
    [17] Gennady A. Shvetsov. Overview of some recent EML efforts within Russia. IEEE Transactions Magnetics.1997,33(1):26-30
    [18]丁志刚.微特直线电动机开发应用的前景[J].微电机.1995, 28(4):16-18
    [19]叶云岳.国内外直线电机技术的发展与应用综述[J].电器工业.2003, (1):12-15
    [20] Jay K. Greyson, William A. Ashworth. Matching servomotors and amplifiers. Power Transmission Design.1997, (7):41-43
    [21] H. Spee, et al. Recent Development Trends of Permanent Magnet Motor. OHM. 1993, (3):98-105
    [22] IEE of Japan. Linear drives for industry application. IEE of Japan,1998
    [23]王道成,高有存,陈建峰.直线电机的应用[J].煤矿机械.2005, (2):104-105
    [24]叶云岳等.中国直线电机应用成果汇编[M].北京:冶金工业出版社.2000:50-90
    [25]王伟进.直线电机的发展与应用概述[J].微电机.2004, 37(1):45-46
    [26]韩兴华.直线电机抽油机在华北油田投入现场试验[J].石油钻采工艺.2002, 24(6):7-7
    [27]直线电机抽油机项目通过验收[J].机械研究与应用.2002, 19(6):68
    [28]王国军,陈松乔.自动控制理论发展综述[J].微型机与应.2000, 19(6):4-7
    [29]余虹,林瑞全,陈明凯等.基于神经元积分分离PID的直线电机速度控制系统[J].江苏电器.2008, (9):10-12
    [30]潘霞远,刘希品,吴捷等.永磁同步直线电机的鲁棒PID控制[J].电机与控制应用.2008, 35(9):43-56
    [31]党智乾,王玉华,朱喜林等.基于模糊控制器的直线电机矢量控制系统研究[J].上海电机学院学报.2008, 11(2):110-113,124-124
    [32]郭洪撤,郭庆鼎.双直线电机同步运动的自适应解耦控制器设计[J].沈阳工业大学学报.2001, 23(6):508-511
    [33]祝淑萍,刘德军.单神经元PID双直线电机同步控制[J].微计算机信息.2007, 23(6):84-85
    [34]翁秀华,郭庆鼎,刘德君.双直线电机同步驱动系统中模糊自适应PID控制方法的研究[J].沈阳工业大学学报.2005, 27(1):34-37
    [35]朱国听,郭庆鼎.双直线电机伺服系统动态同步进给的鲁棒控制[J].沈阳工业大学学报.2003, 25(5):408-411
    [36]李君裕.魏斯特法尔现象及泵阀运动规律的探讨[J].石油钻采机械.1984,6:11-26
    [37]万邦烈,李继志.石油矿场水力机械[M].北京:石油工程出版社.1990年5月.3-51
    [38]王树青等.先进控制技术及应用[M].北京:化学工业出版社.2001:166-170
    [39]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004
    [40].赵国山,仇性启.自适应PID的发展概况[J].化工自动化及仪表,2006,33(5):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700