LiFePO_4的固相混合法合成及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用固相混合法制备了新型正极材料LiFePO_4。以不同工艺条件试样的充、放电性能及其微观结构为考察指标,采用正交法对最佳的合成工艺进行了优化。考察了试样与九种不同电解液的相容性。采用正交法考察了试样的颗粒粒度、电极膜中导电剂乙炔黑和粘结剂聚四氟乙烯(PTFE)的含量以及充、放电电流密度等因素对其充、放电性能的影响。采用不同碳源对试样进行了包覆,考察了碳包覆对试样晶体结构和电化学性能的影响。实验结果表明:
     1.各预分解工艺因素对试样D_3(第三循环放电容量)影响的大小顺序为:预分解温度>保护气体流量>预分解时间>球磨时间。其最佳工艺组合为:球磨时间2h、预分解温度350℃、预分解时间5h、保护气体流量1.5L/min,此时试样的D_3=121.78mAh/g,第三循环充、放电效率η3=98.56%。
     2.各合成工艺因素对试样D_3影响的大小顺序为:合成温度>锂/铁/磷配比>合成时间>成型压强,其最佳工艺条件为:锂/铁/磷原子比1.05:1:1、合成温度650℃、合成时间为18h、成型压强60MPa,此时试样的D_3=127.49mAh/g,η3=99.46%;各合成工艺因素对晶胞体积V和晶粒尺寸D_(131)的影响大小顺序为:合成温度>锂/铁/磷配比>合成时间>成型压强,其最佳组合为锂/铁/磷原子比1.05:1:1、合成温度650℃、合成时间为18h、成型压强60MPa,此时试样的晶胞体积V=0.29172nm3,与理论值相差最小,且晶粒尺寸适中(D_(131)=34.383nm)。由此可见,以充、放电性能为考察指标与以微观结构为考察指标所得到的最佳工艺组合是完全一致的,两者必然同步优化。
     3.试样在九种不同电解液中进行恒电流充、放电时都能形成良好的充、放电平台,在分别以EC+DEC(1:1,v:v)、EC+DMC(1:1,v:v)和PC+DME(1:1,v:v)为溶剂、以LiClO4为溶质的电解液中都可以获得良好的电化学性能。其中,试样在1mol/L LiClO4/EC+DMC(1:1)电解液中的电化学性能最佳,在以LiPF6和LiBF4为溶质的电解液中进行充、放电时,其循环性能较差,容量衰减较大。
     4.试样粒度、电极膜中的导电剂乙炔黑含量和粘结剂PTFE的含量以及充、放电时的电流密度四个因素对试样D_3的影响大小顺序为:乙炔黑用量>充、放电电流密度>试样颗粒粒度>PTFE用量,各因素的最佳组合为:试样颗粒粒度-400目、PTFE用量5%、乙炔黑用量20%、充、放电电流密度10mA/g,此时试样的D_3=131.25mAh/g,η3=99.37%。
     5.采用乙炔黑为碳源对试样进行包覆时,不能得到结晶良好的试样,试样的电化学性能也没有得到有效地改善;采用葡萄糖为碳源对试样进行包覆能够得到结晶良好的试样,试样的电化学性能得到了较大的改善,平台性能和倍率性能较好;采用酚醛树脂为碳源对试样进行包覆时,获得了良好的碳包覆结构,试样的颗粒细小均匀,甚至达到了纳米级,其结晶度高、晶粒尺寸小,电化学性能得到很大改善,具有优异的平台性能和倍率性能,当包覆碳含量为10%时,试样的电化学性能最佳,其第三循环放电容量为D3为164.89mAh/g,充、放电效率η_3为99.20%,该试样在1C倍率时的第三循环放电容量D3=149.12mAh/g。
A new kind of lithium ion batteries cathode material, lithium iron phosphate, was prepared by solid-state method. The charging-discharging performance and the microstructure of different samples prepared by this method were taken as the investigation targets of optimization, and the technological conditions were optimized. The compatibility of the sample with nine different kinds of electrolytes was investigated. The influences of some other factors: the granularity of sample, the content of conductive additive—acetylene black and the content of binder—polytetrafluoroethylene ( PTFE ) in the electrode membrane and the charging-discharging current density etc, on the charging-discharging performances of the sample were investigated by the orthogonal method. The sample was coated by different carbon sources, and the influence of carbon coating on the structure and electrochemical properties of the sample was investigated. The experimental results are as follows:
     1. The influence degree order of the decomposition conditions on D_3 ( the discharging capacity in the third cycle ) is: decomposition temperature > flow rate of protection gas > decomposition time > milling time. The best combination of the technological conditions is: the ball milling time is 2h, the decomposition temperature is 350℃, the decomposition time is 5h, and the flow rate of protection gas is 1.5L/min, while D_3 is 121.78mAh/g andη3 ( the Coulombic efficiency of the third cycle ) is 98.56%.
     2. The influence degree order of the synthesis conditions on D_3 is synthesis temperature > Li/Fe/P molar ratio > synthesis time > briquetting pressure. In the best combination of the technological conditions, the Li/Fe/P molar ratio is 1.05:1:1, the synthesis temperature is 650℃, the synthesis time is 18h, and the briquetting pressure is 60MPa, while D_3 is 127.49mAh/g andη3 is 99.46%. The influence degree order of the synthesis conditions on crystalline cell volume ( V ) and average size of crystallites ( D_(131) ) is: synthesis temperature > Li/Fe/P molar ratio > synthesis time > briquetting pressure. The best combination of the technological conditions is: the Li/Fe/P molar ratio is 1.05:1:1, the synthesis temperature is 650℃, the synthesis time is 18h, and the briquetting pressure is 60MPa, while V is 0.29172nm3, which is most close to the crystalline cell volume ( V ) of the theoretical value, and the D_(131) is 34.383nm, which is suitable for the lithium ions to diffuse into the central part of the crystallites. It is obvious that the best combination of the technological conditions determined by microstructure is the same with those determined by charging-discharging performances. They must be optimized simultaneously.
     3. The sample shows good charging-discharging potential platforms during charging-discharging in nine different electrolytes and good electrochemical performance in the electrolytes using LiClO_4 as solute, EC+DEC (1:1,v:v), EC+DMC (1:1,v:v) and PC+DME (1:1,v:v) as solvent. The best electrochemical performance of the sample can be obtained in 1mol/L LiClO_4/EC+DMC (1:1), the cyclic performances are worse and the fading capacities are larger in the electrolytes using LiPF_6 and LiBF4 as solute.
     4. The factors such as the granularity of sample, the content of acetylene black and the content of PTFE in the electrode membrane and the charging-discharging current density also make influences on D_3. The influence degree order of above four factors on D_3 is: content of acetylene black in the electrode membrane > charging-discharging current density > granularity of sample > content of PTFE in the electrode membrane. In the best combination of the four factors, the granularity of sample is -400 mesh, the content of PTFE in the electrode membrane is 5%, the content of acetylene black in the electrode membrane is 20%, and the charging-discharging current density is 10mA/g, while D_3 is 131.25mAh/g andη_3 is 99.37%.
     5. The crystal structure is not perfect and the electrochemical properties are not significantly enhanced when the samples are coated by acetylene black, but both of them can be great improved after coated by using glucose as the carbon source, and then the samples demonstrate good charging-discharging potential platform properties and rate capabilities. After coating with phenol formaldehyde resin as the carbon source, samples of high purity and small average size of crystallites are prepared, the pyrolytic carbon forms good coating structure, the particles’size of samples is very small and uniform, even nano-meter particles are prepared, the electrochemical properties of the samples are greatly improved and the samples show excellent charging-discharging potential platforms and rate capabilities. While the coating carbon content is 10%, the sample possesses the best electrochemical properties, then D_3 is 164.89mAh/g andη_3 is 99.20%, and D_3 could achieve 149.12mAh/g at 1C rate.
引文
[1] T.Tanaka, K.Ohta, N.Arai. Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan[J]. J Power sources, 2001, 97-98: 2-6
    [2] T.Iwahori, I.Mitsuishi, S.Shirage, et al. Development of lithium ion and lithium polymer batteries for electric vehicle and home-use load leveling system application[J]. Electrochim Acta, 2000, 45: 1509-1512
    [3] M.Wakihara. Recent developments in lithium ion batteries[J]. Materials Science and Engineering, 2001, R33: 109-134
    [4] A.G.Ritchie. Recent developments and future prospects for lithium rechargeable batteries[J]. J Powre Sources, 2001, 96: 1-4
    [5] I.B.Weinstock. Recent advances in the US Department of Energy’s energy storage technology research and development programs for hybrid electric and electric vehicles[J]. J Powers Sources, 2002, 110: 471-474
    [6] M.Majima, T.Tada, S.Ujiie, et al. Design and characteristics of large-scale lithium ion battery[J]. J Power Sources, 1999, 81-82: 877-881
    [7] M.Majima, S.Ujiie, E.Yagasaki, et al. Development of 1 kW h class lithium ion battery for power storage[J]. J Power Sources, 2001, 92: 108-119
    [8] 汤浅开发出新型 HEV 用锂离子电池[J].电池快讯,2004,4:18~19
    [9] 雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000,41
    [10] M.Broussely. Lithium batteries R&D activities in Europe[J]. J Power Sources, 1999, 81-81: 137-139
    [11] M.Brouseely. Recent developments on lithium ion batteries at SAFT[J]. J Power Sources, 1999, 81-81: 140-143
    [12] B.B.Owens, W.H.Smyrl, J.J.Xu. R&D on lithium batteries in the USA:high-energy electrode materials[J]. J Power Sources, 1999, 81-81: 150-155
    [13] B.Scrosati. The Italian contribution to battery science and technology[J]. J Power Sources, 2003, 116: 4-7
    [14] 李景虹.先进电池材料[M].北京:化学工业出版社,2004,附录一
    [15] T.Tsumura, A.Katanosaka, I.Souma, et al. Surface modification of natural graphite particles for lithium ion batteries[J]. Solid State Ionics, 2000, 135: 209-212
    [16] S.H.Ma, J.Li, A.B.Jing, et al. A study of cokes used as anodic materials in lithiumion rechargeable batteries [J]. Solid State Ionics, 1996, 86-88: 911-917
    [17] X.D.Wu, Z.X.Wang, L.Q.Chen, et al. Ag-deposited mesocarbon microbeads as an anode in a lithium ion battery with propylene carbonate electrolyte[J]. Surface & Cotings Technology, 2004, 186: 412-415
    [18] Y.P.Wu, E.Rahm, R.Holze. Carbon anode materials for lithium ion batteries[J]. J Power Sources, 2003, 114: 228-236
    [19] J.K.Lee, K.Q.An, J.B.Ju, et al. Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries[J]. Carbon, 2001, 39: 1299-1305
    [20] 范长岭.石墨制品废料用作锂离子电池负极活性材料的研究[D]:[湖南大学硕士学位论文].长沙:湖南大学新型炭材料研究所,2004
    [21] Y.P.Wu, C.Jiang, C.Wan, et al. Modified natural graphite as anode material for lithium ion batteries[J]. J Power Sources, 2002, 111: 329-334
    [22] Y.P.Wu, C.Y.Jiang, C.R.Wan, et al. Composite anode material for lithium ion battery with low sensitivity to water[J]. Electrochemistry Communications, 2000, 2: 626-629
    [23] Y.P.Wu, C.Jiang, C.Wan, et al. L owering sensitivity of anode materials for lithium ion batteries towards humidity[J]. Carbon, 2003, 41: 437-443
    [24] 杨小飞.长岭石油焦用作锂离子电池负极活性材料的可行性研究[D]:[湖南大学硕士论文].长沙:湖南大学新型炭材料研究所,2003
    [25] Z.S.Wen, J.Yang, B.F.Wang, et al. High capacity silicon/carbon composite anode materials for lithium ion batteries[J]. Electrochemistry Communications, 2003, 5: 165-168
    [26] G.Taillades, J.Sarradin. Silver: high performance anode for thin film lithium ion batteries[J]. J Power Sources, 2004, 125: 199-205
    [27] L.Fang, B.V.R.Choedari. Sn-Ca amorphous alloy as anode for lithium ion battery[J]. J Power Sources, 2001, 97-98: 181-184
    [28] G.X.Wang, D.H.Bradhurst, S.X.Dou, et al. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries[J]. J Power Sources, 1999, 83: 156-161
    [29] Y.Q.Chu, Z.W.Fu, Q.Z.Qin, et al. Cobalt ferrite thin films as anode material for lithium ion batter[J]. Electrochim Acta, 2004, 49: 4915-4921
    [30] W.J.Weydanz, B.M.Way, T.V.Buoren, et al. Behavior of Nitrogen-substituted carbon (NzC1-z) in Li/Li(NzC1-z)6 cells[J]. J Electrochem Soc, 1994, 141(4): 900-907
    [31] B.M.Way, J.R.Dahn. The effect of boron substitution in carbon on the intercalationof lithium in Lix(BzC1-z)6[J]. J Electrochem Soc, 1994, 141(4): 907-912
    [32] N.Dimov, S.Kugino, M.Yoshio. Mixed silicon–graphite composites as anode material for lithium ion batteries Influence of preparation conditions on the properties of the material[J]. J Power Sources, 2004,136: 108-114
    [33] Y.Hamon, T.Brousse, F.Jousse, et al. Alluminum negative electrode in lithium ion batteries[J]. J Power Sources, 2001, 97-98: 185-187
    [34] H.Li, L.H.Shi, Q.Wang, et al. Nano-alloy anode for lithium ion batteries[J]. Solid state Ionics, 2002, 148: 247-258
    [35] T.Shodai, Y.Sakurai, T.Suzuki. Reaction mechanisms of Li2.6Co0.4N anode material[J]. Solid State Ionics, 1999, 122: 85-93
    [36] Y.Takeda, M.Nishijima, M.Yamahata, et al. Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N, as the anode[J]. Solid State Ionics, 2000, 130: 61-69
    [37] Y.Takeda, J.Yang. New composite anode systems combined with Li2.6Co0.4N[J]. J Power Sources, 2001, 97-98: 244-246
    [38] J.Yang, Y.Takeda, N.Imanishi, et al. Novel composite anodes based on nano-oxides and Li2.6Co0.4N for lithium ion batteries[J]. Electrochim Acta, 2001,46: 2659-2664
    [39] M.S.Whittingham. The Role of Ternary Phases in Cathode Reactions[J]. J Electrochem Soc, 1976, 123(3): 315-320
    [40] J.Barker, R.Pynenburg, R. Koksbang, et al. An electrochemical investingation into the lithium insertion properties of LixCoO2[J]. Electrochim Acta, 1996, 41(15): 2481-2488
    [41] H.F.Wang, Y-Il Jang, B.Y.Huang, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries[J]. J Electrochem Society, 1992, 146(2): 473-480
    [42] 李晓干,仇卫华,赫广明等.锂离子电池正极材料LiCoO2抗过充性能[J].电池,2002,32(1):19-21
    [43] M.Mladenov, R. Stoyanova, E.Zhecheva, et al. Effect of Mg doping and MaO-surface modification on the cycling stability of LiCoO2 electrodes[J]. Electrochemistry Communications, 2001,3: 410-416
    [44] Y.Iriyama, H.Kurita, I.Yamada, et al. Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode[J]. J Power Sources, 2004, 137: 111-116
    [45] H.Zhao, L.Gao, W.Qiu, et al. Improvement of electrochemical stability of LiCoO2cathode by a nano-crystalline coating[J]. J Power Sources, 2004, 132: 195-200
    [46] M.Broussely, P.Biensan, B.Simon. Lithium insertion into host materials: the key to success for Li ion batteries[J]. Electrochim Acta, 1999, 45: 3-22
    [47] H.Arai, S.Okada, Y.Sakurai, et al. Reversibility of LiNiO2 cathode[J]. Solid State Ionics, 1997, 95: 275-282
    [48] W.Li, J.C.Currie, J.Wolstenholme. Influence of morphology on the stability of LiNiO2[J]. J Power Sources, 1997, 68: 565-569
    [49] J.Molenda, P.Wilk, J.Marzec. Structural, electrical and electrochemical properties of LiNiO2[J]. Solid State Ionics, 2002, 146: 73-79
    [50] D.N.Shi, B.L.Wang. The phase diagram and susceptibility of LiNiO2[J]. Physica B, 2005, 355: 83-89
    [51] S.yamada, M.Fujiwara, M.Kanda. Synthesis and properties of LiNiO2 as cathode material for secondary batteries[J]. J Power Sources, 1995, 54: 209-213
    [52] G.X.Wang, S.Zhong, D.H.Bradhurst, et al. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries[J]. J Power Sources, 1998, 76: 141-146
    [53] Z.H.Lu, X.J.Huang, H.Huang, et al. The phase transition and optimal synthesis temperature of LiNiO2[J]. Solid State Ionics, 1999, 120: 103-107
    [54] A.G.Ritchie, C.O.Giwa, J.C.Lee, et al. Future cathode materials for lithium rechargeable batteries[J]. J Power Sources, 1999, 80: 98-102
    [55] 吴宇平,戴晓兵,马军旗等.锂离子电池—应用与实践[M].北京:化学工业出版社,2004,163-164
    [56] Y.Liu, T.Fujiwara, H.Yukawa, et al. Electronic structures of lithium manganese oxides for rechargeable lithium battery electrodes[J]. Solid State Ionics, 1999, 126: 209-218
    [57] T.Ohzuku, M.Kitagawa, T.Hirai. Electrochemistry of manganese dioxide in lithium nonaqueous cell[J]. J Electrochem Soc, 1990, 137(3): 769-775
    [58] Y.Gao, J.R.Dahn. Synthesis and characterization of Li1+xMn2-xO4 for Li-ion battery applications[J]. J Electrochem Soc, 1996, 143(1): 100-114
    [59] A.D.Robertson, S.H.Lu, W.F.Averill, et al. M3+-modified LiMn2O4 spinel intercalation cathodes[J]. J Electrochem Soc, 1997, 144(10): 3500-3505
    [60] G.G.Amatucci, A.Blyr, C.Sigala, et al. Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance[J]. Solid State Ionics, 1997, 104: 13-25
    [61] Z.S.Zheng, Z.L.Tang, Z.T.Zhang, et al. Surface modification of Li1.03Mn1.97O4spinels for improved capacity retention[J]. Solid State Ionics, 2002, 148: 317-321
    [62] A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough. Phospho-olivnes as Positive-Electrode Materials for Rechargeable Lithium batteries[J]. J Electrochem Soc, 1997, 144(4): 1188-1194
    [63] A.K.Padhi, K.S.Nanjundaswamy, C.Masquelier, et al. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates[J]. J Electrochem Soc, 1997, 144(5): 1609-1613
    [64] A.S.Andersson, B.Kalska, L.H?ggstrm, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and M?ssbauer Spectroscopy study[J]. Solid State Ionics, 2000, 130: 41-52
    [65] A.Yamada, S.C.Chung, K.Hinokuma, et al. Optimized LiFePO4 for Lithium Battery Cathodes[J]. J Electrochem Soc, 2001, 148(3): A224-A229
    [66] C.Y.Ouyang, S.Q.Shi, Z.X.Wang, et al. First-principles study of Li ion diffusion in LiFePO4[J]. Physical Review B, 2004,69: 104303
    [67] 孙玉恒,何泽珍,刘兴泉.锂离子二次电池新型正极材料LiMPO4(M=Fe、Co、Ni等)的研究进展[J].化工科技,2005, 13(2): 49-56
    [68] H.S.Kim, B.W.Cho, W.I.Cho. Cycling performance of LiFePO4 cathode material for lithium secondary batteries[J]. J Power Sources, 2004, 132: 235-239
    [69] S.S.Zhang, J.L.Allen, K.Xu, et al. Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes[J]. J Power Sources, 2005, 147: 234-240
    [70] C.W.Kim, M.H.Lee, W.T.Jeong, et al. Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron(III) raw material[J]. J Power Sources, 2005, 146: 534-538
    [71] F.Croce, A.D’Epifanio, J.Hassoun, et al. A Novel Concept for the Synthesis of an improved LiFePO4 Lithium Battery Cathode[J]. Electrochemical and Solid-State Letters, 2002, 5(3): A47-A50
    [72] M.A.E.Scanchez, G.E.S.Brito, M.C.A.Fantini, et al. Synthesis and characterization of LiFePO4 prepared by sol–gel technique[J]. Solid State Ionics, 2006, 177: 497-500
    [73] S.Yang, Y.Song, P.Y.Zavalij, et al. Reactivity,stability and electrochemical behavior of lithium iron phosphates[J]. Electrochemistry Communications, 2002, 4: 239-244
    [74] K.Shiraishi, K.Dokko, K.Kanamura. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis[J]. J Power Sources, 2005, 146: 555-558
    [75] G.Arnold, J.Garche, R.Hemmer, et al. Fine-particle lithium iron phosphate LiFePO4Synthesized by a new low-cost aqueous precipitation technique[J]. J Power Sources, 2003, 119-121: 247-251
    [76] M.R.Yang, W.H.Ke, S.H.Wu. Preparation of LiFePO4 powders by co-precipitation [J]. J Power Sources, 2005, 146: 539-543
    [77] S.L.Bewlay, K.Konstantinov, G.X.Wang, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source[J]. Materials Letters, 2004, 58: 1788-1791
    [78] T.H.Cho, H.T.Chung. Synthesis of olivine-type LiFePO4 by emulsion-drying method[J]. J Power Sources, 2004, 133: 272-276
    [79] C.Yada, Y.Iriyama, S.K.Jeong. Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition[J]. J Power Sources, 2005, 146: 559-564
    [80] 薛明拮,傅正文.脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能[J].物理化学学报,2005, 21(7): 707-710
    [81] S.Y.Chung, J.T.Bloking, Y.M.Chiang. Electronically conductive phosphor-olivines as lithium storage electrodes[J]. Nature Mater, 2002, 1: 123-128
    [82] P.S.Herle, B.Ellis, N.Coombs, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Mater, 2004, 3: 147-152
    [83] N.Ravet, Y.Chouinard, J.F.Magnan, et al. Electroactivity of natural and synthetic triphylite[J]. J Power Sources, 2001, 97-98: 503-507
    [84] 罗文斌,李新海,张宝等.锂离子蓄电池正极材料LiFePO4的合成研究[J].电源技术,2004,28(12):748-750
    [85] M.Takahashi, S.Tobishima, K.Takei, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J]. J Power Sources, 2001, 97-98: 508-511
    [86] S.Franger, F.L.Cras, C.Bourbon, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J]. J Power Sources, 2003, 119-121: 252-257
    [87] P.P.Prosini, M.Carewska, S.Scaccia, et al. Long-term cyclability of nanostructured LiFePO4[J]. Electrochim Acta, 2003, 48: 4205-4211
    [88] S.Yang, Y.Song, K.Ngala, et al. Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides[J]. J Power Sources, 2003, 119-121: 239-246
    [89] Y.N.Xu, S.Y.Chung, J.T.Bloking, et al. Electronic Structure and Electrical Conductivity of Undoped LiFePO4[J]. Electrochemical and Solid-State Letters, 2004, 7(6): A131-A134
    [90] N.Iltchev, Y.Chen, S.Okada, et al. LiFePO4 storage at room and elevated temperatures[J]. J Power Sources, 2003, 119-121: 749-754
    [91] 陈亦可.锂离子蓄电池正极材料 LiFePO4 的研究进展[J].电源技术,2003,27(5):487-490
    [92] 薄红志,陈晗,范长岭等.LiFePO4 用作锂离子电池正极材料的储存性能研究.见:第十三次全国电化学会议论文摘要.广州.2005,276-277
    [93] W.Kong, H.Li, X.J.Huang, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. J Power Sources, 2005,142: 285-291
    [94] A.S Andersson, J.O.Thomas. The source of first-cycle capacity loss in LiFePO4[J]. J Power Sources, 2001, 97-98: 498-502
    [95] D.Y.Wang, X.D.Wu, Z.X.Wang, et al. Cracking causing cyclic instability of LiFePO4 cathode material[J]. J Power Sources, 2005, 140: 125-128
    [96] P.P.Prosini, D.Zane, M.Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochim Acta, 2001, 46: 3517-3523
    [97] P.P.Prosini, M.Lisi, D.Zane, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ionics, 2002, 148: 45-51
    [98] 吕正中,周震涛.LiFePO4/C 复合正极材料的结构与性能[J].电池,2003,33(5):267-271
    [99] C.H.Mi, G.S.Cao, X.B.Zhao. Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode[J]. Materials Letters, 2005, 59: 127-130
    [100] T.Takeuchi, M.Tabuchi, A.Nakashima, et al. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process[J]. J Power Sources, 2005, 146: 575-579
    [101] M.Gaberseek, R.Dominko, M.Bele, et al. Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid[J]. Solid State Ionics, 2005, 176: 1801-1805
    [102] I.Belharouak, C.Johnson, K.Amine. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4[J]. Electrochemistry Communications, 2005, 7: 983-988
    [103] K.S.Park, J.T.Son, H.T.Chung, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Communications, 2004, 129: 311-314
    [104] S.Panero, B.Scrosati, M.Wachtler, et al. Nanotechnology for the progress of lithium batteries R&D[J]. J Power Sources, 2004, 129: 90-95
    [105] S.T.Yang, N.H.Zhao, H.Y.Dong, et al. Synthesis and characterization of LiFePO4cathode material dispersed with nano-structured carbon[J]. Electrochim Acta, 2005, 51: 166-171
    [106] G.H.Li, H.Azuma, M.Tohda. Optimized LiMnyFe1-yPO4 as the Cathode for Lithium Batteries[J]. J Electrochem Soc, 2002, 149(6): A743-A747
    [107] A.Yamada, M.Hosoya, S.C.Chung, et al. Olivine-type cathodes achievements and problems[J]. J Power Sources, 2003, 119-121: 23-238
    [108] A.Yamada, Y.Kudo, k.Y.Liu. Reaction Mechanism of the Olivine-Type Lix(Mn0.6Fe0.4)PO4(0≤x≤1)[J]. J Electrochem Soc, 2001, 148(7): A747-A754
    [109] A.Yamada, Y.Kudo, K.Y.Liu. Phase Diagram of Lix(MnyFe1-y)PO4(0≤x≤1)[J]. J Electrochem Soc, 2001, 148(10): A1153-A1158
    [110] H.Kawai, M.Nagata, H.Kageyama, et al. 5V lithium cathodes based on spinel solid solutions Li2Co1+xMn3-xO8: -1≤x≤1[J]. Electrochim Acta, 1999, 45: 315-327
    [111] Y.Shimakawa, T.Numata, J.Tabuchi. Verwey-Type Transition and Magnetic Properties of the LiMn2O4 Spinels[J]. J Solid State Chem, 1997, 131: 138-143
    [112] D.Y.Wang, H.Li, S.Q.Shi, X.J.Huang, et al. Improving the rate performance of LiFePO4 by Fe-site doping[J]. Electrochim Acta, 2005, 50: 2955-2958
    [113] C.Delacourt, C.Wurm, L.Laffont, et al. Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites[J]. Solid State Ionics, 2006, 177: 333-341
    [114] 倪江锋,周恒辉,陈继涛等.金属氧化物掺杂改善LiFePO4电化学性能[J].无机化学学报,2005,21(4):472-476
    [115] S.Yang, Y.Song, P.Y.Zavalij, et al. Nanocomposite electrodes for advanced lithium batteries: the LiFePO4 cathode[J]. Chemical Abstracts, 2002, 137(21): 1087
    [116] A.Singhal, G.Skandan, G.Amatucci, et al. Nanostructured electrodes for next generation rechargeable electrochemical devices[J]. J Power Sources, 2004, 129: 38-44
    [117] 冯光熙,黄祥玉,申泮文等.无机化学丛书(第一卷)[M].北京:科学出版社,1984,328
    [118] 刘振海,畠山,立子.分析化学手册(第二版)[M].北京:化学工业出版社,2000,457
    [119] 迪安 JA.兰氏化学手册[M].北京:科学出版社,1997,3:12
    [120] 李冀辉,黎梅,张志宏等.常用化学反应速查手册[M].河北:河北科学出版社,1995,408-412
    [121] 杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,2000
    [122] Y.Xia, Y.Zhou, M.Yoshio. Capacity fading of 4V Li/LixMn2O4 cells[J]. J Electrochem Soc, 1997, 144: 2 593-2 600
    [123] D.H.Jang, S.M.Oh. Effects of carbon additives on spinel dissolution and capacity losses in 4V Li/LixMn2O4 rechargeable cells[J]. Electrochim Acta, 1998, 43(9): 1023-1029
    [124] 陈长水.有机化学[M].北京:科学出版社,2004,277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700