石墨制品废料用作锂离子电池负极活性材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了考察某电炭厂石墨制品废料用作锂离子电池(LIB)负极活性材料的可行性,将其原试样进一步进行了不同最高热处理温度(HTT_(max))的热处理。用试样的密度、灰分含量和XRD图谱表征了试样的微观结构。用恒电流充、放电实验考察了试样的充、放电性能。据此讨论了试样的微观结构与宏观电化学性能的关系,确定了最佳热处理工艺制度。结合恒电流充、放电实验、粉末微电极循环伏安实验和FTIR分析考察了具有良好贮锂结构的XT-28试样与六种不同电解液的相容性。采用正交法通过恒电流充、放电实验考察了XT-28试样的粒度、炭膜中导电剂乙炔黑和粘结剂PTFE的含量以及充、放电电流密度等因素对其充、放电性能的影响。采用粉末微电极循环伏安实验估测了在最佳实验条件下XT-28试样的循环性能。实验结果表明:
     1.采用“从室温升温至2400℃时,边加热边抽真空”的热处理制度有利于除去试样中部分杂质,但要将试样内妨碍锂离子在其中扩散的杂质SiC和铁-渗碳体(Fe_3C)除去,HTT_(max)必须不低于2800℃。从节能观点出发,最佳HTT_(max)应为2800℃,XT-28为最佳试样,其第三循环放电容量(D_3)为330.2mAh/g、充、放电效率(η_3)为97.5%。
     2.XT-28试样在六种不同电解液中首次充电时,试样颗粒表面形成了固体电解质中间相(SEI)膜,其主要成份均为碳酸锂。EC基电解液在试样颗粒表面发生的还原反应比较缓和,能够形成薄而致密的、只允许锂离子通过的SEI膜;而PC基电解液在试样颗粒表面发生的还原反应比较激烈,形成的SEI膜厚而不均匀、锂离子难以通过。
     3.由正交试验结果可知,XT-28试样在1mol/L LiClO_4/EC+DEC(1:1)电解液中进行恒电流充、放电时,试样的粒度(A)、炭膜中导电剂乙炔黑的含量(B)、炭膜中粘结剂PTFE的含量(C)以及充、放电电流密度(D)等因素对第三循环放电容量D_3及充、放电效率η_3影响的大小顺序均为:B>D>A>C。但对D_3的影响(极差R=23.1~37.3mAh/g)远大于对η_3的影响(极差R=0.3~1.2%)。上述四个因素的最佳水平组合为A_2B_3C_2D_2:即试样粒度为水平2(-325目),炭膜中乙炔黑含量为水平3(6%),PTFE含量为水平2(5%),充、放电电流密度为水平2(15mA/g)。采用这一组合时D_3≥338.7mAh/g,η_3≥96.1%。
     4.粉末微电极循环伏安实验表明XT-28试样的循环性能很好,当进行到第500循环时,其放电容量为第60循环最大放电容量的72.22%,充、放电效率为93.35%。
In order to examine the possibility of using the processing graphite wastes from an electric-carbon factory as the negative electrode materials in lithium ion batteries (LIB), the original samples were heat-treated with different maximum heat treatment temperatures (HTTmax). The microstructures of these heat-treated samples were characterized by their densities, ash contents and XRD spectra. The charging-discharging performances of them were investigated by galvanostatic charging-discharging experiments. The relationship between their charging-discharging performances and microstructures was discussed and the optimized heat treatment technology was determined. Sample XT-28 has a good structure for storing up lithium ions. The compatibility of it with six different kinds of electrolytes was investigated by the galvanostatic charging-discharging experiments, powder microelectrode cyclic voltammetric experiments and FTIR analysis. The influences of some other factors: thegranularity of sample, the content of conductive additive--acetylene black and thecontent of binder--PTFE in the carbon membrane and the charging-dischargingcurrent density etc, on the charging-discharging performances of sample XT-28 were investigated by the orthogonal method through galvanostatic charging-discharging experiments. The cyclic performance of the sample XT-28 under the best experimental conditions was investigated by the powder microelectrode cyclic voltammetric experiments. The experimental results are as follows:1. The heat treatment technology--extracting air during heating from roomtemperature to 2400℃ is helpful to remove part of impurities in the original sample. However, the HTTmax can not be lower than 2800 ℃, if we want to remove the impurities SiC and FesC which hinder the lithium ions from diffusing inside the sample. For saving energy, the best HTTmax of sample should be 2800℃ and sample XT-28 is the best one. In the third cycle, its discharging capacity is 330.2mAh/g and the charging-discharging efficiency is 97.5%.2. Solid electrolyte interphase (SEI) films are formed on the surfaces of the particles of sample in six different electrolytes during the first charging process. The main content of all the SEI films is lithium carbonate. EC-based electrolytes can react with the surfaces of particles moderately and form thin and compact SEI films which only the lithium ions can pass through. On the contrary, the reaction between PC-based electrolytes and the surfaces of particles are intense and the SEI films are thick and nonhomogeneous, which the lithium ions are difficult to pass through.
    
    3. According to the results of orthogonal experiments, when sample XT-28 charges and discharges in the electrolyte of 1 mol/L LiC104/EC+DEC(1:1), the factors such as the granularity of sample XT-28 (A), the content of acetylene black (B) and the content of PTFE (C) in the carbon membrane and the charging-discharging current density (D) also make influences on the discharging capacities and the charging-discharging efficiencies of the 3rd cycle (D3 and η3). The influence degree orders of the above four factors on D3 and η3 are the same, that is B>D>A>C. However, the influence on D3 (maximum difference R=23.1~37.3mAh/g) is much greater than that on η3 (R=0.3~1 .2%). The best level combination of the above four factors is A2B3C2D2: the granularity of sample XT-28 is at level 2 (-325 mesh), the content of acetylene black in carbon membrane is at level 3 (6%), the content of PTFE in carbon membrane is at level 2 (5%) and the charging-discharging current density is at level 2 (15mA/g), while D3 is larger than 338.7mAh/g and η3 is greater than 96.1%.4. The powder microelectrode cyclic voltammetric experiments show that sample XT-28 has a good cyclic performance. In the 500th cycle, the discharging capacity keeps 72.22% of the maximum discharging capacity (in the 60th cycle) and the charging-discharging efficiency of the 500th cycle is 93.35%.
引文
[1] Broussely M. Lithium batteries R & D activities in Europe[J]. J. Power Sources, 1999, 81-82: 137-139
    [2] Owens B B, Smyrl W H, Xu J J. R & D on lithium batteries in the USA: high-energy electrode materials [J]. J. Power Sources, 1999, 81-82: 150-155
    [3] 杨林.中、日韩三国锂离子蓄电池发展概况[J].电源技术,2004,28(2):101-103
    [4] 文力,罗秋珍,李胜.中国股市与电池业(一)[J].电池快讯,2003,8:2-20
    [5] 文力,罗秋珍,李胜.中国股市与电池业(二)[J].电池快讯,2003,10:2-15
    [6] 陈立泉.混合电动汽车及其电源[J].电池,2000,30(3):98-100
    [7] 雷惊雷,张占军,吴立人,等.电动车,电动车用电源及发展战略[J].电源技术,2001,25(1):40-46
    [8] 程夕明,孙逢春.电动汽车能量存贮技术概况[J].电源技术,2001,25(1):47-52
    [9] 郝德利,冯熙康,王伯良等.电动汽车用锂离子蓄电池的研究[J].电源技术,2003,27(增):160-162
    [10] 胡广侠,解晶莹,李春香等.锂离子蓄电池高倍率放电研究[J].电源技术,2003,27(增):201-204
    [11] Shi H, Barker J, Saidi M Y, et al. Structure and lithium intercalation properties of synthetic and natural graphite[J]. J. Electrochem. Soc., 1996, 143(11): 3466-3470
    [12] Guerin K, Fevier-Bouvier A, Flandrois S, et al. Effect of graphite crystal structure on lithium electrochemical intercalation[J]. J. Electrochem. Soc., 1999, 146(10): 3660-3665
    [13] Kohs W, Santner H J, Hofer F. A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase[J]. J. Power Sources, 2003, 119-121: 528-537
    [14] Spahr M E, Wilhelm H, Joho F, et al. Purely hexagonal graphite and the influences of surface modifications on its electrochemical lithium insertion properties[J]. J. Electrochem. Soc., 2002, 149(8): A960-A966
    [15] Ong T S, Yang H. Lithium intercalation into mechanically milled natural graphite [J]. J. Electrochem. Soc., 2002, 149(1): A1-A8
    [16] 吴宇平,万春荣,姜长印,等.锂离子电池负极活性材料的制备——用气相 氧化法改性天然石墨[J].电池,2000,30(4):143-146
    [1
    
    [17] Wu Y P, Jiang C, Wan C, et al. Modified natural graphite as anode material for lithium ion batteries[J]. J Power Sources, 2002, 111: 329-334
    [18] Wu Y P, Jiang C, Wan C. Mild preparation of anode materials by a salt-free green method[J]. Electrochem. Commun., 2002, 4: 483-487
    [19] Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries[J]. J. Power Sources, 2003, 114: 228-236
    [20] Yoshio M, Wang H, Fukuda K, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material[J]. J. Electrochem. Soc., 2000, 147(4): 1245-1250
    [21] 杨瑞枝.以酚醛树脂热解炭包覆天然鳞片石墨的复合材料作为锂离子二次电池负极活性材料的研究[J].炭素,1999,1:43-48
    [22] 俞政洪,吴峰.表面镀膜对锂离子电池石墨负极电化学性能的影响[J].电池,2003,33(6):342-344
    [23] Aurbach D, Maekovsky B, Levi M D, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. J. Power Sources, 1999, 81-82: 95-111
    [24] Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. J. Power Sources, 2000, 89: 206-218
    [25] Pan Q M, Guo K K, Fang S B, et al. Ionic conductive copolymer encapsulated graphite as an anode material for lithium ion batteries[J]. Solid State Ionics, 2002, 149: 193-200
    [26] 周向阳,胡国荣,李庆余,等.化学镀银鳞片石墨作锂离子电池负极活性材料[J].电池,2002,32(5):255-257
    [27] Tossici R, Berrettoni I M, et al. A high-rate carbon electrode for rechargeable lithium-ion batteries[J]. J. Electrochem. Soc., 1996, 143(3): L65-L67
    [28] Tossici R, Berretton I M, Rosolen M, et al. Electrochemistry of KC_8 in lithiumcontaining electrolytes and its use in lithium ion cells[J]. J. Electrochem. Soc., 1997, 144: 186-192
    [29] Bailar J C, Emelens H J, Nyholm S R, et al. Comprehensive Inorganic Chemistry [M]. Australia: Pergamon Press, 1973: 1272, 1328, 1420-1421
    [30] 吴宇平,万春荣,姜长印,等.锂离子二次电池碳负极活性材料的改性[J].电化学,1998,4(3):286-292
    [31] 大谷杉郎,大谷朝男著,赖耿阳译著.炭纤维材料入门[M].上海:复汉出版社,1983,25-26
    
    [32] 朱鹏.煤沥青基中间相炭微球用作锂离子电池负极活性材料的研究[D]:[湖南师范大学硕士论文].长沙:湖南师范大学,2002,40-41
    [33] Xu Z Y, Tu J, Cheng H M, et al. The Charge-discharge performances of anthracite samples heated with different maximum heat treatment temperatures[C]. An International Conference on Carbon, Beijing, 2002: P2-29
    [34] 谢辉.针状焦用作锂离子电池负极活性材料的可行性研究[D]:[湖南师范大学硕士论文].长沙:湖南师范大学,2003,25
    [35] 杨小飞.长岭石油焦用作锂离子电池负极活性材料的可行性研究[D]:[湖南大学硕士论文].长沙:湖南大学新型炭材料研究所,2003,21
    [36] Inagaki M, Imanishi N, Kashiwagi H, et al. Charge-discharge characteristics of mesophase-pitch-based carbon fibers for lithium cells[J]. J. Electrochem. Soc., 1993, 140(2): 315-320
    [37] Tatsumi K, Zaghib K, Sawada Y. Anode performance of vapor-grown carbon fibers in secondary lithium-ion batteries[J]. J. Electrochem. Soc., 1997, 144(9): 2968-2973
    [38] 郭炳焜,李新海,杨松青.化学电源[M].长沙:中南工业大学出版社,2000,333-334
    [39] Ein-Eli Y, Korch V R. Chemical oxidation: a route to enhanced capacity in li-ion graphite anodes[J]. J. Electrochem. Soc., 1997, 144(9): 2968-2973
    [40] 仇卫华,张刚,卢世刚,等.锂离子电池负极活性材料——树酯包覆石墨的性能(J].电源技术,1999,23(1):7-9
    [41] Han S Y, Lee J Y. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition[J]. Electrochimica Acta, 2003, 481073-1079
    [42] Kuwabata S, Tsumura N, Goda S, et al. Charge-discharge properties of composite of synthetic graphite and poly(3-n-hexylthiophene as an anode active material in rechargeable lithium-ion batteries[J]. J. Electrochem., Soc., 1998, 145(5): 1415-1420
    [43] Veeraraghavana B, Paulb J, Harana B et al. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries[J]. J. Power Sources, 2002, 109: 377-387
    [44] Yu P, Ritter J A, White R E, et al. Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries: Ⅰ. Initial irreversible capacity study[J]. J. Electrochem. Soc., 2000, 147(4): 1280-1285
    [45] Yu P, Ritter J A, White R E, et al. Ni-composite microencapsulated graphite as the negative electrode in lithium-ion batteries: Ⅱ. Electrochemical impedance and self- discharge studies[J]. J. Electrochem. Soc., 2000, 147(6): 2081-2085
    [4
    
    [46] Veeraraghavan B, Durairajan A, Haran B, et al. Study of Sn-coated graphite as anode material for secondary lithium-ion batteries[J]. J. Electrochem. Soc., 2002, 149(6): A675-A681
    [47] Zheng T, Liu Y, Fuller E W, et al. Lithium insertion high capacity carbonaceous materials[J]. J. Electrochem. Soc.,1995, 142(8): 2581-2590
    [48] Satoh A, Noguchi M, Demachi A, et al. A mechanism of lithium storage in disordered carbons[J]. Science, 1994, 264(5158): 556-558
    [49] Yazami R, Deschamps M. High reversible capacity carbon-lithium negative electrode in polymer electrolyte[J]. J. Power Sources, 1995, 54: 411-415
    [50] Mabuchi A, Tokumistu K, Fujimoto H, et al. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures[J]. J. Electrochem. Soc., 1995, 142(4): 1041-1046
    [51] Matsumura Y, Wang S, Mondori J. Interactions between disordered carbon and lithium in lithium ion rechargeable batteries[J]. Carbon, 1995, 33(10): 1457-1462
    [52] Hara M, Satoh A, Takami N, et al. Structural and electrochemical properties of lithiated polymerized aromatics anodes for lithium-ion cells[J]. J. Phys. Chem., 1995, 99: 16338-16343
    [53] Takami N, et al. Large hysteresis during lithium insertion into and extraction from high-capacity disordered carbons[J]. J. Electrochem. Soc., 1998, 145(2): 478-482
    [54] Zheng T, McKinnon, Dahn J R. Hysteresis during lithium insertion in hydrogencontaining carbons[J]. J. Electrochem. Soc., 1996, 143(7): 2137-2145
    [55] Weydanz W J, Way B M, Buoren T V, et al. Behavior of Nitrogen-substituted carbon (N_zC_(1-z)) in Li/Li(N_zC_(1-z))_6 cells[J]. J. Electrochem. Soc., 1994, 141: 900-907
    [56] Way B M, Dahn J R. The effect of boron substitution in carbon on the intercalation of lithium in Li_x(B_zC_(1-z_)_6[J]. J. Electrochem. Soc., 1994, 141: 907-912
    [57] 尹鸽平,王庆,程新群,等.锂离子电池新型负极活性材料的研究进展[J].电池,1999,29(6):270-274
    [58] Xue J S, Dahn J R. An epoxy-silane approach to prepare anode materials for rechargeable lithium ion batteries[J]. J. Electrochem. Soc., 1995, 142(9)2927-2935
    [59] Courtney I A, Dahn J R. Electrochemical and in-situ X-ray diffraction studies of the reaction of lithium with tin oxide composite[J]. J. Electrochem. Soc., 1997, 144(6): 2045-2052
    [60] Li J Z, Li H, Wang Z X, et al. The interaction between SnO anode and electrolytes [J]. J. Power Source, 1999, 81-82: 346-351
    
    [61] 黄学杰,李泓,王庆,等.纳米储锂材料和锂离子电池[J].物理,2002,31(7):444-449
    [62] 闫俊美,杨勇.非碳类新型锂离子蓄电池负极活性材料研究进展[J].电源技术,2004,28(7):435-439
    [63] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359-367
    [64] Huggins R A. Lithium alloy negative electrodes formed from convertible oxides[J]. Solid state ionics, 1998, 113-115: 57-67
    [65] Jose L T. Inorganic materials for the negative electrodes of lithium-ion batteries: state-of-the-art and future prospects[J]. Materials Science and Engineering R, 2003, 40: 103-13
    [66] Fang L, Chowdari B V. Sn-Ca amorphous alloy as anode for lithium ion battery[J]. J. Power Sources, 2001, 97-98: 181-184
    [67] Kepler K D, Vaughry J T, Thackeray M M. Li_xCu_6Sn_5(0<x<13): an intermetallic insertion electrode for rechargeable lithium batteries [J]. Electrochem Solid State Lett, 1999, 2: 307-309
    [68] 程达多,程鸿申.我国电炭行业现状[J].炭素,2003,3:24-25
    [69] 王鑫秀,程达多,程鸿申.“十五”期间中国电炭制品市场报告[J].炭素,2003,4:10-18
    [70] 曹君虎.浅谈提高艾契逊石墨化炉制品的石墨化程度[C].青岛:全国炭素制品信息网第二十届炭素技术信息交流会——论文汇编,2004,122-127
    [71] 虞觉奇,易文质,陈邦迪,等.二元合金状态图集[M].上海:上海科学技术出版社,1987,243
    [72] 吴瑾光.近代傅立叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994,636,639
    [73] Yair E E, Stephen F M, Aurbach D. Methyl propyl carbonate: A promising single solvent for Li-ion battery electrolytes[J]. J. Electrochem. Soc., 1997, 144(7): L180-L184
    [74] Aurbach D, Zaban A, Shechter A. The study of electrolyte solutions based on ethyleneand diethyl carbonates for rechargeable batteries: Ⅰ. Li metal anodes[J]. J. Electrochem. Soc., 1995, 142(10): 2873-2881
    [75] Aurbach D, Zaban A, Shechter A. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable batteries:Ⅱ. Graphite Anodes [J]. J. Electrochem. Soc., 1995, 142(10): 2882-2887
    [76] Zghib K, Nadeau G, Kimoshita K. Effect of graphite particle size on irreversible capacity loss[J]. J. Electrochem. Soc., 2000, 147(6): 2110-2115
    [7
    
    [77] Shu Z X, McMillan R S, Murray J. Electrochemical intercalation of lithium into graphite[J]. J. Electrochem. Soc., 1993, 140(4): 922-927
    [78] 曼德尔.碳和石墨手册.《碳和石墨手册》翻译小组译[M].兰州炭素厂研究所,1978,3,87-93
    [79] 陈蔚然.碳素材料工艺基础[M].湖南大学,1984,44-60
    [80] 何灿芝编.应用统计[M].长沙:湖南科学技术出版社,1997,223
    [81] 郭炳焜,徐徽.锂离子电池[M].长沙:中南大学出版社,2002,16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700