超支化硼酸酯改性酚醛树脂的高性能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能热固性树脂的开发是近年来的一个研究热点。热固性树脂高度的交联结构赋予其许多优异的性能。但是较高的交联密度也使得热固性树脂的韧性较差。目前已经有许多增韧热固性树脂的方法,其难点在于如何保证在提高韧性的同时不损失其他的性能,如模量或玻璃化转变温度。在此,我们以酚醛树脂为研究对象,通过在酚醛树脂体系中引入一种新型结构的聚合物——超支化硼酸酯(HB),来提高酚醛树脂的耐热性能和韧性。超支化聚合物是一类高度支化具有三维椭球状立体构造的大分子。由于具有低粘度、高流变性、良好的溶解性以及大量的末端官能团等一系列独特的物理化学性质,自上世纪80年代以来,超支化聚合物受到了广泛的关注。目前关于超支化聚合物的研究还存在以下三个问题:(1)单体获得困难,难以大规模制备,限制了超支化聚合物的功能化研究和商业化应用;(2)超支化分子量分布较宽,结构可控性差;(3)超支化末端官能团的功能化研究尚处在起步阶段,其具有的优势还远远没有开发。根据上述研究背景,我们设计并制备了端基为酚羟基的超支化硼酸酯(HBp)和硼酸羟基的超支化硼酸酯(HBb)用以改性酚醛树脂。这类HB的单体容易获得,制备过程易于放大,同时HB还具有较高的耐热性能。在此基础上对HB的制备过程、结构性能以及HB改性酚醛树脂的固化过程和相态结构的研究取得以下创新性成果。
     1.通过A 2 +B3的方法,以商品化的单体间苯二酚和硼酸为原料,可以制备新型骨架的HB。研究发现,以FeCl 3为催化剂,采用分阶段加入带水剂的方法,即:在90℃采用苯为带水剂,在165℃采用二甲苯为带水剂,可以促进聚合反应的进行。同时,研究发现三阶段升温模式:90℃,165℃以及202℃下各反应8h,然后在220~230℃下熔融聚合2h,对抑制环化物的形成以及控制HB的分子量及其分布是有效的。HB具有良好的溶解性能,能够溶于常见的有机溶剂。HBp和HBb的Tg分别为232℃和221℃;T5 %所对应的温度分别为428℃和445℃,在800℃下的氮气氛中,它们的重量保持率分别为74.2%和71.3%,表现出较高的耐热性能。
     2.采用溶液共混法制备HB改性酚醛树脂。FTIR和DSC分析表明:HB与酚醛树脂具有良好的相容性。通过对HB改性酚醛树脂的固化过程的研究发现,HB的羟基能够对酚醛树脂的固化反应起到催化作用,使得酚醛树脂在较低的温度下聚合,但是HB的加入对酚醛树脂起到稀释作用,使得改性树脂的固化速率降低。在酚醛树脂中加入重量百分比为10%的HBp和HBb,酚醛树脂的T5 %分别提高38℃和59℃,而改性树脂在800℃的重量保持率分别提高了9.4%和11.1%。通过对HB改性酚醛树脂炭化物的组成以及结构的研究发现,改性酚醛树脂耐热性能的提高不仅仅归结于硼促石墨化程度的提高,而且还是因为产生了B4C。HB改性树脂的断面形貌分析表明,改性酚醛树脂主要是通过裂纹锚定、“瞬间原位大取向”和“多重裂延”的协调作用来实现增韧的。同时,HB改性酚醛树脂/碳布复合材料的断面研究发现,纤维和树脂之间形成了良好的界面结合,破坏不仅仅发生在界面,而且也有树脂基体身的破坏,破坏形式表现为界面和树脂两种破坏方式的综合作用。
     3.HB改性苯并噁嗪树脂的固化过程和固化机理的研究发现:HB中的酚羟基能够引发噁嗪环在较低的温度下开环,而开环反应产生的酚羟基促进了噁嗪环进一步的开环,使得改性苯并噁嗪树脂能够在较低的温度下开环固化,有利于降低能耗,而且固化过程表现为自催化机理。在苯并噁嗪树脂中加入5%的HB,固化产物的T5 %和T1 0%有所降低(约为15℃),这主要是由于树脂结构中酚-氧键的裂解导致的。而改性树脂在800℃下的重量保持率的提高是由于树脂交联密度的增加阻止了固化物中胺的分解挥发,同时改性树脂中的硼元素在热解过程中在炭化物表面形成隔热防护层,也对热解起到了抑制作用,这都赋予了固化物较高的耐热性能。改性苯并噁嗪树脂的力学性能研究发现,HB的加入不仅没有降低苯并噁嗪树脂的模量和玻璃化转变温度,而且有助于树脂韧性的提高。在苯并噁嗪树脂中加入HBb后,改性树脂从均相结构变为非均相结构。同时,HB的支化结构对裂纹起到了约束作用,有助于外力传递,从而避免外力对局部造成的破坏,树脂的韧性得到提高。
     4.通过“场”“流”分析法,建立“温度场”与“浓度流”的关系,可以获得改性树脂固化程度与时间的关系以及某时刻的固化速率常数。同时,研究发现,在等温固化条件下适宜的初始固化温度(160℃),而在非等温条件下三阶段升温固化模式(120℃/4h+160℃/2h+220℃/4h)对控制改性树脂的相态结构和提高改性树脂的韧性有较大的贡献。再次,通过对改性树脂增韧机理的研究发现:超支化聚合物的活性端基、核壳结构和众多的支链结构对改性苯并噁嗪树脂起到桥联约束和裂纹钉锚作用,这是超支化结构对改性树脂韧性提高的主要原因。
High performance thermosets have been received abiding attention since the last century. Many of their favorable properties, including high glass transition temperature, high modulus are directly related to the underlying microstructure of high crosslinking density and rigid molecular network. However, this structure feature also results in an inherent brittleness of the materials. Different methods have been carried out in the past decades to increase the toughness of high performance thermosets, the difficulty lies in how to improve the toughness without sacrifice to such desired properties as modulus and glass transition temperature. Hyperbranched polymers offer a promising alternative for the toughening of high performance thermosets. Because of their highly branched molecular architecture, hyperbranched polymers have such unique physical and chemical properties as good rheology and solubility, lower solution and melt viscosity when compared to linear analogs. At presently, there are three main problems on the research of hyperbranched polymers: (1) The scarcity of the monomers made the bulk synthesis approach especially important from the view point of functional research and commercial applications. (2) Hyperbracnhed polymer has a broader polydispersity and a lower structural controllability in comparison with that of linear polymer. (3) The functionality of the end groups of hyperbranched polymer is in its infancy and there are may undiscovered superiorities. In this paper, we present such an approach to toughening phenolic resin with model hyperbranched polyborates(HB) that were synthesized with readily available monomers and have good thermal stability and scalability. Through characterization and study on the structure of HB and the curing process of blends of HB modified phenolic resins, we obtained the following results.
     1. Novel hyperbranched polyborates(HB) terminated with phenolic hydroxyl(HBp) and boric hydroxyl(HBb) functional end groups were successfully prepared via an A 2 +B3 method from the easily available reagents of 1,3-benzenediol and boric acid catalyzed with iron trichloride. The polymerization could be promoted by azeotropic distillation of water with benzene or xylene at 90℃and 165℃, respectively. It was found that the three stages synthesis process that is the polymerization was undertaking at 90℃, 165℃and 202℃for 8h, respectively was an ideal method both to decrease polydispersity and to suppress cyclization. HB have significantly higher glass transition temperatures(Tg> 220℃) and good solubility in a variety of common organic solvents. Thermogravimetric analysis exhibited the thermal stability of HB with T5 %of 428℃and 445℃and weight residues of 74.2% and 71.3% at 800℃in nitrogen atmosphere for HBp and HBb, respectively.
     2. HB modified phenolic resins were prepared by blending HB with phenolic resin in acetone solvent. Both Fourier transformed infrared spectrum and differential scanning calorimetry analysis revealed that the blends have good compatibility. It was found that HB modified phenolic resins have both a lower initial curing temperature and curing velocity in comparison with phenolic resins due to the dilute effect of HB. The T5 %s and the weight residues at 800℃under nitrogen atmosphere for HBp and HBb modified phenolic resins were improved 38℃, 59℃and 9.4%, 11.1%, respectively. The carbonization process strudy revealed that the improved thermal stability was due to the formation of B4C more than the boron acceleration of graphitization. Though it is difficult to accurately clarify and quantify the different states of boron atoms due to the lower boron content(0.4~0.8%), the presence of such a small amount of boron atom, different from that of physical mixing boron atoms, has great effect on enhancement of thermal stability and crystalline size of carbonized PR. The fracture surface study of HB modified phenolic resins revealed that the crack pining, the instantaneous in situ tropism and the multiple cracks are the main mechanisms that contributed to the improvement of the toughness. It was also found from the HB modified phenolic resins/carbon cloth composites that the fractures were the synergy of both the interfaces destroy and the resins destroy.
     3. The ring-opening temperature of polybenzoxazine was decreased because of the catalysis of phenolic hydroxyls of HB. Whereas the new phenolic hydroxyls produced by the ring-opening of benzoxazine promoted the ring-opening again. Though, the pyrolysis of phenoxy bonds made both T5 % and T1 0%of HB modified polbenzoxazine decreased to some extent, the weight residues of HB modified polybenzoxazines at 800℃under nitrogen atmosphere were improved in that the increased crosslinking density prevented the volatilization of amine of the cured product. On the other hand, boron atoms can form a protect coating on the surface of the carbonized materials, which can restrain the pyrolysis. The dynamic mechanical analysis revealed that the toughness was improved without the sacrifice of modulus and glass transition temperature. Morphologies of polybenzoxazine became two separated phases after adding HBb. The branched structures of HB not only can inhibit the propagation of the cracks but also can contribute to the transfer of stress, which jointly resulted an increased toughness by avoiding the local destroy.
     4. The“temperature field”and the“concentration flow”were built up by using the“field-flow”method. The obtained relation between both curing degree and velocity with time provide basis information for the control of phase structures. It was found that the initial curing temperature of 160℃was ideal for the enhancement of the toughness under isothermal curing conditions. While under anisothermal conditions, that’s the samples were cured under 120℃, 160℃and 220℃for 4h, respectively, the morphologies were benefit for the increase of toughness. Moreover, the reactive feature of end groups, the core-shell structure and a numerous branched chains of HB can bridge and pin the cracks which were main toughening mechanisms of the unique hyperbranched structure.
引文
[1] Das S, Prevorsek DC. Fibers made from cyanato group containing phenolic resins, phenolic triazines resins. US 4851279[P].1989-07-25
    [2]牛国良.烧蚀材料用改性酚醛树脂[J].固体火箭技术, 1998, 21(4): 64-67
    [3]陈祥宝.高性能树脂基体[M].北京:化学工业出版社, 1999: 109-111
    [4]曾鸣,王洛礼,刘景民.苯并噁嗪树脂的研究进展[J].石化技术与应用, 2000, 18(2): 103-107
    [5]纪凤龙,顾宜,谢美丽.一种新型苯并噁嗪中间体的合成及其固化性能的研究[J].塑料工业, 2001, 29(2): 28-29
    [6] Ishida H, Allen DJ. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines[J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(6): 1019-1030
    [7] Ishida H, Hong YL. A study on the volumetric expansion of the benzoxazines based phenolic resin[J]. Macromolecules, 1997, 30(4):1099-1106
    [8]刘欣,顾宜.苯并噁嗪热固化过程中体积变化的研究[J].高分子学报, 2000, (5): 612-619
    [9]纪凤龙,顾宜,谢美丽,等.苯并噁嗪树脂烧蚀性能的初步研究[J].宇航材料工艺, 2002, 32(1): 25-29
    [10]刘润山,范和平.先进复合材料BMI树脂基体的特性和发展[J].高分子材料科学与工程, 1991, 7(5): 8-12
    [11]梁国正,顾嫒娟,蓝立文. BMI改性剂烯丙基系列化合物[J].化工新型材料, 1996, 24(3): 27-30
    [12]席红安,刘润山.烯丙基醚化酚醛树脂/双马来酰亚胺共聚物性能的研究[J].高分子材料科学与工程, 1998, 14 (4): 117-119
    [13]闫联生.酚醛改性聚芳基乙炔基复合材料探索[J].玻璃钢/复合材料, 2001, (2): 22-24
    [14]焦扬声,庄元其.热防护材料的新进展——芳基乙炔共聚物的碳纤维增强材料[J].玻璃钢/复合材料, 1997, (1): 41-43
    [15]闫联生,姚冬梅,杨学军,等.新型耐烧蚀材料研究[J].宇航材料工艺, 2002, 32(2): 29-31
    [16]陈继荣,张衍,庄元其,等.高碳树脂—聚芳基乙炔(PAA)[J].玻璃钢/复合材料, 1998, (1): 15-16
    [17] Katzman HA, Mallon JJ, Barry WT. Polyarylacetylene matrix composites for solid rocket motor components[J]. Journal of Advanced Materials, 1995, 26(3): 21-27.
    [18]张德雄,张衍.高温复合材料基体树脂聚芳基乙炔综述[J].固体火箭技术, 2001, 24(1): 53-59
    [19]程树祥,张桂秋.工程塑料应用手册[M].南京:江苏科学技术出版社,1988: 1495-1496
    [20]董瑞玲.高绝缘高韧性耐热型酚醛塑料的研制[D].西安:西北工业大学, 2001
    [21] Manzione LM, Gillham JK, McPherson CA. Rubber-modified epoxies. I. Transitions and morphology[J]. Journal of Applied Polymer Science, 1981, 26(3): 889-905
    [22]傅增力,赵世琦,孙以实.改进环氧树脂韧性的研究[J].热固性树脂, 1988, 11(4): 24-27
    [23]陆怡平,杜杨,车剑飞,等.酚醛树脂的增韧改性及其在摩擦材料的应用[J].非金属矿, 1998, 123 (3): 54-56
    [24] Byun HY, Choi MH, Chung IJ. Synthesis and characterization of resol type phenolic resins/layered silicate nanocomposites[J]. Chemistry of Materials, 2001, 13() 4221-4226
    [25]焦扬声.中国复合材料高聚物基复合材料与工艺[C],北京:化学工业出版社, 1994: 43-45
    [26]范儆,梁国正,蓝立文,等.含硼烯丙基系列化合物[J].化工新型材料, 1996, 24(9): 37-39
    [27]刘萝威,曹运红.高温树脂基复合材料在超声速导弹弹体上的应用[J].宇航材料工艺, 2001,31(5): 15-19
    [28]苏志强,刘云芳,魏强,等.碳纳米管改性酚醛树脂的研究[J].碳素技术, 2002, 118(1): 8-11
    [29]周重光,李桂芝,巩爱军.有机硅改性酚醛树脂热稳定性的研究[J].高分子材料科学与工程, 2000, 16(1): 164-168
    [30]何筑华.硼改性酚醛树脂在摩擦材料上的应用[J].贵州化工, 1999, 24(3): 11-12.
    [31]车剑飞,肖迎红,陆怡平,等.纳米粒子改性硼酚醛树脂的研究[J].塑料工业, 2001, 29(6): 15-16.
    [32]焦扬声,王幼甫.酚三嗪树脂[J].玻璃钢/复合材料, 1994, (1): 10-12
    [33] Kim HJ, Brunovska, Z, Ishida H. High performance polybenzoxazines resins based on acetylene functional monomers[C]. Abstracts of Papers of the American Chemical Society 215, 1998, U343-U344
    [34] Nair CPR, Bindu RL, Ninan KA. Thermal characteristics of propargyl ether phenolic resins[J]. Journal of Macromolecular Science Part A-Pure and Applied Polymer Chemistry, 2003, 40(4): 357-369
    [35]张多太.新型耐高温阻燃树脂体系的性能及应用[J].宇航材料工艺, 2001, 31(5): 19-23
    [36]李献运,张广复.钼酚醛树脂的研究[J].工程塑料应用, 1983, 11(2): 1-3
    [37]高良,唐泉清.耐高温聚酚醚树脂及其复合材料[J].玻璃钢/复合材料, 1986, (3): 1-5
    [38]王井冈,黄晓松,刘育建.新型高残碳酚醛树脂的研究I.高残碳酚醛树脂的合成及其残碳率[J].宇航材料工艺, 2001, 31(6): 47-51
    [39] Flory PJ. Molecular size distribution in three dimensional polymers. IV. Branched polymers containing A-R-Bf-1 type units[J]. Journal of the American Chemical Society, 1952, 74(11): 2718-2723.
    [40] Frechét JMJ, Henmi M, Gitsov I, et al. Self-condensing vinyl polymerization: An approach to dendritic materials[J]. Science, 1995, 269(5227): 1080-1083.
    [41]谭惠民,罗运军.树形聚合物[M].北京:化学工业出版社, 2002: 1-3.
    [42] Magnusson H, Malmstr?m E, Hult A. Structure buildup in hyperbranched polymers from 2,2-bis(hydroxymethyl)propionic acid[J]. Macromolecules, 2000, 33(8): 3099-3104
    [43] Huber T, B?hme F, Komber H, et al. New hyperbranched poly(ether amide)s via nucleophilic ring opening of 2-oxazoline-containing monomers[J]. Macromolecular Chemistry and Physics, 1990, 200(1): 126-133
    [44] Hawker CJ, Chu F. Hyperbranched poly(ether ketones): manipulation of structure and physical properties[J]. Macromolecules, 1996, 29(12): 4370-4380
    [45] Bednarek M, Biedron T, Helinski J. Branched polyether with multiple primary hydroxyl groups: Polymerization of 3-ethyl-3-hydroxymethyloxetane[J]. Macromolecular Rapid Communications, 1999, 20(7): 369-372
    [46] Bolton DH, Wooley KL. Synthesis and characterization of hyperbranched polycarbonates[J]. Macromolecules, 1997, 30(7): 1890-1896
    [47] Miller TM, Neenan TX, Kwock EW, et al. Dendritic analogues of engineering plastics: A general one-step synthesis of dendritic polyaryl ethers[J]. Journal of the American Chemical Society, 1993, 115(1): 356-357
    [48] Shu CF, Leu CM, Huang FY. Synthesis, modification and characterization of hyperbranched poly(ether ketones)[J]. Polymer, 1999, 40(23): 6591-6596.
    [49] Morikawa A. Preparation and properties of hyperbranched poly(ether ketones) with a various number of phenylene units[J]. Macromolecules, 1998, 31(18): 5999-6009.
    [50] Fischer M, V?gtle F. Dentrimers: From design to application-a progress report[J]. Angewandte Chemie-International Edition, 1999, 38(7): 885-905
    [51] David P, Feast JM. Synthesis, structure and properties of core-terminated hyperbanched polyester based on dimethyl 5-(2-hydroxyethoxy )isophthalate[J]. Macromolecules, 2001, 34(17): 5792-5798
    [52] Johansson M, Malmastr?m E, Hult A. Synthesis, characterization and curing of hyperbranched allyl ether-maleate functional ester resins[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(3): 619-627
    [53] Cheng L, Peng H, Luo J, et al. Simple synthesis and outstanding thermal properties and tuable light emitting and optical limiting properties of functional hyperbranched and polyarglenes[J]. Macromolecules, 2002, 35(14): 5349-5351
    [54] Luo JD, Peng H, Cheng L, et al. Synthesis and light emission and optical limiting of hyperbranched poly[phenylene-alt-thienylene]s[J]. Polymer Preprint, 2001, 42(1): 527-528.
    [55] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications[J]. Progress in Polymer Science, 2004, 29(3): 183-275.
    [56] Kim YH, Webster OW. Hyperbranched polyphenylenes[J]. Macromolecules, 1992, 25(21): 561- 572.
    [57] Kim YH, Beckerbauer R. Role of end groups on the glass transition of hyperbranched polyphenylene and triphenylbenzene derivatives[J]. Macromolecules, 1994, 27(7): 1968-1971.
    [58] Jayakannan M, Ramakrishnan. A novel hyperbranched polyether by melt transetherification[J]. Chemical Communications, 2000, (19): 1967-1968
    [59] Sunder A, Bauer T, Mulhaupt R, et al. Synthesis and thermal behavior of esterified aliphatic hyperbranched polyether polyols[J]. Macromolecules, 2000,33(4): 1330-1337
    [60] Turner SR, Walter F, Voit B, et al. Hyperbranched aromatic polyesters with carboxylic acid terminal groups[J]. Macromolecules, 1994, 27(6): 1611-1616.
    [61] Percec V, Chu P, Kawasumi M. Toward“willowlike”thermotropic dendrimers[J]. Macromolecules, 1994, 27(16): 4441-4453.
    [62] Yang G, Jikei M, Kakimoto M. Successful thermal self-polycondensation of AB2 monomer to form hyperbranched aromatic polyamide[J]. Macromolecules, 1998, 31(17): 5964-5966
    [63] Monticelli O, Mendichi R, Bisbano S, et al. Synthesis, characterization and properties of a hyperbranched aromatic polyamide: Poly(ABZAIA)[J]. Macromolecular Chemistry and physics, 2000, 201(6): 2123-2127
    [64] Londergan TM, You Y, Thompson ME, et al. Ruthenium catalyzed synthesis of cross-conjugated polymers and hyperbranched materials. Copoly(arylene/1,1-vinylene)s[J]. Macromolecules, 1998, 31(9): 2784-2788.
    [65] Shu CF, Leu CM. Hyperbranched poly(ether ketone) with carboxylic acid terminal groups: Synthesis, characterization, and derivatization[J]. Macromolecules, 1999, 32(1): 100-105.
    [66] Kumar A, Ramakrishnan S. Hyperbranched polyurethanes with varying spacer segments between the branching points[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34(5): 839-848
    [67] Meijer EW, Versteegen RM, Sijbesma RP. Synthesis of [N]-polyurethanes and hyperbranched polyurethanes[C]. Abstracts of Papers of the American Chemical Society 218, 1999, 8: U457-U457
    [68] Mathias LJ, Carothers TW. Hyperbranched poly(siloxysilanes)[J]. Journal of the American Society, 1991, 113(10): 4043-4044
    [69] Muzafarov AM, Golly M, Martin M. Degradable hyperbranched poly(bis(undercenyloxy)- methylsilane)s[J]. Macromolecules, 1995, 28(14 ): 8444-8446
    [70] Yook K, Son DY. Synthesis of hyperbranched poly(carbosilarylenes)[J]. Macromolecules, 1999, 32(16): 5210-5216
    [71] Hobson LJ, Kenwright AM, Feast WJ. A simple one pot route to the hyperbranched analogues of Tomalia’s poly(amidoamine) dentrimers[J]. Chemical Communications, 1997, (19): 1877-1878
    [72] Hobson LJ, Feast WJ. Poly(amidoamine) hyperbranched systems: Synthesis, structure and characterization[J]. Polymer, 1999, 40(5 ): 1279-1297
    [73] Lu P, Paulasaari JK, Weber WP. Hyperbranched poly(4-acetylstyrene) by ruthenium-catalyzed step-growth polymerization of 4-acetylstyrene[J]. Macromolecules, 1996, 29(27): 8583-8586
    [74] Yan DY, Müller AHE, Matyjaszewski K. Molecular parameters of hyperbranched polymers made by selfcondensing vinyl polymerization. 2. Degree of branching[J]. Macromolecules, 1997, 30(23): 7024-7033.
    [75] Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization[J]. Progress in Polymer Science, 2001, 26(3):337-377.
    [76] Simon PFW, Radke W, Müller AHE. Hyperbranched methacrylates by self-condensing group transfer polymerization[J]. Macromolecular Rapid Communications, 1997, 18(9): 865-873.
    [77] Liu H, Wilén CE. Hyperbranched poly(allyl ether-alt-maleic anhydride) produced by the self-condensing alternating copolymerization approach[J]. Macromolecules, 2001, 34(14): 5067- 5070.
    [78] Simon PFW, Müller AHE. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization[J]. Macromolecules, 2001, 34(18): 6206-6213.
    [79] Baskaran D. Synthesis of hyperbranched polymers by anionic self-condensing vinyl polymerization[J]. Macromolecular Chemistry and Physics, 2001, 202(9): 1569-1575
    [80] Paulasaari JK, Weber WP. Synthesis of hyperbranched polysiloxanes by base-catalyzed proton-transfer polymerization. Comparison of hyperbranched polymer microstructure and properties to those of linear analogues prepared by cationic or anionic ring-opening polymerization[J]. Macromolecules, 2000, 33(6): 2005-2010
    [81] Sakamoto K, Aimiya T, Kira M. Preparation of hyperbranched polymethacrylates by self-condensing group transfer polymerization[J]. Chemistry Letters, 1997, (12): 1245-1246
    [82] Suzuki M, Li A, Saegusa T. Multibranching polymerization: Palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine[J]. Macromolecules, 1992, 25(25): 7071-7072.
    [83] Chen Y, Bednarek M, Kubisa P, et al. Synthesis of multihydroxyl branched polyethers by cationic copolymerization of 3,3-bis(hydromethyl)oxetane and 3-ethyl-3-(hydroxymethyl)oxetane[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(12): 1991-2002.
    [84] Sunder A, Hanselmann R, Frey H. Hyperbranched polyether-polyols based on polyglycerol: Polarity design by block copolymerization with propylene oxide[J]. Macromolecules, 2000, 33(2): 309-314.
    [85] Liu M, Vladimirov N, Fréchet JMJ. A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer: 4-(2-hydroxyethyl)-epsilon–caprolactone[J]. Macromolecules, 1999, 32(20): 6881-6884.
    [86] Trolls?s M, L?wenhielm P, Lee VY, et al. New approach to hyperbranched polyesters: Selfcondensing cyclic ester polymerization of bis(hydroxymethyl )-substituted 1-caprolactone[J]. Macromolecules, 1999, 32(26 ): 9062-9066.
    [87] Jikei M, Chon SH, Kakimoto M, et al. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid[J]. Macromolecules, 1999, 32(6): 2061-2064.
    [88] Emrick T, Chang HT, Fréchet JMJ. An A2+B3 approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents[J]. Macromolecules, 1999, 32(19): 6380-6382.
    [89] Flory PJ. Molecular size distribution in three dimensionalpolymers. I. Gelation[J]. Journal of the American Chemical Society, 1941, 63(11): 3083-3090.
    [90] Flory PJ. Molecular size distribution in three dimensionalpolymers. II.Trifunctional branching units[J]. Journal of the American Chemical Society, 1941, 63(11): 3091-3096.
    [91] Flory PJ. Molecular size distribution in three dimensionalpolymers. III. Tetrafunctional branching units[J]. Journal of the American Chemical Society, 1941, 63(11): 3096-3100
    [92] Flory PJ. Molecular size distribution in three dimensional polymers. V. Post-gelation relationships [J]. Journal of the American Chemical Society, 1947, 69(1): 30-35.
    [93] Walling C. Gel formation in addition polymerization[J]. Journal of the American Chemical Society, 1945, 67(3): 441-447.
    [94] Yan D, Gao C. Hyperbranched polymers made from A2 and BB’2 type monomers. 1. Polyaddition of 1-(2-aminoethyl)piperazine to divinyl sulfone[J]. Macromolecules, 2000, 33(21): 7693-7699.
    [95] Gao C, Yan D. Hyperbranched polymers made from commercially available A2 and BB’2 type monomers[J]. Chemical Communications, 2001, (1): 107-108
    [96] Van Benthem RATM, Meijerink N, GeladéE, et al. Synthesis and characterization of bis- (2-hydroxypropyl)amide-based hyperbranched polyesteramides[J]. Macromolecules, 2001, 34(11): 3559-3566.
    [97] Froehling P, Brackman J. Properties and applications of poly(propyleneimine) dendrimers and poly(esteramide ) hyperbranched polymers[J]. Macromolecular Symposium, 2000, 151: 581-589.
    [98] Wei HY, Shi WF. Structural characteristics, syntheses and applications of hyperbranched polymers[J]. Chemical Journal of Chinese Universities, 2001, 22(2): 338-344.
    [99] Shi WF, Huang H. The recent advance in studying of hyperbranched polymers[J]. Chemical Journal of Chinese Universities, 1997, 18(8): 1398 -1405.
    [100] Gennes PGD, Hervet H. Statistics of starburst polymers[J]. Journal de Physique Lettres, 1983, 44(2): 351-360.
    [101] Lescanec RL, Muthukumar M. Configurational characteristics and scaling behavior of starburst molecules: A computational study[J]. Macromolecules, 1990, 23(8): 2280-2288
    [102] Mansfield ML , Klushin L. Monte carlo studies of dendrimer macromolecules[J]. Macromolecules, 1993, 26(16): 4262-4268
    [103] Mansfield ML. Dendron segregation in model dendrimers[J]. Polymer, 1994, 35(9): 1827-1830
    [104] Mansfield ML. Molecular weight distributions of imperfect dendrimers[J]. Macromolecules, 1993, 26(15): 3811-3814
    [105] Lu P, Paulasaari JK, Weber WP. Reaction of dimethyldichlorosilane, phenylmethyldichlorosilane, or diphenyldichlorosilane with dimethyl sulfoxide. Evidence for silanone and cyclodisiloxane intermediates[J]. Organometallics, 1996, 15(21): 4649-4652
    [106] Kim YH. Lyotropic liquid crystalline hyperbranched aromatic polyamides[J]. Journal of the American Chemical Society, 1992, 114(12): 4947-4948
    [107] Hawker CJ, Fréchet JMJ, Gubbs RB, et al. Preparation of hyperbranched and star polymers by a "living", self-condensing free radical polymerization[J]. Journal of the American Chemical Society, 1995, 117(43): 10763-10764
    [108] Uhrich KE, Hawker CJ, Fréchet JMJ, et al. One-pot synthesis of hyperbranched polyethers[J]. Macromolecules, 1992, 25(18): 4583-4587
    [109] Tomalia DA, Naylor AM, Goddard WA. Dendritic macromolecules: Synthesis of starburst dendrimers[J]. Angewandte Chemie-International Edition, 1990, 29(1): 138-175
    [110] Turner SR, Voit BI, Mourey TH. All aromatic hyperbranched polyesters with phenol and acetate end groups: synthesis and characterization[J]. Macromolecules, 1993, 26(17): 4617-4623
    [111] Leduc MR, Hayes W, Fréchet JMJ. Controlling surfaces and interfaces with functional polymers: Preparation and functionalization of dendritic-linear block copolymers via metal catalyzed "living" free radical polymerization[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1998, 36(1): 1-10
    [112] Hawker CJ, Lee R, Frechet JMJ. One pot synthesis of hyperbranched polycarbonates[J]. Journal ofthe American Chemical Society, 1991, 113(12): 4583-4588
    [113] Kambouris P, Hawker CJ. A new convergent approach to monodisperse dendritic macromolecules[J]. Journal of Chemical Society Perkin Transaction, 1993, 1(22): 2717-2721
    [114]封瑞江,徐世兰.超支化聚合物支化度估算方法的修正[J].抚顺石油学院学报, 2000, 20(1): 10-13
    [115] Lach C, Frey H. Enhancing the degree of branching of hyperbranched polymers by postsynthetic modification[J]. Macromolecules, 1998, 31(7): 2381-2383
    [116] Holter D, Frey H. Degree of branching in hyperbranched polymers.2.Enhancement of the DB: scope and limitations[J].Acta Polymer, 1997, 48(8): 298-309
    [117] Schmaljohann D, Voit B. Kinetic Evaluation of hyperbranched polycondensation reactions[J]. Macromolecular Theory and Simulation, 2003, 12(9): 679-689
    [118] Unal S, Oguz C, Yilgor E, et al. Understanding the structure development in hyperbranched polymers prepared by oligomeric A2+B3 approach: comparison of experimental results and simulations[J]. Polymer, 2005, 46(13): 4533-4543
    [119] Bharathi P, Moore JS. Controlled synthesis of hyperbranched polymers by slow monomer addition to a core[J]. Macromolecules, 2000, 33(9): 3212-3218
    [120] Czupik M, Fossum E. Manipulation of the molecular weight and branching structure of hyperbranched poly(arylene ether phosphine oxide )s prepared via an A2+B3 approach[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(24): 3871-3881
    [121] Cheng KC. Effect of feed rate on structure of hyperbranched polymers formed by stepwise addition of AB2 monomers into multifunctional cores[J]. Polymer, 2003, 44(4):1259-1266
    [122] Bernal DP, Bedrossian L, Collins K, et al. Effect of core reactivity on the molecular weight, polydispersity, and degree of branching of hyperbranched poly(arylene ether phosphine oxide )s[J]. Macromolecules, 2003, 36(2): 333-338
    [123] Kim YH. Hyperbranchecs polymers 10 years after[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36(11): 1685-1698
    [124] Wiener H. Structural determination of paraffin boiling points[J]. Journal of the American Chemical Society, 1947, 69(1): 17-20
    [125] Gutman I, Yeh YN, Less SL, et al. Some recent results in the theory of the Wiener number[J]. Indian Journal of Chemistry A, 1993, 32 (8 ): 651-661
    [126] Diudea MV, Parv B. Molecular topology 25. hyper-wiener index of dendrimers[J]. Journal of Chemical Information and Computer Sciences, 1995, 35(4): 1015-1018
    [127] Diudea MV. Molecular topology 21.Wiener index of dendrimers[J]. Match-Communications in Mathematical and in Computer Chemistry, 1995, 32: 71-83
    [128]宁萌,黄鹏程.超支化高分子研究进展[J].高分子材料科学与工程, 2002, 18(6 ):11-15
    [129] Frechet JMJ. A new convergent approach to monodisperse dendritic macromolecules[J]. Journal of the Chemical Society Chemical Communication, 1990, 15(3): 1010-1012.
    [130] Malmstrom E, Johansson M. Hult A. Hyperbranched aliphatic polyesters[J]. Macromolecules, 1995, 28(5): 1698-1703
    [131] Mourey TH, Tturner SR, Frecthet JMJ, et al. Unique behavior of dendritic macromolecules: Intrinsic viscosity of polyether dendrimers[J]. Macromolecules, 1992, 25(9): 2401-2406
    [132] Wooley KL, Hawker CJ, Pochan JM, et al. Physical properties of dendritic macromolecules: A study of glass transition temperature[J]. Macromolecules, 1993, 26(7 ): 1514-1519
    [133] Brenner AR, Voit BI, Massa DJ, et al. Blends of amphiphilic, hyperbranched polymers and different polyolefins[J]. Macromolecules, 1999, 32(19): 633-639.
    [134] Hult A, Malmstrm E, Johansson M. Processing and characterization of reactive polystyrene/ hyperbranched polyester blends[J]. Polymer, 2000, 41(9): 3193-3203.
    [135] Massa DJ, Voit B. Novel blends of hyperbranched polyesters and linear[J]. Polymer news, 1997, 22(1): 128-129
    [136] Percec V, Kawasumi M. Synthesis and characterization of a thermotropic nematic liquid crystalline dendrimeric polymer[J]. Macromolecules, 1992, 25(15): 3843-3850
    [137] Van Hest JCM. New molecular architectures, based on dentrimers[D]. The Netherlands: Eindhoven University of Technology, 1996
    [138] Kim YH, Webster OW. Synthesis and charaterization of hyperbranched polyurethanes prepared from blocked isocycanate monomers by step growth polymerization[J]. Macromolecules, 1993, 26(18): 4809-4813.
    [139] Wypych G.填料手册[M].北京:中国石化出版社, 2003: 207-208
    [140] Fréchet JMJ. Dendritic macromolecules at the interface of nanoscience and nanotechnology[J]. Macromolecular Symposium, 2003, 201: 11-22
    [141] Fréchet JMJ. Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(23): 3713-3725
    [142] Mezzenga R, Plummer CJG, Boogh L, et al. Morphology build-up in dendritic hyperbranched polymer modified epoxy resins: Modelling and characterization[J]. Polymer, 2001, 42(1): 305-307
    [143] Mezzenga R, Boogh L, M?nson JAE. A review of dendritic hyperbranched polymer as modifiers in epoxy composites[J]. Composite Science and Technology, 2001, 61(5): 787-795
    [144] Oh JH, Jang J, Lee SH. Curing behavior of tetrafunctional epoxy resin/hyperbranched polymer system[J]. Polymer, 2001, 42(20): 8339-8347
    [145] Okazaki M, Murota M, Kawaguchi Y, et al. Curing of epoxy resin by ultrafine silica modified by grafting of hyperbranched polyamidoamine using dendrimer synthesis methodology[J]. Journal of Applied Polymer Science, 2001, 80(4): 573-579
    [146] Wu H, Xu J, Liu Y, et al. Investigation of readily processable thermoplastic-toughened thermosets. V. Epoxy resin toughened with hyperbranched polyester[J]. Journaol of Applied Polymer Science, 1999, 72(2): 151-163
    [147] Boogh L, Pettersson B, M?nson JAE. Dendritic hyperbranched polymers as tougheners for epoxy resins[J]. Polymer, 1999, 40(9): 2249-2261
    [148] Gryshchuk O, Jost N, Karger-Kocsis J. Toughening of vinylester-urethane hybrid resins by functional liquid nitrile rubbers and hyperbranched polymers[J]. Polymer, 2002, 43(17): 4763-4768
    [149] Jannerfeldt G, Trênqvist R, Rambert N, et al. Matrix modification for improved reinforcement effectiveness in polypropylene/glass fibre composites[J]. Applied Composite Materials, 2001, 8(5): 327-341
    [150] Jannerfeldt G, Boogh L, M?nson JAE. Influence of hyperbranched polymers on the interfacial tension of polypropylene/polyamide-6 blends[J]. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(16): 2069-2077
    [151] Rodlert M, Plummer CJG, Garamszegi L, et al. Hyperbranched polymer/montmorillonite clay nanocomposites[J]. Polymer, 2004, 45(3 ): 949-960
    [152] Hedrick JL, Hawker CJ, Miller RD, et al. Structure control in organic-inorganic hybrids using hyperbranched high-temperature polymers[J]. Macromolecules, 1997, 30(24): 7607-7610
    [153] Shi B, Lu XC, Zou R, et al. Observations of the topography and friction properties of macromolecular thin films at the nanometer scale[J]. Wear, 2001, 251: 1177-1182
    [154] Tsubokawa N, Takayama T. Surface modification of chitosan powder by grafting of dendrimer-like hyperbranched polymer onto the surface[J]. Reactive and Functional Polymers, 2000, 43(3): 341-350
    [155] Hayashi S, Fujiki K, Tsubokawa N. Grafting of hyperbranched polymers onto ultrafine silica: Postgraft polymerization of vinyl monomers initiated by pendant initiating groups of polymer chains grafted onto the surface[J]. Reactive Functional Polymers, 2000,46(2): 193-201
    [156] Kim HJ, Moon JH, Park JW. A hyperbranched poly(ethyleneimine) grown on surfaces[J]. Journal of Colloid Interfacial Science, 2000, 227(1): 247-249
    [157] Klee JE, Schneider C, Holter D, et al. Hyperbranched polyesters and their application in dental composites: Monomers for low shrinking composites[J]. Polymers for Advanced Technologies, 2001, 12(6): 207-214
    [158] Asif A, Shi WF. UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: effect of molecular structure on physicl and thermal properties[J]. Polymer, 2004,15(3): 669 -675
    [159] Schmaljohann D, Viot BI, Jansen JFGA, et al. New coating systems based on vinyl ether- and oxetane- modified hyperbanched polyesters[J]. Marcomolecular Materials and Engineering, 2003, 275(2): 31-41
    [160] Miller LL, Duan RG, Tully DC, et al. Electrically conducting dendrimers[J]. Journal of the American Chemical Society, 1997, 119(5): 1005-1010
    [161] Tao XT, Zhang YD, Wada T, et al. Hyperbranched polymers for electroluminescence applications[J]. Advanced Materials, 1998, 10(3): 226-230
    [162] Zhang YD, Wada T, Sasabe H. A new hyperbranched polymer with polar chromophores for nonlinear optics[J]. Polymer, 1997, 38(12): 2893-2897
    [163] Liu HB, Uhrich KE. Hyperbranched polymeric micelles: Drug encapsulation, release and polymer degradation[J]. Polymer Preprint, 1997, 38(2): 582-583
    [164] Kolhe P, Khandare J, Pillai O, et al. Hyperbranched polymer-drug conjugates with high drug payload for enhanced cellular delivery[J]. Pharmaceutical Research, 2004, 21(12): 2185-2195
    [165] Lim YB, Kim SM, Lee Y, et al. Cationic hyperbranched poly(aminoester): A novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior[J]. Journal of the American Chemical Society, 2001, 123(10): 2460-2461
    [166]柯杨船,何平笙.高分子物理教程.北京:化学工业出版社, 2006: 327-329
    [167]朱道本.功能材料化学进展.北京:化学工业出版社, 2005: 304-306
    [168] Zhao MQ, Liu YL, Crooks RM. Preparation of highly impermeable hyperbranched polymer thin-film coatings using dendrimers first as building blocks and then as in situ thermosetting agents[J]. Journal of the American Chemical Society, 1999, 121(5): 923-930
    [169] Bao CY, Jin M, Lu R, et al. Hyperbranched poly(amine-ester) templates for the synthesis of Au nanoparticles[J]. Material Chemistry and Physics, 2003, 82(3): 812-817
    [170] Sun QH, Xu KT, Lam JWY, et al. Nanostructured magnetoceramics from hyperbranched polymer precursors[J]. Materials Science and Engineering C, 2001, 16(1-2): 107-112
    [171] Hong CY, Zhou YZ, Wu D, et al. Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP[J]. Macromolecules, 2005, 38(7): 2606-2612
    [172] Dupret I, David C. Biodegradation of polyester-amides or papain[J]. Polymer Degration and Stability, 2000, 67(3): 497-504.
    [173]葛东彪,王书忠,胡福增.酚醛树脂增韧改性的进展[J].玻璃钢/复合材料, 2003, (5): 37-41
    [174] Kim GM, Qin H, Fang X, et al. Hybrid epoxy-based thermosets based on polyhedral oligosilsesquioxane: Cure behavior and toughening mechanisms[J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(24): 2399-2413
    [175] Karger-Kocsisa J, Fr?hlichb J, Gryshchuka O, et al. Synthesis of reactive hyperbranched and star-like polyethers and their use for toughening of vinylester-urethane hybrid resins[J]. Polymer,2004, 45(4): 1185-1195
    [176] Baek JB, Qin HH, Mather PT, et al. A new hyperbranched poly(arylene-ether-ketone-imide): Synthesis, chain-end functionalization, and blending with a bis(maleimide)[J]. Macromolecules, 2002, 35(13): 4951-4959
    [177] Gopala A, Wu H, Xu J, et al. Investigation of readily processable thermoplastic-toughened thermosets: IV. BMIs toughened with hyperbranched polyester[J]. Journal of Applied Polymer Science, 1999, 171(11): 1809-1817
    [178] Qin HH, Mather PT. Modification of bisphenol-A BMI resin (BPA-BMI) with allyl-terminal hyperbranched polyamide[J]. Polymer Preprint, 2003, 44(1): 132-133
    [179] Varley RJ. Toughening of epoxy resin systems using low-viscosity additives[J]. Polymer International, 2004, 53(1): 78-79
    [180] Mezzenga R, Boogh L, M?nson JE. A thermodynamic model for thermoset polymer blends with reactive modifiers[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(14): 1893-1902
    [181] Markoski LJ, Thompson JL, Moore JS. Synthesis and characterization of linear-dendritic aromatic etherimide copolymers: Tuning molecular architecture to optimize properties and processability[J]. Macromolecules, 2000, 33(15): 5315-5317
    [182] Markoski, LJ, Thompson JL, Moore JS. Indirect method for determining degree of branching in hyperbranched polymers[J]. Macromolecules, 2002, 35(5): 1599-1603
    [183] Wu FI, Shu CF. Hyperbranched aromatic poly(ether imide)s: Synthesis, characterization, and modification[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39(14): 2536-2546
    [184] Moeck A, Burgath A, Hanselmann R, et al. Synthesis of hyperbranched aromatic homo- and copolyesters via the slow monomer addition method[J]. Macromolecules, 2001, 34(22): 7692-7698
    [185] Kang SH, Luo J, Ma H, et al. A hyperbranched aromatic fluoropolyester for photonic applications [J]. Macromolecules, 2003, 36(12): 4355-4359
    [186] Yang G, Jikei M, Kakimoto M. Synthesis and properties of hyperbranched aromatic polyamide[J]. Macromolecules, 1999, 32(7): 2215-2220
    [187] Yamanaka K, Jikei M, Kakimoto M. Preparation of hyperbranched aromatic polyimide without linear units by end-capping reaction[J]. Macromolecules, 2001, 34(12): 3910-3915
    [188] Plummer CJG, Mezzenga R, Boogh L. Phase separation in epoxy resin-reactive dendritic hyperbranched polymer blends[J]. Polymer Engineering and Science, 2001, 41(1): 43-48
    [189] Mezzenga R, M?nson JAE. Thermo-mechanical properties of hyperbranched polymer modified epoxies[J]. Journal of Materials Scienece, 2001, 36(20): 4883-4891
    [190] Muliken TJ, Tan NCB. Phase separation in polysulfone-modified epoxy mixtures. Relationships between curing conditions, morphology and ultimate behavior[J]. Polymer, 2000, 41(3): 1027-1035
    [191] Jannerfeldt G, Boogh L, M?nson JAE. The morphology of hyperbranched polymer compatibilized polypropylene/polyamide 6 blends[J]. Polymer Engineering and Science, 2001, 41(2): 293-300
    [192] Ratna D, Varley R, Simon GP. Processing and chemorheology of epoxy resins and their blends with dendritic hyperbranched polymers[J]. Journal of Applied Polymer Science, 2004, 92(3): 1604-1610
    [193] Zhang WH, Fu BX, Seo Y. Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends[J]. Macromolecules, 2002, 35(21): 8029-8038
    [194] Fr?hlich J, Mülhaupt R. Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber[J]. Macromolecules, 2003, 36(19): 7205-7211
    [195] Ratna D, SimonGP. Thermal and mechanical properties of a hydroxyl-functional dendritic and hyperbranched polymer and trifunctional epoxy functional polymer blends[J]. Polymer Engineeringand Science, 2001, 41(10): 1815-1822
    [196] Mascia L, Heath RJ, Ng VSY. During the evolution of an epoxide network from a homogeneous precursors mixture and effects on properties[J]. Journal of Applied Polymer Science, 2004, 94(3): 1279-1290
    [197] Xu G, Shi WF, Shen SJ. Curing kinetics of epoxy resins with hyperbanched polyesters as toughening agents[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(14): 2649-2656
    [198] Kricheldorf HR, Stukenbrock T. New polymer syntheses 85. Telechelic, star-shaped and hyperbranched polyesters ofβ-(4-hydroxyphenyl) propionic acid[J]. Polymer, 1997, 38(13): 3373- 3383.
    [199] Bernal DP, Bankey EN, Cockayne RC, et al. Fluoride-terminated hyperbranched poly(arylene ether phosphine oxide )s via nucleophilic aromatic substitution[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(10): 1456-1467
    [200] Smet M, Fu Y, Zhang X, et al. A convenient A2+B3 approach to hyperbranched poly(arylene oxindole )s[J]. Macromolecular Rapid Communication, 2005, 26(18): 1458-1463
    [201] In I, Kim SY. Hyperbranched poly(arylene ether amide) via nucleophilic aromatic substitution reaction[J]. Macromolecular Chemistry and Physics, 2005, 206(18): 1862-1869
    [202] Kudo H, Maruyama K, Shindo S, et al. Syntheses and properties of hyperbranched polybenzoxazole by thermal cyclodehydration of hyperbranched poly[o-(t-butoxycarbonyl )amide] via A2+B3 approach[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(11): 3640-3649
    [203] Komber H, Stumpe K, Voit B. NMR study of hyperbranched polyphenylenes from the AB2, (AB2 + AB ) and (A2+ B3) methods[J]. Macromolecular Chemistry and Physics, 2006, 207(20 ):1814-1824
    [204] Liu YL, Tsai SH, Wu CS, et al. Preparation and characterization of hyperbranched polyaspartimides from bismaleimides and triamines[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(23): 5921-5928
    [205] Komber H, Voit B, Monticelli O, et al. 1H and 13C NMR spectra of a hyperbranched aromatic polyamide from p-phenylenediamine and trimesic acid[J]. Macromolecules, 2001, 34(16): 5487-5493
    [206] Thavasi V, Leong LP, Bettens RPA. Investigation of the influence of hydroxy groups on the radical scavenging ability of polyphenols[J]. Journal of Physics and Chemistry: A, 2006, 110(14): 4918-4923
    [207]强继鹏.超支化硼酸酚酯的合成和应用[D].西安:西安交通大学, 2007.
    [208] Abdalla MO, Ludwick A, Mitchell T. Boron-modified phenolic resins for high performance applications[J]. Polymer, 2003, 44(24): 7353-7359.
    [209] Kricheldorf HR, Fritsch D, Vakhtangishvill L, et al. Multicyclic poly(ether sulfone)s of phloroglucinol forming branched and cross-linked architectures[J]. Macromolecules, 2003, 36(12): 4337-4334
    [210] Roovers J, Toporowski P. Preparation and characterization of H-shaped polystyrene[J]. Macromolecules, 1981, 14(5): 1174-1178.
    [211] Weissmueller M, Burchard W. Molar mass distributions of end-linked polystyrene star macromolecules[J]. Polymer International, 1997, 44(3): 380-390.
    [212] Peak D, Luther GW, Sparks DL. Boric acid and borate adsorption mechanisms on amorphous iron oxides: An in situ ATR-FTIR spectroscopic study[J]. Geochimica et Cosmochimica Acta, 1994, 67(14): 2551-2560
    [213]蒋雁峰,俞善信,张鲁西.氯化铁催化合成苯甲酸异丁酯[J].合成化学, 1998, 6(1): 100-105
    [214]李金玉,刘蒲,朱卫卫.磷钨杂多酸催化合成乙酸异戊酯的研究[J].安阳师范学院学报, 2001,15(2): 24-25.
    [215]张良,郭家明,魏利,陶宁.钨硅酸催化合成邻苯二甲酸二丁酯[J].安徽农业大学学报, 2002, 29(2): 210-212.
    [216]徐前永,金玉仁,朱光明.硼酸三异丙酯合成方法的改进[J].化学试剂, 2004, (4): 233-236
    [217] Martín C, Hunt BJ, Ebdon JR, et al. Synthesis, polymerization, and effects on the flame retardancy of boron-containing styrenic monomers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 43(24): 6319-6430
    [218]徐寿昌.有机化学[M].北京:高等教育出版社, 1994: 88-90
    [219] Chu ZY, Feng CX, Song YC, et al. Synthesis of polyborosilazane and its utilization as a precursor to boron nitride[J]. Journal of Applied Polymer Science, 2004, 94(1): 105-109
    [220] Kricheldorf HR, Vakhtangishvili L, Schwarz G, et al. Cyclic hyperbranched poly(ether ketone)s derived from 3,5-bis(4-fluorobenzoyl)phenol[J]. Macromolecules, 2003, 36(15): 5551-5558
    [221] Liu YF, Gao JG, Zhang RZ. Thermal properties and stability of boron-containing phenol- formaldehyde resin formed from paraformaldehyde[J]. Polymer Degradation and Stability, 2002, 77(3): 495-501
    [222] Baek JB, Harris FW. Hyperbranched polyphenylquinoxalines from self-polymerizable AB2 and A2B monomers[J]. Macromolecules, 2005, 38(2): 297-306
    [223] Gao JG, Liu yf, Wang FL. Structure and properties of boron-containing bisphenol-A formaldehyde resin[J]. European Polymer Journal: 2001,37(1), 207-210
    [224]张多太. FB耐高温酚醛树脂的高阻燃性能[J].热固性树脂, 1996, 11(3): 51-56
    [225]闫联生.高性能酚醛树脂研究进展[J].玻璃钢/复合材料, 2000, (6): 47-54
    [226]李卫方,石松,余瑞莲. RTM酚醛树脂研究进展[J].宇航材料工艺, 2004, 34(2): 8-13
    [227] Nair CPR, Bindu RL, Ninan KN. Addition curable phenolic resins based on ethynyl phenyl azo functional novolac[J]. Polymer, 2002, 43(9): 2609-2617
    [228]伊廷会.酚醛树脂高性能化改性研究进展[J].热固性树脂, 2001, 16(4): 29-33
    [229]崔杰,刘长丰.高性能化改性酚醛树脂的研究进展[J].工程塑料应用, 2004, 32(8): 72-76
    [230]漆宗能,马永梅,张世民.聚酰胺/粘土纳米复合材料结晶行为研究进展[C].纳米米技术在化工及塑料行业应用研讨会,北京,2001: 371-381
    [231]胡良全,程建国,滕慧萍.含纳密炭粉的炭-酚醛材料性能研究[J].固体火箭技术, 2000, 23(3): 58-63
    [232]詹茂盛,肖威,李智.酚醛树脂基蒙脱土纳米复合材料的力学性能与增强增韧机理[J].航空材料学报, 2003, 23(1): 34-37
    [233]银贵晨.一种综合性能优良的酚醛树脂注射料的研制[J].中国塑料, 2001, 15(6): 50-54
    [234]何秀珍,张秋红,宋志英.三元共混改性酚醛树脂胶粘剂的研究[J].河北工业大学学报, 1998, 27(3): 47-51
    [235]陈平,张岩.热固性树脂的增韧方法及其增韧机理[J].复合材料学报, 1999, 16(3): 19-23
    [236]刘俊先,王汝敏,孙曼灵.热塑性树脂增韧酚醛树脂基复合材料研究[J].材料工程, 2003, (12): 36-38
    [237] Goswami S, Bandyopadhyay D, Mandal K. Novolac resin-poly(ethyl methacrylate) interpenetrating polymer networks: Morphology and mechanical and thermal properties[J]. Journal of Applied Polymer Science, 2003, 90(2): 412-420
    [238] Tuinstra F, Koening JL. Raman spectrum of graphite[J]. Journal of Chemistry and Physics, 1970, 53(3): 1126-1130
    [239] Piscoe J, Warren BE. An X-ray study of carbon black[J]. Journal of Applied Physics, 1942, 13(6): 364-371
    [240]顾宜,鲁在君,谢美丽,等.开环聚合酚醛树脂基复合材料的研究——MDAPF-EGF玻璃布层压板的研制[J].工程塑料应用, 1995, 23(2): 1-5.
    [241]杜杨,吉法祥,刘祖亮.含硼硅酚醛树脂BSP的合成和性能[J].高分子材料科学与工程, 2003, 19(4): 44-47.
    [242]张衍,王井岗,刘育建.红外光谱法对苯基苯酚改性酚醛树脂的研究[J].玻璃钢/复合材料, 2003, (6): 28-29.
    [243]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社, 1989: 159-170.
    [244] Carotenuto G, Nicolais L. Kinetic study of phenolic resin cure by IR spectroscopy[J]. Journal of Applied Polymer Science, 1999, 74(11): 2703-2715
    [245] Grenier-Loustalot MF, Larroque S, Philippe G. Phenolic resins: 4. Self-condensation of methylol- phenols in formaldehyde-free media[J]. Polymer, 1996, 37(6): 955-964.
    [246] Jones RT. Condensation of trimethylolphenol[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1983, 21(6): 1801-1817.
    [247]黄发荣,焦杨声.酚醛树脂及其应用[M].北京:北京化学工业出版社, 2003: 79-80.
    [248] Painter CP, Graf JF, Coleman MM. Effect of hydrogen bonding on the enthalpy of mixing and the composition dependence of the glass transition temperature in polymer blends[J]. Macromolecules, 1991, 24(20): 5630-5656
    [249]路遥,段跃新,梁志勇,等.钡酚醛树脂体系化学流变特性研究[J].复合材料学报, 2002, 19(5): 33-37.
    [250]高月静,李郁忠,寇晓康,等.高固体含量酚醛树脂的固化特征及动力学研究[J].高分子材料科学与工程, 1999, 15(3): 45-47.
    [251] Kroke E, Li YL, Konetschny C, et al. Silazane derived ceramics and related materials[J]. Materials Science and Engineering: R, 2000, 26(4-6): 97-99
    [252] Wideman T, Paul J, Su FK, et al. Second-generation polymeric precursors for BN and SiNCB ceramic materials[J]. Applied Organomentallic Chemistry, 1998, 12(10-11): 681-693
    [253] Chu ZY, Feng CX, Song YC, et al. Synthesis of polyborosilazane and its utilization as a precursor to boron nitride[J]. Journal of Applied Polymer Science, 2004, 94(1): 105-109
    [254] Sogabe T, Okada O, Kuroda K, et al. Improvement in properties and air oxidation resistance of carbon materials by boron oxide impregnation[J]. Carbon, 1997, 35(1): 67-72
    [255] Inagaki M, Tachikawa H, Nakahashi T, et al. The chemical bonding state of nitrogen in kapton-derived carbon film and its effect on the graphitization process[J]. Carbon, 1998, 36(7-8): 1021-1025
    [256] Zhong DH, Sano H, Uchiyama Y, et al. Effect of low-level boron doping on oxidation behavior of polyimide-derived carbon films[J]. Carbon, 2000, 38(8): 1199-1206
    [257] Jones LE, Thrower PA. Influence of boron on carbon fiber microstructure, physical properties, and oxidation behavior[J]. Carbon, 1991, 29(2): 251-269
    [258] Hagio T, Nakamizo M, Kobayashi K. Studies on X-ray diffraction and Raman spectra of B-doped natural graphite[J]. Carbon, 1989, 27(2): 259-263
    [259] Meenakshi V, Sayeed A, Subramaniyam SV. Conductivity and structural studies on disordered amorphous conducting carbon films[J]. Materials Science Forum, 1996, 223-224(2): 307-310
    [260] Mckee DW. Borate treatment of carbon fibers and carbon/carbon composites for improved oxidation resistance[J]. Carbon, 1986, 24(6 ): 737-741.
    [261] Hagio T, Nakamizo M, Kobayashi K. Thermal conductivities and Raman spectra of boron-doped carbon materials[J]. Carbon, 1987, 25(5): 637-639
    [262] Sinha A, Mahata T, Sharma BP. Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor[J]. Journal of Nuclear Materials, 2002, 301(1): 165-169
    [263] Jones LE, Thrower PA. The influence of structure on substitutional boron doped pyrolytic graphites[J]. Carbon, 1990, 28(1): 239-241.
    [264] Cermignani W, Paulson TE, Onneby C, et al. Synthesis and characterization of boron-doped carbons[J]. Carbon, 1995, 33(4): 367-374.
    [265] Perrone A, Caricato AP, Luches A, et al. Boron carbonitride films deposited by pulsed laser ablation[J]. Applied Surface Science, 1998, 133(4): 239-242
    [266] Watanabe MO, Sasaki T, Itoh S, et al. Structural and electrical characterization of BC2N thin films[J]. Thin Solid Films, 1996, 281-282(2): 334-336
    [267] Zhou ZF, Bello I, Lei MK, et al. Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering[J]. Surface and Coating Technology, 2000, 128(2): 334-340
    [268] Gago R, Jiménez I, García I, et al. Growth and characterisation of boron-carbon-nitrogen coatings obtained by ion beam assisted evaporation[J]. Vacuum, 2002, 64(3-4): 199-204
    [269] Xiang HQ, Fang SB, Jiang YY. Carbons prepared from boron-containing polymers as host materials for lithium insertion[J]. Solid State Ionics, 2002, 148(1): 35-43
    [270] Brown EN, White SR, Sottos NR. Microcapsule induced toughening in a self-healing polymer composite[J]. Journal of Materials Science, 2004, 39(9): 1703-1710
    [271]金日光,武德珍.高强超韧高分子合金的超韧机理研究.第二界中日工程塑料研讨会[C]. 2001: 141-145. 2001年5月23~26日,中国:北京
    [272] Zisman WA. Surface chemistry of plastics reinforced by strong fibers[J]. IEC Product Research and Development, 1963, 8(2 ): 98-111.
    [273]李瑞华,黄玉东,龙军,等. PBO纤维表面空气冷等离子体改性[J].复合材料学报, 2003, 20 (3): 102-107.
    [274] Kim HJ, Brunovska Z, Ishida H. Molecular characterization of the polymerization of acetylene- functional benzoxazine resins[J]. Polymer, 1999, 40(7): 1815-1822
    [275] Low HY, Ishida H. Structural effects of phenols on the thermal and thermo-oxidative degradation of polybenzoxazines[J]. Polymer, 1999, 40(15): 4365-4376
    [276] Kim HJ, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers[J]. Polymer, 1999, 40(23): 6565-6573
    [277] Wang YX, Ishida H. Cationic ring-opening polymerization of benzoxazines[J]. Polymer, 1999, 40(16): 4563-4570
    [278] Shyan BS, Ishida H. Development and characterization of high performance polybenzoxazine composites[J]. Polymer Composites, 1996, 17(5): 710-719
    [279] Harold P, Higginbottom M. Polymerizable composites comprising polyamines and poly- (dihydrobenzoxazine). US4501864[P]: 1985-02-26
    [280] Burke WJ, Glennie ELM, Weatherbee C. Condensation of halophenols with formaldehyde and primary amines[J]. Journal of Organic Chemistry, 1964, 29(4): 909-912
    [281] Burke WJ, Bishop JL, Glennie ELM. A new aminoalkylation reaction. Condensation of phenols with dihydro-1,3-aroxazines[J]. Journal of Organic Chemistry, 1965, 30(10): 3423-3427
    [282] Burke WJ, Kolbezen MJ, Stephens CW. Condensation of naphthols with formaldehyde and primary amines[J]. Journal of the American Chemical Society, 1952, 74(14): 3601-3605
    [283] Schreiber H. Phenolic resin as electric insulator. DE 2217099[P]. 1973-09-06
    [284] Riess G, Schwob JM, Guth, G, et al. Advances in Polymer synthesis[M]. New York: Plenum Press, 1985: 27-28
    [285] Ishida H, Rodriguez Y. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry[J]. Polymer, 1995, 36(16): 3151-3158
    [286] Matsumoto A, Yamagishi K, Aoki S. A novel acrylate carrying a hindered phenol moiety as monomers and terminator in radical polymerization[J]. Journal of Polymer Science Part A: PolymerChemistry, 1994, 32(5): 917-928
    [287] Ishida H, Allen DJ. Mechanical characterization of copolymers based on benzoxazine and epoxy[J]. Polymer, 1996, 37(20): 4487-4495
    [288] Russell VM, Koenig JL, Low HY, et al. Study of the characterization and curing of a phenyl benzoxazine using 15N solid-state nuclear magnetic resonance spectroscopy[J]. Journal of Applied Polymer Science, 1998, 70(7): 1401-1411
    [289] Gao JG. Kinetics of Epoxy resin formation from bispheol-A, tetrabromobisphenol-A, and epichlorohydrin[J]. Journal of Applied Polymer Science, 1993, 49(11): 2003-2007
    [290]裴顶峰,顾宜,蔡兴贤.二烯丙基二苯并噁嗪中间体的结构与固化行为[J].高分子学报, 1998, (5): 595-598
    [291] Low HY, Ishida H. Mechanistic study on the thermal decomposition of polybenzoxazines: Effects of aliphatic amines[J]. Journal of Polymer Science Part B: Polymer Physics, 1998, 36(11): 1935-1946
    [292] Low HY, Ishida H. An investigation of thermal and thermal-oxidative degradation of polybenzoxazines with a reactive functional group[J]. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(7): 647-659
    [293] Kim HJ, Brunovska Z, Ishida H. Dynamic mechanical analysis on highly thermally stable polybenzoxazines with an acetylene functional group[J]. Journal of Applied Polymer Science, 1999, 73(6): 857-862
    [294] Ishida H, Sanders DP. Improved thermal and mechanical properties of polybenzoxazines based on alkyl-substituted aromatic amines[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(24): 3289-3301
    [295] Agag T, Takeichi T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines [J]. Macromolecules, 2001, 34(21): 7257-7263.
    [296] Espinosa MA, Cádiz V, GaliàM. Synthesis and characterization of benzoxazine-based phenolic resins: Crosslinking study[J]. Journal of Applied Polymer Science, 2003, 90(2): 470-481
    [297] Takeichi T, Guo Y, Agag T. Synthesis and characterization of poly(urethane-benzoxazine) films as novel type of polyurethane/phenolic resin composites[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(22): 4165-4176
    [298] Takeichi T, Guo Y. Preparation and properties of poly(urethane-benzoxazine )s based on mono- functional benzoxazine monomer[J]. Polymer Journal, 2001, 33(5): 437-443.
    [299] Takeichi T, Agag T, Zeidam R. Preparation and properties of polybenzoxazine/poly(imide-siloxane) alloys: In situ ring-opening polymerization of benzoxazine in the presence of soluble poly- (imide-siloxane)s[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39(15): 2633-2641
    [300] Ishida H, Lee Y. Study of hydrogen bonding and thermal properties of polybenzoxazine and poly(epsilon-caprolactone ) blends[J]. Journal of Polymer Science Part B: Polymer Physics, 2001, 39(7): 736-749.
    [301] Park R, Jang J. Performance improvement of carbon fiber polyethylene fiber hybrid composites[J]. Journal of Materials Science, 1999, 34(12): 2903-2910.
    [302] Jang J, Yang H. Toughness improvement of carbon-fibre/polybenzoxazine composites by rubber modification[J]. Composite Science and Technology, 2000, 60(3): 457-463.
    [303] Agag T, Takeichi T. Synthesis, characterization and clay-reinforcement of epoxy cured with benzoxazine[J]. High Performance Polymer, 2002, 14(2): 115-132.
    [304] Agag T, Takeichi T. Polybenzoxazine–montmorillonite hybrid nanocomposites: synthesis and characterization[J]. Polymer, 2000, 41(19): 7083-7090.
    [305] Jang J, Seo D. Performance improvement of rubber-modified polybenzoxazine[J]. Journal of Applied Polymer Science, 1998, 67(1): 1-10
    [306]陈红.苯并噁嗪/酚醛树脂共聚体的合成及催化固化机理研究[D].北京:北京化工大学, 2002
    [307] Agag T, Takeichi T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets[J]. Macromolecules, 2003, 36(16): 6010-6017.
    [308] Ning X, Ishida H. Phenolic materials via ring-opening polymerization-synthesis and characterization of bisphenol-a based benzoxazines and their polymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32(24): 1121-1129
    [309] Ishida H, Rodriguez Y. Curing Kinetics of a new benzoxazme based phenolic resin by DSC[J]. Polymer, 1995, 36(6): 3151-3158
    [310] Yang YS, Lee LJ. Microstructure formation in the cure of unsaturated polyester resins[J]. Polymer, 1988, 29(10): 1793-1800
    [311] Liu YH, Jing XL. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins[J]. Carbon, 2007, 45(10): 1965-1971
    [312]孟季茹,梁国正,秦华宇,等.刚性粒子增韧增强聚合物的研究概况[J].塑料, 2002, 31(2): 47- 50.
    [313] Huo YL, Zhang HD, Yang YL. Effects of reversible chemical reaction on morphology and domain growth of phase separating binary mixtures with viscosity difference[J]. Macromolecular Theory and Simulation, 2004, 13(3): 280-289
    [314] Gan WJ, Yu YF, Wang MH. Viscoelastic effects on the phase separation in thermoplastics-modified epoxy resin[J]. Macromolecules, 2003, 36(20): 7746-7751
    [315] Ratna D. Phase separation in liquid rubber modified epoxy mixture: relationship between curing conditions, morphology and ultimate behavior[J]. Polymer, 2001, 42(9): 4209-4218
    [316] Jo WH , Yang JS. Molecular simulation approaches for multiphase polymer systems[J]. Advances in Polymer Science, 2002, (156): 1-51
    [317] Müller M. Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study[J]. Macromolecular Theory and Simulations, 1999, 8(4): 343-374
    [318]江明.高分子合金的物理化学[M].成都:四川教育出版社, 1988: 23-27
    [319]刘凤歧,汤心颐.高分子物理[M].北京:高等教育出版社,1995: 36-40
    [320] Ishii Y, Ryan AJ. Processing of poly(2,6-dimethyl-1,4-phenylene ether) with epoxy resin. 1. Reaction-induced phase separation[J]. Macromolecules, 2000, 33(1): 158-166
    [321]吴培熙,张留成.聚合物共混改性[M].北京:中国轻工业出版社京, 1996: 124-127
    [322]唐涛等,陈辉,黄葆同.二元不相容共混物相形态控制[J].高分子材料科学与工程, 1995, 11(1): 60-63
    [323] Rong MZ, Zeng HM. Polycarbonate-epoxy semi-interpenetrating polymer network: 2. phase separation and morphology[J]. Polymer, 1997, 38(1): 269-277
    [324] Gramespacher H, Meissner J. Melt elongation and recovery of polymer blends, morphology, and influence of interfacial tension[J]. Journal of Rheology, 1997, 41(1): 27-44
    [325] Liang H, Favis BD, Yu YS, et al. Correlation between the interfacial tension and dispersed phase morphology in interfacially modified blends of LLDPE and PVC[J]. Macromolecules, 1999, 32(5): 1637-1642
    [326] Kim SC, Ko MB, Jo WH. The effect of the viscosity of epoxy prepolymer on the generated morphology in rubber-toughened epoxy resin[J]. Polymer, 1995, 36(11): 2189-2219
    [327] Inoue T. Reaction-induced phase decomposition in polymer blends[J]. Progress in Polymer Science, 1995, 20(1): 119-153
    [328] Kim NH, Kim HS. Micro-void toughening of thermosets and its mechanism[J]. Journal of AppliedPolymer Science, 2005, 98(3): 1290-1295
    [329] Kim NH, Kim HS. Toughening method and mechanisms for thermosets[J]. Journal of Applied Polymer Science, 2005, 98(5): 1663-1667
    [330]袁乃驹,丁富新.分离和反应工程的场流分析[M].北京:中国石化出版社, 1996: 32-33
    [331] Onuki A. Phase transition dynamics[M].北京:世界图书出版公司北京公, 2003: 34-47
    [332]金日光.高强超韧高分子合金及复合材料流变工程技术的现状与展望[J].中国石油和化工, 1996, (2): 33-36
    [333] HanY, Lach R, Grellmann W. Effects of rubber content and temperature on unstable fracture behavior in ABS materials with different particle sizes[J]. Journal of Applied Polymer Science, 2001, 79(1): 9-20
    [334] Lach R, Adhikari R, Weidisch R, et al. Crack toughness behavior of binary poly(styrene-butadiene) block copolymer blends[J]. Journal of Materials Science, 2004, 39(4): 1283-1295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700