二氧化碳加氢合成甲醇铜基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大气中C02浓度的增加,温室效应日益严重。在减少C02排放的同时,C02的回收利用也是各国政府和科学研究人员关注的焦点。将CO2转化为有用的化学品是CO2回收利用的有效途径。甲醇是一大宗的化工原料,同时也是化石燃料的潜在替代品。因此,C02加氢合成甲醇在环保、能源和化工等多个领域均具有重要意义。
     本文分析了CO2加氢合成甲醇用铜基催化剂的研究现状,有针对性地从催化剂的制备方法、催化剂的组成和催化反应机理三个方面开展了研究,取得的主要结果如下:
     一、铜基催化剂制备方法的研究
     采用燃烧法制备了CuO-ZnO-ZrO2催化剂,研究了燃料用量、燃料种类及引燃方式等制备条件对催化剂性能的影响,研究了催化剂的组成-结构-性能的构效关系。结果表明,燃料用量和燃料种类是影响催化剂性能的主要因素。燃料用量不同,燃烧焓、燃烧反应持续时间及燃烧反应释放的气体量也不同,从而导致燃烧反应温度不同,并最终影响催化剂的物化性能和催化性能。燃料种类不同,催化剂性能随燃料量变化的规律也明显不同。相对于甘氨酸和尿素的燃烧反应,柠檬酸作燃料的燃烧反应更趋温和,这与燃料本身的组成和结构有关。
     采用尿素、甘氨酸和柠檬酸作燃料制备的CuO-ZnO-ZrO2催化剂,在温度为240℃、压力为3.0 Mpa、空速为3600 h-1的反应条件下,甲醇收率分别可达9.6%、9.9%和8.1%。燃烧法制备的CuO-ZnO-ZrO2催化剂具有比共沉淀法更高的催化活性,原因是燃烧过程中的短暂高温过程有效促进了各组分之间的相互作用。研究表明,催化剂中Cu分散度的提高有利于催化剂活性的提高,ZrO2的相态影响甲醇的选择性。此外,催化剂的性能与催化剂各组分之间的相互作用密切相关。燃烧法是一种简单、快速且有效的制备CuO-ZnO-ZrO2催化剂的方法,可推广到其它复合氧化物的制备。
     采用固相合成法制备了CuO-ZnO-ZrO2催化剂,考察了焙烧温度和配位剂用量对催化剂性能的影响,并对固相反应机理进行了探讨。结果表明,结晶水的存在降低了金属盐的晶格能,常温下金属盐即可与配位剂发生固相配位反应,生成的金属配合物在焙烧条件下分解得到金属氧化物。随着焙烧温度的升高,催化剂中Cu的分散度下降,ZrO2发生相转变,CO2的转化率下降,甲醇的选择性升高。固相合成法具有无需溶剂、符合绿色化学理念的优点,可用于CuO-ZnO-ZrO2等复合氧化物粉体的制备。
     二、铜基催化剂组成和助催化剂的研究
     以CuO-ZrO2催化剂为基础,考察了La2O3掺杂和碱土金属氧化物掺杂对其性能的影响,研究了ZnO在CuO-ZnO-ZrO2催化剂中的作用。结果表明,La2O3对CuO-ZrO2催化剂的掺杂可改变催化剂中Cu的分散度和催化剂表面的碱性。随着La含量的增加,Cu的比表面积呈火山型变化,催化剂的表面碱中心数和密度持续增加。CO2的转化率随金属Cu比表面积的增加而线性增加,甲醇选择性则与催化剂表面的碱中心分布有关。当La2O3的掺入量为Cu2+、Zr4+(?)总量的5%时,甲醇收率最高。碱土金属的掺杂能明显提高CuO-ZrO2催化剂中金属Cu的比表面积,但同时削弱CuO和ZrO2间的相互作用,使CuO的还原难度增加,削弱作用按Mg     三、铜基催化剂中载体的作用和CO2加氢反应机理的探讨
     研究了铜基催化剂中载体的作用,对CO2加氢反应进行了原位XRD测试和原位红外光谱测试,对铜基催化剂上CO2加氢的催化反应路径进行了探讨。结果表明,载体有三个方面的作用:对CuO起到分散作用;与CuO之间发生电荷作用,改变CuO的还原行为;作为活性中心吸附C02和反应中间体。原位XRD结果表明,催化剂在还原过程和反应过程中均以CuO出现,未检到Cu+的存在。原位DRIFT检测到碳酸氢盐、甲酸盐、表面键合甲醛及甲氧基等反应中间体,这些中间体逐步加氢生成甲醇。对于铜基催化剂上CO2加氢合成甲醇反应而言,其催化反应机理为双活性位机理。
With an increase in carbon dioxide (CO2) concentration in the atmosphere, global warming problems are becoming more and more serious in recent years. Conversion of CO2 to useful chemicals is one of the most promising ways to utilize CO2. Methanol synthesis by CO2 hydrogenation is of great significance from the viewpoint of environmental protection, energy sources and chemical industry, because methanol is a common chemical feedstock for several important chemicals and a potential alternative energy to fossil fuels.
     In this work, the research progress of Cu-based catalysts for methanol synthesis from CO2 has been reviewed, and then the preparation method and composition of Cu-based catalyst and the mechanism of catalytic reaction were investigated. The results obtained are mainly as follows.
     1. Studies on the preparation methods for Cu-based catalysts
     CuO-ZnO-ZrO2 catalysts were prepared by the combustion method. The effects of fuel amount, fuel type and ignition manner on the properties of catalysts have been investigated. Many efforts have been focused on elucidating the relationship of the composition structure—property of the catalyst. The results show that the physicochemical and catalytic properties of CuO-ZnO-ZrO2 are affected strongly by fuel content and fuel type. Changing the fuel amount would lead to the variation of the combustion enthalpy, the duration of combustion and the amount of the gases evolved in the combustion process, finally resulting in a change of the combustion temperature, which is related closely to the properties of catalysts. The variation regularities of the properties of CuO-ZnO-ZrO2 with the change of fuel content are different for different types of fuel. The combustion intensity of citric acid-nitrate is markedly weak in comparison with glycine-nitrate and urea-nitrate. The reason can be ascribed to the difference in composition and structure of fuel.
     The maximum methanol yields of 9.6%,9.9% and 8.1% under the reaction conditions of T=220℃, P=3.0 MPa and GHSV=3600 h-1 were obtained over the CuO-ZnO-ZrO2 catalysts prepared by combustion method using urea, glycine and citric acid as fuel, respectively. In comparison with the catalysts prepared by co-precipitation method, the catalyst prepared by combustion method exhibit a higher activity for methanol synthesis. This is due to the high temperature produced during combustion process favoring an interaction between the components of catalyst in a short time. The results show that the catalytic properties of catalysts are related to the dispersion of Cu, the phase state of ZrO2 and an interaction between the compositions in catalysts. The combustion method is a simple, fast and effective method for the preparation of CuO-ZnO-ZrO2 catalysts, and it can be used to prepare other complex oxide powder.
     The CuO-ZnO-ZrO2 catalysts were synthesized by a route of solid-state reaction, and the effects of calcination temperature and the complexant amount on the properties of catalysts have been investigated. Furthermore, a mechanism of solid-state reaction was proposed. The results show that, the complexes of metal-citrate at ambient temperature can be formed by the solid-state reaction, because the crystallization water in hydrated metal salts decreases the lattice energy. The CuO-ZnO-ZrO2 catalyst can be obtained by the decomposition of the Cu-Zn-Zr citrate precursors. With an increase in calcination temperature, the dispersion of copper species decreases, resulting in a low catalytic activity for methanol synthesis from CO2 hydrogenation. When the transformation of t- ZrO2 to m- ZrO2 occurred in this catalyst, the CO2 conversion is reduced and the methanol selectivity is increased. The route of solid-state reaction is a solvent-free method that meets the requirement of green chemistry, and can be used to prepare the complex oxide catalysts.
     2. Studies on the composition of catalyst and the promoter
     The effects of La2O3 and alkaline-earth oxide doping on the properties of CuO-ZrO2 catalysts were investigated and the role of ZnO in CuO-ZnO-ZrO2 was studied. The results show that, the presence of La2O3 affects the dispersion of Cu and the property of basic sites in the catalysts. With an increase in La loading, the Cu surface area takes on a volcano variation trend, and the amount and density of basic sites over CuO-ZrO2 catalysts increase continually. The conversion of CO2 depends on the surface area of metallic Cu, and there is a linear relationship between them. The methanol selectivity is related to the distribution of basic sites on the surface of catalyst. A suitable amount of La doing is beneficial for the catalytic activity of CuO-ZrO2 and a maximum methanol yield is obtained as the La loading is 5% of the total amount of Cu2+ and Zr4+. With the doping of alkaline-earth metal oxide, the surface area of Cu in catalysts is increased obviously, but the interaction between CuO and ZxO2 became weaker, leading to the rise in the reduction temperature of CuO, in which the effect extent is in the sequence of Mg     3. Roles of carrier in the Cu-based catalyst and the reaction mechanisms for methanol synthesis from CO2 hydrogenation
     The roles of the carrier in Cu-based catalysts were studied, and the valence of Cu and the intermediate species in the catalytic reaction were investigated by in-situ XRD and in-situ DRIFT techniques. The results show that there are three roles of the carrier in the Cu-based catalysts for methanol synthesis from CO2 hydrogenation:(ⅰ) the carrier can disperse the CuO component; (ⅱ) there is an electronic effect between the carrier and the CuO, which affects the reduction performance of CuO; (ⅲ) it is very important that the carrier participates the catalytic reaction directly as an active sites of adsorbing CO2 and reaction intermediate species. The results of in-situ XRD show that, the Cu species exists in the form of Cu0 during the catalytic process, and no Cu+ can be detected. With the in-situ DRIFT technique, the reaction intermediate species including bicarbonate, formate, surface-bound formaldehyde and methoxide can be detected, which were hydrogenated step by step to form methanol. The dual-site mechanism is reasonable for the methanol synthesis by CO2 hydrogenation over Cu-based catalysts.
引文
[1]Omae I. Aspects of carbon dioxide utilization [J]. Catal Today,2006,115:33-52.
    [2]吴昊.应对二氧化碳浓度上升问题的研究:CO2的捕获、储存与利用[J].中国安全科学学报,2008,18(8):5-11.
    [3]洪定一.重视碳一化学开发丙烯及汽柴油合成技术[J].当代石油化工,2003,11(7):8-13.
    [4]黄黎明,陈庚良.二氧化碳的回收利用与捕集储存[J].石油与天然气化工,2006,35(5):354-358.
    [5]刘斐,高慧燕.中国温室气体排放的历史积累和现状分析[J].节能与环保,2009,4:14-15.
    [6]邵强.国内外甲醇市场分析[J].化学工业,2007,25(5):51-55
    [7]夏建超.合成气一步法制取二甲醚的固体酸催化剂研究,博士论文,复旦大学,2006年6月.
    [8]朱杰,崔宇,陈元君,周华群,王垚,魏飞.甲醇制烯烃过程研究进展[J].化工学报,2010,61(7):1674-1684.
    [9]Olah G A, Goeppert A, Prakash G K S. Chemical recycling of carbon dioxide to methanol and dimethyl ether:From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons [J]. J Org Chem,2009,74:487-498.
    [10]Olah G A. After oil and gas:Methanol economy [J]. Catal Lett,2004,93:1-2.
    [11]Sloczynski J, Grabowski R, Kozlowska A, Olszewski P, Stoch J, Skrzypek J, Lachowska M. Catalytic activity of the M/(3ZnO·ZrO2) system (M=Cu,Ag,Au) in the hydrogenation of CO2 to methanol [J]. Appl Catal A:Gen,2004,278:11-23.
    [12]Toyir J, Piscina P R de la, Fierro J L G, Homs N. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts:influence of support and promoter [J]. Appl Catal B:Enviro,2001,29:207-215.
    [13]Toyir J, Piscina P R de la, Fierro J L G, Horns N. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts:Influence of metallic precursors [J]. Appl Catal B:Enviro,2001,34:255-266.
    [14]Saito M, Fujitani T, Takeuchi M, Watanabe T. Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen [J]. Appl Catal A:Gen,1996,138:311-318.
    [15]徐征,千载虎,张强,毛利群,田部浩三.CuO-ZnO基CO2/H2合成甲醇催化剂的反应活性中心[J].催化学报,1994,15(2):97-102.
    [16]张强,徐征,千载虎.在CuO-ZnO及CuO-ZnO-ZrO2催化剂上CO2/H2低压合成甲醇的研究[J].催化学报,1989,10(1):22-28.
    [17]Fierro G, Jacono M L, Inversi M, Porta P, Cioci F, Lavecchia R. Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction [J]. Appl Catal A: Gen,1996,137:327-348.
    [18]Liu S H, Wang H P, Wang H C, Yang Y W. In situ EXAFS studies of copper on ZrO2 during catalytic hydrogenation of CO2 [J]. J Electr Spectronsc,2005,144-147:373-376.
    [19]Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH [J]. Appl Catal A:Gen,2008,350:16-23.
    [20]Kakumoto T, Watanabe T. A theoretical study for methanol synthesis by CO2 hydrogenation [J]. Catal Today,1997,36:39-44.
    [21]Wang G C, Zhao Y Z, Cai Z S, Pan Y M, Zhao X Z, Li Y W, Sun Y H, Zhong B. Investigation of the active sites of CO2 hydrogenation to methanol over a Cu-based catalyst by the UBI-QEP approach [J]. Surf Science,2000,465:51-58.
    [22]Clausen B S, Steffensen G, Fabius B, Villadsen J, Feidenhans'l R, Tops(?)e H. In situ cell for combined XRD and on-line catalysis tests:Studies of Cu-based water gas shift and methanol catalysts [J]. J Catal,1991,132:524-535.
    [23]许勇,王金安,汪仁.二氧化碳加氢合成甲醇铜基催化剂表面组成的研究[J].燃料化学学报,1994,22(2):176-181.
    [24]Yoshihara J, Parker S C, Schafer A, Campbell C T. Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper [J]. Catal Lett,1995,31: 313-324.
    [25]Yoshihara J, Campbell C T. Methanol synthesis and reverse water-gas shift kinetics over Cu (110) model catalysts:Structural sensitivity [J]. J Catal,1996,161:776-782.
    [26]Rasmussen P B, Holmblad P M, Askgaard T, Ovesen C V, Stoltze P, N(?)rskov J K, Chorkendorff I. Methanol synthesis on Cu (100) from a binary gas mixture of CO2 and H2 [J]. Catal Lett,1994,26:373-381.
    [27]Chinchen G C, Denny P J, Jennings J R, Spencer M S, Waugh K C. Synthesis of Methanol:Part 1. Catalysts and Kinetics [J]. Appl Catal,1988,36:1-65.
    [28]Chinchen G C, Waugh K C, Whan D A. The activity and state of the copper surface in methanol synthesis catalysts [J]. Appl Catal,1986,25:101-107.
    [29]Pan W X, Cao R, Roberts D L, Griffin G L. Methanol synthesis activity of Cu/ZnO catalysts [J]. J. Catal.1988,114:440-446.
    [30]Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol [J]. J Catal,2007,249:185-194.
    [31]Sun Q, Zhang Y L, Chen H Y, Deng J F, Wu D, Chen S Y. A novek process for preparation of Cu/ZnO and Cu/ZnO/Al2O3 ultrafine catalyst:Structure, surface properties, and activity for methanol synthesis from CO2+H2 [J]. J Catal,1997,167: 92-105.
    [32]Sloczynski J, Grabowski R, Kozlowska A, Olszewski P, Lachowska M, Skrzypek J, Stoch J. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2 [J]. Appl Catal A:Gen, 2003,249:129-138.
    [33]Zhang Y P, Fei J H, Yu Y M, Zheng X M. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3 [J]. Energ Conv Manag, 2006,47:3360-3367.
    [34]Liu X M, Yan Z F, Lu G Q. Role of nanosized zirconia on the properties of Cu/Ga2O3/ ZrO2 catalysts for methanol synthesis [J]. Chin J Chem,2006,24:172-176.
    [35]Liu X M, Lu G Q, Yan Z F, Nanocrystalline zirconia as catalyst support in methanol synthesis [J]. Appl Catal A:Gen,2005,279:241-245.
    [36]庄会栋,白绍芬,刘欣梅,阎子峰.Cu/ZrO2催化剂的结构及其CO2加氢合成甲醇催化反应性能[J].燃料化学学报,2010,38(4):462-467.
    [37]Wang J B, Lee H K, Huang T J. Synergistic catalysis of carbon dioxide hydrogenation into methanol by yttria-doped ceria/-alumina-supported copper oxide catalyst:Effect of promotor and dopant [J]. Catal Lett,2002,83(1-2):79-86.
    [38]Gao L Z, Au C T. CO2 hydrogenation to methanol on a YBa2Cu307 catalyst [J]. J Catal, 2000,189:1-15.
    [39]钟顺和,王希涛,宓立新,肖秀芬.SnO2-SiO2负载Gu、Ni催化剂的CO2加氢反应性能[J].燃料化学学报,2001,29(2):154-158.
    [40]从昱,包信和,张涛,张孝英,梁东白,田金忠,黄宁表.CO2加氢合成甲醇的超细Cu-ZnO-ZrO2催化剂的表征[J].催化学报,2000,21(4):314-318.
    [41]Tohji K, Udagawa Y, Mizushima T, Ueno A. The Structure of the Cu/ZnO catalyst by an in-situ EXAFS study [J] J Phys Chem,1985,89:5671-5676.
    [42]Shao C P, Fan L, Fujimoto K, Iwasawa Y. Selective methanol synthesis from CO2/H2 on new SiO2-supported PtW and PtCr bimetallic catalysts [J]. Appl Catal A:Gen,1995,128: L1-L6.
    [43]Shao C P, Chen M S. In-situ FT-IR studies on the CO2 hydrogenation over the SiO2-supported RhM (M=Cr, Mo, W) complex catalysts [J]. J Mol Catal A:Chem,2001, 166:331-335.
    [44]Inoue T, Lizuka T, Tanabe K. Hydrogenation of carbon dioxide and carbon monoxide over supported rhodium catalysts under 10 bar pressure [J]. Appl Catal,1989,46:1-9.
    [45]Solymosi F, Erdohelyi A, Lancz M. Surface interaction between H2 and CO2 over palladium on various supports [J]. J Catal,1985,95:567-577.
    [46]Shen W J, Ichihashi Y, Ando H, Matsumura Y, Okumura M, Haruta M. Effect of reduction temperature on structural properties and CO/CO2 hydrogenation characteristics of a Pd-CeO2 catalyst [J]. Appl Catal A:Gen,2001,217:231-239.
    [47]Koppel R A, Stocker C, Baiker A. Copper- and silver-Zirconia aerogels:Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide [J]. J Catal,1998,179:515-527.
    [48]Melian-Cabrera I, Granados M L, Fierro J L G. Reverse topotactic transformation of a Cu-Zn-Al catalyst during wet Pd impregnation:Relevance for the performance in methanol synthesis from CO2/H2 mixtures [J].J Catal,2002,210:273-284.
    [49]Melian-Cabrera I, Granados M L, Fierro J L G. Pd-Modified Cu-Zn catalysts for methanol synthesis from CO2/H2 mixtures:Catalytic structures and performance [J]. J Catal,2002,210:285-294.
    [50]Calafatat A, Vivas F, Brito J L. Effects of phase composition and of potassium promotion on cobalt molybdate catalysts for the synthesis of alcohols from CO2 and H2 [J]. Appl Catal A:Gen,1998,172:217-224.
    [51]Tagawa T, Nomura N, Shimakage M, Goto S. Effect of supports on copper catalysts for methanol synthesis from CO2+H2 [J]. Res Chem Intermed,1995,21(2):193-202.
    [52]Nomura N, Tagawa T, Shimakage M, Goto S. Effect of acid-base properties on copper catalysts for hydrogenation of carbon dioxide [J]. React Kinet Catal Lett,1998,63(1): 21-25.
    [53]Gotti A, Prins R. Basic metal oxides as cocatalysts for Cu/SiO2 catalysts in the conversion of synthesis gas to methanol [J]. J Catal,1998,178:511-519.
    [54]Jung K T, Bell A T. Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper [J]. Catal Lett,2002,80:63-68.
    [55]许勇,汪仁.CO2/H2低压合成CH3OH催化剂性能的研究[J].石油化工,1993,22(10):655-660.
    [56]徐征,千载虎.ZrO2对CuO-ZnO-ZrO2催化剂低压合成甲醇的促进作用[J].高等学校化学学报,1991,12(6):825-826.
    [57]李基涛,区泽棠,陈明旦,张伟德.CO2加氢合成甲醇催化剂中Al2O3的作用[J].天然气化工,1997,22(5):13-16.
    [58]Nomura N, Tagawa T, Goto S. Titania supported copper catalysts for methanol synthesis from carbon dioxide [J]. React Kinet Catal Lett,1998,63(1):9-13.
    [59]Ma Y, Sun Q, Wu D, Fan W H, Zhang Y L, Deng J F. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation [J]. Appl Catal A:Gen,1998,171:45-55.
    [60]齐共新,费金华,侯昭胤,郑晓明.Cu-MnOx/Al2O3催化剂上CO2加氢反应的研究[J].石油化工,1999,28(10):660-662.
    [61]朱毅青,文艺,赖梨芳,宗封琦,王剑.超细CuO/ZnO/TiO2-SiO2的表征和CO2加氢合成甲醇性能研究[J].燃料化学学报,2004,32(4):486-491.
    [62]Fisher I A, Woo H C, Bell A T. Effects of zirconia promotion on the activity of Cu/SiO2 for methanol synthesis from CO/H2 and CO2/H2 [J]. Catal Lett,1997,44:11-17.
    [63]Bianchi D, Chafik T, Khalfallah M, Teichner S J. Intermediate species on zirconia supported methanol aerogel catalysts V. Adsorption of methanol [J]. Appl Catal A:Gen, 1995,123:89-110.
    [64]迟亚武,梁东白,杜鸿章,徐长海,林培滋,罗洪原,林励吾.助剂对超细CuO-ZnO-SiO2催化剂性质和CO2加氢反应性能的影响[J].分子催化,1996,10(6):430-434.
    [65]刘志坚,廖建军,谭经品,李大东.La2O3对Cu/ZnO催化剂性质及CO2加氢反应性 能的影响[J].石油与天然气化工,2001,30(2):55-57.
    [66]黄树鹏,张永春,陈绍云,商敏静.助剂对CuO-ZnO-Al2O3催化剂在CO2加氢制甲醇反应中性能的影响[J].石油化工,2009,38(5):482-485.
    [67]Zhang Y P, Fei J H, Yu Y M, Zheng X M. Study of C02 hydrogenation to methanol over Cu-V/γ-Al2O3 catalyst [J]. J Natu Gas Chem,2007,16:12-15.
    [68]王仁国,陈彤,张国民.V助剂对CuO/Al2O3上C02+H2合成甲醇的影响[J].天然气化工,1999,24(6):12-16.
    [69]阴秀丽,常杰,汪俊锋,付严,梁耀彰Cu/Zn/Al/Mn催化剂上CO/CO2加氢合成甲醇特性研究[J].燃料化学学报,2004,32(4):492-497.
    [70]Lachowska M, Skrzypek J. Methanol synthesis from dioxide and hydrgen over Mn-promoted copper/Zinc/Zirconia catalysts [J]. React Kinet Catal Lett,2004,83(2): 269-273.
    [71]Inui T, Hara H, Takeguchi T, Kim J B. Structure and function of Cu-based composite catalysts for highly effective synthesis of methanol by hydrogenation of CO2 and CO [J]. Catal Today,1997,36:25-32.
    [72]Sloczyhski J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 [J]. Appl Catal A:Gen,2006, 310:127-137.
    [73]杨鹏程,蔡小海,谢有畅.共沉淀CuO-ZrO2复合氧化物分散态结构研究[J].物理化学学报,2003,19(8):714-717.
    [74]Nitta Y, Fujimatsu T, Okamoto Y, Imanaka T. Effect of starting salt on catalytic behaviour of Cu-ZrO2 catalysts in methanol synthesis from carbon dioxide [J]. Catal Lett,1993,17: 157-165.
    [75]Deng J F, Sun Q, Zhang Y L, Chen S Y, Wu D. A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2+H2:comparison of various preparation methods [J]. Appl Catal A:Gen,1996,139:75-85.
    [76]Ning W S, Shen H Y, Liu H Z. Study of the effect of preparation method on CuO-ZnO-Al2O3 catalyst [J]. Appl Catal A:Gen,2001,211:153-157.
    [77]刘志坚,廖建军,谭经品,李大东.二氧化碳加氢合成甲醇的CuO-ZnO催化剂制备,制备方法[J].石油炼制与化工,2000,31(9):58-61.
    [78]刘志坚,廖建军,谭经品,李大东.二氧化碳加氢合成甲醇的CuO-ZnO催化剂制备,制备规律[J].石油炼制与化工,2000,31(12):37-40.
    [79]Li J L, Inui T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures [J]. Appl Catal A:Gen,1996,137:105-117.
    [80]赵云鹏,贾丽华,辛岗,赵波.CuO-ZnO-Al2O3催化剂上低压CO2加氢合成甲醇反应性能的研究[J].天然气化工,2009,34(6):4-10.
    [81]Fujita S I, Kanamori Y, Satriyo A M, Takezawa N. Methanol synthesis from CO2 over Cu/ZnO catalysts prepared from various coprecipitated precursors [J]. Catal Today,1998, 45:241-244.
    [82]Raudaskoski R, Niemela M V, Keiski R L. The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2 [J]. Topic Catal, 2007:57-60.
    [83]Hong Z S, Cao Y, Deng J F, Fan K N. CO2 hydrogenation to methanol over Cu/ZnO/Al2O3 catalysts by a novel gel-network-coprecipitation method [J]. Catal Lett, 2002,82(1-2):37-44.
    [84]许越.催化剂设计与制备工艺[M].化学工业出版社,北京,2003.
    [85]Guo Y Z, Meyer-Zaika W, Muhler M, VukojevicS, Epple M, Cu/Zn/Al xerogels and aerogels prepared by a sol-gel reaction as catalysts for methanol synthesis [J]. Eur J Inorg Chem,2006:4774-4781.
    [86]Agrell J, Boutonnet M, Melian-Cabrera I, Fierro J L G. Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterization [J]. Appl Catal A:Gen,2003,253:201-211.
    [87]孙琦,张玉龙,崔泰东,邓景发.快速燃烧方法制备超细Cu/ZnO/Al2O3催化剂及其在C02与H2合成甲醇反应中的催化性能[J].复旦学报(自然科学版),1996,35(1):75-82.
    [88]迟亚武,梁东白,徐长海,林培滋,罗洪原,林励吾.预处理条件对用于CO2加氢的超细CuO-ZnO-SiO2催化剂性能的影响[J].分子催化,1996,10(6):423-429.
    [89]Fujita S, Moribe S, Kanamori Y, Kakudate M, Takezawa N. Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2-effects of the calcination and reduction conditions on the catalytic performance [J]. Appl Catal A:Gen, 2001,207:121-128.
    [90]曹勇,陈立芳,戴维林,范康年,吴东,孙予罕.沉淀还原法制备高性能CO2加氢合成甲醇Cu/ZnO/Al2O3催化剂[J].高等学校化学学报,2003,24(7):1296-1298.
    [91]Weigel J, Koeppel R A, Baiker A, Wokaun A. Surface Species in CO and CO2 hydrogenation over copper/zirconia:on the methanol synthesis mechanism [J]. Langmuir, 1996,12(22):5319-5329.
    [92]Klier K, Methanol synthesis [J]. Adv Catal,1982,31:243-313.
    [93]Chinchen G C, Denny P J, Parker D G, Spencer M S, Whan D A. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants [J]. Appl Catal,1987,30(2):333-338.
    [94]Sun Q, Liu C W, Pan W, Zhu Q M, Deng J F. In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst [J]. Appl Catal A:Gen, 1998,171:301-308.
    [95]毛利群,徐征,千载虎,黄家生,林治银,徐奕德.CuO/ZnO/ZrO2催化剂上CO2加氢反应机理的研究[J].催化学报,1992,13(3):187-191.
    [96]Clarke D B, Bell A T. An infrared study of methanol synthesis from CO2 on clean and potassium-promoted Cu/SiO2 [J]. J Catal,1995,154:314-328.
    [97]从昱,包信和,张涛,张孝英,梁东白,田金忠,黄宁表.超细Cu-ZnO-ZrO2催化剂上甲醇合成的TPSR和TPD研究[J].燃料化学学报,2000,28(3):238-243.
    [98]Jung K D, Bell A T. Role of hydrogen spillover in methanol synthesis over Cu/ZrO2 [J]. J Catal,2000,193:207-223.
    [99]Fujita S I, Usui M, Ito H, Takezawa Nobutsune. Mechanisms of methanol synthesis from carbon dioxide and from carbon monoxide at atmospheric pressure over Cu/ZnO [J]. J Catal,1995,157:403-413.
    [100]Fisher I A, Bell A T. In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2 [J]. J Catal,1997,172:222-237.
    [101]Fujitani T, Choi Y, Sano M, Kushida Y, Nakamur J. Scanning tunneling microscopy study of formate species synthesized from CO2 hydrogenation and prepared by adsorption of formic acid over Cu(111) [J]. J Phys Chem B,2000,104:1235-1240.
    [102]Shen W J, Jun K W, Choi H S, Lee K W. Thermodynamic investigation of methanol and dimethyl ether synthesis from CO2 hydrogenation [J]. Korea J Chem Eng,2000,17: 210-216.
    [103]Chinchen G C, Hay C M, Vandervell H D, Waugh K C, The measurement of copper surface areas by reactive frontal chromatography [J]. J Catal,1987,103:79-86.
    [104]Merzhanov A G, History and recent developments in SHS, Ceram Int,1995,21(5): 371-379.
    [105]殷声.燃烧合成[M].冶金工业出版社,北京,1999.
    [106]郑仕远,李荣缇,罗永明.自蔓延燃烧法材料合成技术[J].山东陶瓷,1999,22(4):3-12.
    [107]殷声,赖和怡.自蔓延高温合成法(SHS)的发展、自蔓延高温合成技术和材料[M].冶金工业出版社,北京,1995.
    [108]Luo S H, Tang W H, Zhang Z T, Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders [J]. Microelectron Eng, 2003,66(1-4):147-152.
    [109]Bhaduri S, Bhaduri S B, Zhou E. Auto ignition synthesis and consolidation of Al2O3-ZrO2 nano/nano composite powders [J]. J Mater Res,1998,13:156-165.
    [110]Ravichandran D, Roy R, Ravindranathan P, White W B. Combustion synthesis of hexaluminate phosphors [J]. J Am Ceram Soc,1999,82:1082-1166.
    [111]Aruna S T, Ghosh S, Patil K C. Combustion synthesis and properties of Ce1-xPrxOy red ceramic pigments [J]. Int J Inorg Mater,2001,3:387-392.
    [112]Ringuede A, Labrincha J A, Frade J R. A combustion synthesis method to obtain alternative cermet materials for SOFC anodes [J]. Solid State Ionics,2001,141-142: 649-656.
    [113]Suresh K, Panchapagesan T S, Patil K C. Synthesis and properties of La1-xSrx. Solid State Ionics [J].1999,126:299-305.
    [114]Julien C, Camacho-Lopez M A, Mohan T, Chitra S, Kalayani P, Gopakumar S. Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries [J]. Solid State Ionics,2001,141-142:549-557.
    [115]Anuradha T V, Ranganathan S, Mimani T, Patil K C. Combustion synthesis of nanostructured barium titanate [J]. Scripta Mater,2001,44:2237-2241.
    [116]Roy S, Sigmund W, Aldinger F. Nanostructured yttria powders via gel combustion [J]. J Mater Res 1999,14:1524-1531.
    [117]Jain S R, Adiga K C, Pai Verneker V R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures [J]. Combust Flame,1981,40:71-79.
    [118]Kiminami R H G A, Morelli M R, Folz D C, Clark D E. Microwave synthesis of alumina powders [J]. Am Ceram Soc Bull,2000,79:63-67.
    [119]郝仕油.纳米Ce1-xLaxO2-δ的微波引诱燃烧合成及其性能表征[J].无机化学学报,2007,23(8):1477-1480.
    [120]Patil K C, Aruna S T, Ekambaram S. Combustion synthesis [J]. Curr Opin Solid State Mater Sci,1997,2:158-165.
    [121]Bera P, Patil K C, Jayaram V, Hegde M S, Subbana G N. Combustion synthesis of nano metal particles supported on α-Al2O3:CO oxidation and NO reduction catalysts [J]. J Mater Chem,1999,9:1801-1805.
    [122]Bera P, Patil K C, Hegde M S. Oxidation of CH4 and C3H8 over combustion synthesized nanosize metal particles supported on α-Al2O3 [J]. Phys Chem Chem Phys,2000,2: 373-378.
    [123]Bera P, Patil K C, Subbana G N, Hegde M S. Ionic dispersion of Pt and Pd on CeO2 by combustion method:Effect of metal-ceria interaction on catalytic activities for NO reduction, CO and hydrocarbon oxidation [J]. J Catal,2000,196:293-301.
    [124]Bera P, Hegde M S, Patil K C. Combustion synthesized Ce1-xPtxOδ: A novel room temperature H2-O2 recombinaton catalyst [J]. Curr Sci,2001,80:1576-1578.
    [125]Mimani T. Instant synthesis of nanoscale spinel aluminates [J]. J Alloys Comp,2001, 315:123-128.
    [126]Quenard O, Grave De E, Laurent C, Rousset A. Synthesis, characterization and thermal behaviour of Fe0.65Co0.35MgAl2O4 and Fe0.65Ni0.35MgAl2O4 nanocomposite powders [J]. J Mater Chem 1997,7:2457-2467.
    [127]Papavasiliou J, Avgouropoulos G, Ioannides T. In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production an purification of hydrogen [J]. Appl Catal B:Enviro,2006,66:168-174.
    [128]Avgouropoulos G, Ioannides T, Matralis H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO [J]. Appl Catal B: Enviro,2005,56:87-93.
    [129]Avgouropoulos G, Ioannided T. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method [J]. Appl Catal A:Gen,2003,244: 155-167.
    [130]Papavasiliou J, Avgouropoulos G, Ioannides T. Steam reforming of methanol over copper-manganese spinel oxide catalysts [J]. Catal Commun,2005,6:497-501.
    [131]Zhang Z L, Zhang Y X, Mu Z G, Yu P F, Ni X Z, Wang S L, Zheng L S. Synthesis and catalytic properties of Ce0.6Zr0.4O2 solid solutions in the oxidation of soluble organic fraction from diesel engines [J]. Appl Catal B:Enviro,2007,76:335-347.
    [132]Patil K C, Aruna S T, Mimani T. Combustion synthesis:An update [J]. Curr Opin Solid State Mater Sci,2002,6:507-512.
    [133]Dean J A (Ed.). Lange's Handbook of Chemistry,13th ed, McGraw-Hill, New York, 1985.
    [134]Purohit R D, Sharma B P, Pillai K T, Tyagi A K. Ultrafine ceria powders via glycine-nitrate combustion [J]. Mater Res Bull,2001,36:2711-2721.
    [135]Wang L C, Liu Q, Chen M, Liu Y M, Cao Y, He H Y, Fan K N. Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique [J]. J Phys Chem C,2007,111:16549-16557.
    [136]Rhodes M D, Bell A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts Part I. Steady-state studies [J]. J Catal,2005,233: 198-209.
    [137]Toniolo J C, Lima M D, Takimi A S, Bergmann C P. Synthesis of alumina powders by the glycine-nitrate combustion process [J]. Mater Res Bull,2005,40:561-571.
    [138]Wang Q G, Peng R R, Xia C R, Zhu W, Wang H T. Characteristics of YSZ synthesized with a glycine-nitrate process [J]. Ceram Int,2008,34:1773-1778.
    [139]Andrade M J, Lima M D, Bonadiman R, Bergmann C P, Nanocrystalline pirochromite spinel through solution combustion synthesis [J]. Mater Res Bull,2006,41:2070-2079.
    [140]Tian Z Q, Yu H T, Wang Z L, Combustion synthesis and characterization of nanocrystalline LaAlO3 powders [J]. Mater Chem Phys,2007,106:126-129.
    [141]Arena F, Spadaro L, Blasi O D, Bonura G, Frusteri F. Integrated synthesis of dimethyl ether via CO2 hydrogenation [J]. Stud Surf Sci Catal,2004,147:385-390.
    [142]Schuyten S, Dinka P, Mukasyan A S, Wolf E. A novel combustion synthesis preparation of CuO/ZnO/ZrO2/Pd for oxidative hydrogen production from methanol [J]. Catal Lett, 2008,121:189-198.
    [143]Andrade de Jesus F A, Silva R S, Hernandes A C, Macedo Z S, Effect of pH on the production of dispersed Bi4Ge3O12 nanoparticles by combustion synthesis [J]. J Eur Ceram Soc,2009,29:125-130.
    [144]Ribeiro N F P, Souza M M V M, Schmal M. Combustion synthesis of copper catalysts for selective CO oxidation [J]. J Power Sources,2008,179:329-334.
    [145]Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F. Basic evidence for methanol-synthesis catalyst design [J]. Catal Today,2009,143:80-85.
    [146]Boudart M. Turnover rates in heterogeneous catalysis [J]. Chem Rev,1995,95:61-666.
    [147]Sun K P, Lu W W, Qiu F Y, Liu S W, Xu X L. Direct synthesis of DME over bifunctional catalyst:Surface properties and catalytic performance [J]. Appl Catal A: Gen,2003,252:243-249.
    [148]Ovesen C V, Clausen B S, Schi(?)tz J, Stoltze P, Tops(?)e H, N(?)rskovy J K. Kinetic implications of dynamical changes in catalyst morphologyduring methanol synthesis over Cu/ZnO catalysts [J]. J Catal,1997,168:133-142.
    [149]陈全亮,陈茂龙,毛少瑜,周朝晖.柠檬酸法制备复氧化物材料的配位结构化学[J].中国科学,2011,41(4):645-653.
    [150]Deganello F, MarciG, Deganello G. Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders:A systematic approach [J]. J Eur Ceram Soc,2009,29: 439-450.
    [151]Zhang J R, Gao L. Antimony-doped tin oxide nanocrystallites prepared by a combustion process [J]. Mater Lett,2004,58:2730-2734.
    [152]Singh K A, Pathak L C, Roy S K, Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate-citrate process [J]. Ceram Int,2007,33:1463-1458.
    [153]Chandramouli V, Anthonysamy S, Rao P R V. Combustion synthesis of thoria-a feasibility study [J]. J Nucl Mater,1999,265:255-261.
    [154]Li F, Hu K A, Li J L, Zhang D, Chen G. Combustion synthesis of γ-lithium aluminate by using various fuels [J]. J Nucl Mater,300 (2002) 82-88.
    [155]吴来红,微波辅助燃烧合成NiO粉工艺研究,硕士论文,兰州理工大学,2008.
    [156]Fornasiero P, Monte R D, Rao G R, Kaspar J, Meriani S, Trovarelli A, Graziani M. Rh-loaded CeO2-ZrO2 solid solutions as highly efficient oxygen exchangers: dependence of the reduction benavior and the oxygen storage capacity on the structural properties [J]. J Catal,1995,151:168-177.
    [157]Crespin M, Hall W K. The surface chemistry of some perovskite oxides [J]. J Catal, 1981,69:359-370.
    [158]Wang L C, Liu Y M, Chen M, Cao Y, He H Y, Wu G S, Dai W L, Fan K N. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis [J]. J Catal,2007,246:193-204.
    [159]Zhang R D, Villanueva A, Alamdari H S, Kaliaguine S, Catalytic reduction of NO by propene over LaCo1-xCuxO3 perovskites synthesized by reactive grinding [J]. Appl Catal B:Enviro,2006,64:220-233.
    [160]Trovarelli A, Zamar F, Llorca J, Leitenburg C D, Dolcetti G, Kiss J T. Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling [J]. J Catal,1997,169:490-502.
    [161]Chen T N, Liang B, Xin X Q. Studies on solid-solid reactions between 4-methylbenzenamine and CuCl2·2H2O, CoCl2·6H2O, and NiCl2·6H2O [J]. J Solid State Chem,1997,132:291-293.
    [162]Zheng H G, Ji W, Low M L K, Sakane G, Shibahara T, Xin X Q. Crystal structures and non-linear optical properties of cluster compounds [MAu2S4(AsPh3)2] (M=Mo or W) [J]. J Chem Soc Dalton Trans,1997,2357-2361.
    [163]Ye X R, Jia D Z, Yu J Q, Xin X Q, Xue Z L. One-step solid-state reactions at ambient temperatures-a novel approach to nanocrystal synthesis [J]. Adv Mater,1999,11: 941-942.
    [164]Liu Q, Wang L C, Chen M, Cao Y, He H Y, Fan K N. Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane [J]. J Catal,2009,263:104-113.
    [165]Petrova N, Todorovsky D. Thermal decomposition of zirconium-yttrium citric complexes prepared in ethylene glycol and water media [J]. Mater Res Bull,2006,41: 576-589.
    [166]Hon Y M, Fung K Z, Hon M H. Synthesis and charaterization of Li1+δMn2-δO4 powders prepared by citric acid gel process [J]. J Eur Ceram Soc,2001,21:515-522.
    [167]Gabal M A. Kinetics of the thermal decomposition of CuC2O4-ZnC2O4 mixture in air [J]. Thermochim Acta,2003,402:199-208.
    [168]Zhecheva E, Stoyanova R, Gorova M, Alcantara R, Morales J, Tirado J L. Lithium-cobalt citrate precursors in the preparation of intercalation electrode materials [J]. Chem Mater,1996,8:1429-1440.
    [169]Tsaramyrsi M, Kavousanaki D, Raptopoulou C P, Terzis A, Salifoglou A. Systematic synthesis, structural characterization, and reactivity studies of vanadium(V)-citrate anions [VO2(C6H6O7)]22-, isolated from aqueous solutions in the presence of different cations [J]. Inorg Chim Acta,2001,320:47-59.
    [170]Deacon G B, Phillips R J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination [J]. Coord Chem Rev,1980,33:227-250.
    [171]Kaliva M, Giannadaki T, Salifoglou A. A new dinuclear vanadium(V)-citrate complex from aqueous solutions. synthetic, structural, spectroscopic, and pH-dependent studies in relevance to aqueous vanadium(V)-citrate speciation [J]. Inorg Chem,2002,41: 3850-3858.
    [172]Lei L X, Xin X Q. Stepwise reaction of CuCl2·2H2O with 2,2'-bipyridyl in the solid state [J]. J Solid State Chem,1995,119:299-303.
    [173]王嵩,毛东森,吴贵升,郭晓明,卢冠忠.铜/氧化锆催化剂的制备及应用研究进展[J].化工进展,2008,27(6):837-843.
    [174]Liu X Mei, Lu G Q, Yan Z F, Beltramini J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 [J]. Ind Eng Chem Res,2003,42: 6518-6530.
    [175]Kilo M, Weigel J, Wokaun A, Koeppel R A, Stoeckli A, Baiker A. Effect of the addition of chromium- and manganese oxides on structural and catalytic properties of copper/zirconia catalysts for the synthesis of methanol from carbon dioxide [J]. J Mol Catal A:Chem,1997,126:169-184.
    [176]Ma Z, Overbury S H, Dai S. Au/MxOy/TiO2 catalysts for CO oxidation:Promotional effect of main-group, transition, and rare-earth metal oxide additives [J]. J Mol Catal A: Chem,2007,273:186-197.
    [177]Sato S, Takahashi R, Kobune M, Gotoh H. Basic properties of rare earth oxides [J]. Appl Catal A:Gen,2009,356:57-63.
    [178]Boukha Z, Fitian L, Lopez H M, Mora M, Ruiz J R, Jimenez S C, Blanco G., Calvino J J, Cifredo G A, Trasobares S, Bernal S. Influence of the calcination temperature on the nano-structural properties, surface basicity, and catalytic behavior of alumina-supported lanthana samples [J]. J Catal,2010,272:121-130.
    [179]Chuah G K, Jaenicke S, Cheong S A, Chan K S. The influence of preparation conditions on the surface area of zirconia [J]. Appl Catal A:Gen,1996,145:267-284.
    [180]Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis I V. An investigation of the role of Zr and La dopants into Ce1-x-yZrxLayOδ enriched γ-Al2O3 TWC washcoats [J]. Appl Catal A:Gen,2010,382:73-84.
    [181]Hoang D L, Dittmar A, Schneider M, Trunschke A, Lieske H, Brzezinka K W, Witke K. Evidence of lanthanum-chromium mixed oxides formed in CrOx/La2O3 model catalysts [J]. Thermochim Acta,2003,400:153-163.
    [182]林明桂,杨成,吴贵升,魏伟,李文怀,单永奎,孙予罕,何鸣元.锰和镧改性Cu/ ZrO2合成甲醇催化剂的结构及催化性能[J].催化学报,2004,25(7):591-595.
    [183]D.Bianchi, J.L. Gass, M. Khalfallah, S.J. Teichner, Intermediate species on zirconia supported methanol aerogel catalysts:I. State of the catalyst surface before and after the adsorption of hydrogen [J]. Appl Catal A:Gen,1993,101:297-315.
    [184]Ma Z Y, Yang C, Wei W, Li W H, Sun Y H. Surface properties and CO adsorption on zirconia polymorphs [J]. J Mol Catal A:Chem,2005,227:119-124.
    [185]Stagg-Williams S M, Noronha F B, Fendley G, Resasco D E. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides [J]. J Catal,2000,194: 240-249.
    [186]Sun H, Ding Y Q, Duan J Z, Zhang Q J, Wang Z Y, Luo H, Zheng X M. Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst [J]. Bioresour Technol,101 (2010)953-958.
    [187]Zhou R X, Yu T M, Jiang X Y, Chen F, Zheng X M. Temperature-programmed reduction and temperature-programmed desorption studies of CuO/ZrO2 catalysts [J]. Appl Surf Sci,1999,148:263-270.
    [188]Tabakova T, Idakiev V, Papavasiliou J, Avgouropoulos G, Ioannides T. Effect of additives on the WGS activity of combustion synthesized CuO/CeO2 catalysts [J]. Catal Commun,2007,8:101-106.
    [189]Hong Q J, Liu Z P, Mechanism of CO2 hydrogenation over Cu/ZrO2(-212) interface from first-principles kinetics Monte Carlo simulations [J]. Surf Sci,2010,604: 1869-1876.
    [190]Rhodes M D, Pokrovski K A, Bell A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts Part Ⅱ. Transient-response infrared studies [J]. J Catal,2005,233:210-220.
    [191]鲍林(卢嘉锡等译),化学键的本质(第三版)[M],上海科学技术出版社,上海,1981.
    [192]Nitta Y, Suwata O, Ikeda Y, Okamoto Y, Imanaka T. Copper-zirconia catalysts for methanol synthesis from carbon dioxide:Effect of ZnO addition to Cu-ZrO2 catalysts [J]. Catalysis Letters,1994,26:345-354.
    [193]天津大学无机化学教研室,无机化学[M],第三版,高等教育出版社,北京,2007.
    [194]辛勤,固体催化剂的研究方法[M],科学出版社,北京,2004.
    [195]Kilo M, Weigel J, Wokaun A, Koeppel R A, Stoeckli A, Baiker A. Effect of the addition of chromium- and manganese oxides on structural and catalytic properties of copper/zirconia catalysts for the synthesis of methanol from carbon dioxide [J]. J Mol Catal A:Chem,1997,126:169-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700