根土复合体极限载荷的数值计算方法和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物根系在土壤中穿插、缠绕和网络,与土壤形成了一种天然的复合材料,对防止水土流失具有重要作用。人类有意识的通过种植植物进行固土护坡已有数百年的历史,但是对植物根系加固土壤的力学机理并不完全了解,仍有很多问题值得进一步研究。本文对青海省黄土高原地区优势固土护坡植物进行实地考察,发现受干燥气候等自然条件的影响,植物根系具有向深处生长的特性,并且在土壤中排布比较规则,可以被简化为周期性分布的长纤维增强复合材料。本文从复合材料细观力学的角度,对植物根系加固土壤的力学机理进行了数值计算和实验研究。
     基于复合材料细观力学的均匀化理论和广义平面应变假设,本文提出了一种周期性长纤维复合材料代表性胞元的数值计算方法,通过选取复合材料横截面的代表性胞元作为研究对象,体现复合材料的细观结构特征,同时引进宏观尺度和细观尺度,构造基于细观摄动位移插值的广义平面应变单元,并建立了代表性胞元的弹塑性增量有限元计算格式。考虑到界面的非理想粘接,本文发展了一种基于细观摄动位移插值的广义平面应变界面单元,并建立了计算非理想界面复合材料胞元的数值计算格式。
     本文在青海省对根土复合体的力学特性进行了实验研究,设计了一种周期性长纤维根土复合体三轴试验的实验方法,考虑到根土复合体试验的特殊性,提出了一种根土复合体试样制作的新方法,并对含根体积比为0.5%和1%的根土复合体进行了三轴试验,得到了根土复合体在0.01MPa围压下的轴向极限载荷和破坏模式。实验还测得了单根和素土的材料参数,并测得了实验现场原状土的含根体积比,为根土复合体的数值计算进行了准备。
     采用非理想界面周期性复合材料胞元极限载荷的数值计算方法,本文建立了含根体积比为0.5%和1%的根土复合材料代表性胞元的有限元计算模型,对根土复合体的三轴试验进行了数值模拟,数值计算结果与实验值比较吻合。并计算了不同加载角度根土复合体的极限载荷,分析了影响根土复合体极限载荷的若干因素。
The vegetation roots play a very important role in reducing soil erosion by means of being embedded in, entangled in and enwrapped in soil. The vegetation have been used to improve shallow slope stability and reduce geological disasters for several hundreds years. However, the mechanical mechanism of the soil-roots composite is still not very clear today. In Loess Plateau, Qinghai Province, China, the roots of vegetation grow unidirectional and arrange periodically, so the soil and the roots can be considered as a kind of homogeneous long fiber reinforced composites. In this dissertation, the mechanical mechanism of soil-roots composites is studied through numerical simulation and experimental study.
     Based on the homogenization theory and generalized plane strain assumption, a kind of numerical method to analysis the homogeneous long fiber reinforced composite is established. A representative volume cell is chosen to reflect the microstructure of a periodic composite. By introducing the macroscopic and microscopic scale, the generalized plane strain element is constructed based on microscopic fluctuation displacement. The corresponding elas-plastic incremental finite element equation is established. In the state of generalized plane strain, a kind of interface element is developed based on microscopic fluctuation displacement to simulate the weak interface between the matrix and the fiber. And the corresponding numerical method is established.
     The properties of soil-root composites were obtained in experiments conducted in Qinghai Province. A kind of experimental method for the limit load of the soil-root composites was proposed. The sample preparation process was modified for the soil-roots composites. In the experiment, two soil-root composites specimens with the root fraction of 0.5% and 1%, respectively, were submitted to triaxial test. The limit loads and failure mode were obtained. In addition, the basic properties of the roots and the natural soil were measured from experimental tests for the numerical simulation.
     The finite element models of the representative volume cell are established based on the numerical method proposed in this dissertation. The numerical limit loads of soil-root composites are obtained and compared with the experimental values. Good agreement of limit loads has been achieved between the numerical and the experimental results. The relationship between limit loads and the angle of load is obtained. And the effects of material parameters on limit loads are also studied.
引文
[1]陈亚宁,周金星.中国西部山区流域综合治理研究.北京:科学出版社, 2006.
    [2]高健翎,严国民,刘会源.黄河流域黄土高原地区水土保持生态环境建设研究.河南:黄河水利出版社, 2003.
    [3]陈斌,彭向和,范静泓.金龟子外甲壳的纤维增强特征和树枝状分支纤维结构.材料研究学报, 2003, 17(6):630-636.
    [4] Zhou B. Biomimetic research of composites. Physics, 1995, 24(10):316.
    [5] Gray D H, Sotir R B. Biotechnical stabilization of highway cut slope. Journal of Geotechnical Engineering, 1992, 118(9):1395-1409.
    [6]周德培,张俊云.植被护坡工程技术.北京:人民交通出版社, 2003.
    [7] Lee W Y. A review of vegetation slope stabilization. Journal of Hong Kong Institute of Engineer, 1985, 13(7):9-12.
    [8] Bishop D M, Stevens M E. Landslides on logged areas in southeast Alaska. U.S.Forest Service, Research Paper NOR-1, 1964.
    [9] Zimer R R, Swanson D N. Root strength changes after logging in southeast Alaska. U.S.Forest Service, Research Note PNW-306, 1977.
    [10] Burroughs E R J, Thmoas B R. Declining root strength in Douglas-fir after felling as a factor in slope stability. U.S.Forest Service, Research Paper INT-190, 1977.
    [11] Gray D H, Megahan W F. Forest vegetation removal and slope stability in the Idaho Batholith. U.S.Forest Service, Research Paper INT-271, 1981.
    [12] Gray D H. Effect of forest clear-cutting on the stability of natural slopes. Bulletin of the Association of Engineering Geologists, 1970, 7:45-66.
    [13] Degraff J V. Initiation of shallow mass movement by vegetative-type conversion. Geology, 1978, 7:426-429.
    [14] Rice R M, Corbett E S, Bailey R G. Soil slips related to vegetation, topography and soil in Southern California. Water Resources Research, 1969, 5(3):647-659.
    [15] Wu T H, Mckinnell W P, Swanston D N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal, 1979, 16:19-33.
    [16] Nilaweera N S, Nutalaya P. Role of tree roots in slope stabilization. Bulletin ofEngineering Geology and the Environment, 1999, 57:337-342.
    [17] Abernethy B, Rutherfurd I D. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrological Processes, 2001, 15(1):63-79.
    [18] Cofie P, Koolen A J. Test speed and other factors effecting the measurements of tree root properties used in soil reinforcement models. Soil & Tillage Research. 2001,63:51-56.
    [19]解明曙.黄土地区林木根系固坡的土力学机制研究[博士学位论文].北京:北京林业大学,1988.
    [20]周跃,陈晓平,李玉辉,等.云南松侧根对浅层土体的水平牵引效应的初步研究.植物生态学报, 1999, 23(5):458-465.
    [21]周跃,徐强,络华松,等.乔木侧根对土体的斜向牵引效应I原理和数学模型.山地学报, 1999, 17(1):4-9.
    [22]周跃,徐强,络华松,等.乔木侧根对土体的斜向牵引效应II野外直测.山地学报, 1999, 17(1):10-15.
    [23]史敏华,王棣,李任敏.石灰岩区主要水保灌木根系分布特征与根抗拉力研究初报.山西林业科技, 1994, 1:17-19.
    [24]刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究.土壤侵蚀与水土保持学报, 1996, 2(3):21-28.
    [25] Wu T H, Watson A. In site shear tests of soil blocks with roots. Canadian Geotechnical Journal, 1998, 35:579-590.
    [26] Schmidt K M, Roering J J, Stock J D, et al. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal, 2001, 38:995-1024.
    [27] Operstein V, Frydman S. The influence of vegetation on soil strength. Ground Improvement, 2000, 4:81-89.
    [28]朱清科,陈丽华,张东升,等.贡嘎山森林生态系统根系固土力学机制研究.北京林业大学学报, 2002, 24(4):64-67.
    [29]陈丽华,余新晓,张东升.整株林木垂向抗拉试验研究.资源科学, 2004, 26:39-42.
    [30]李绍才,孙海龙,杨志荣,等.护坡植物根系与岩体相互作用的力学特性.岩石力学与工程学报, 2006, 25(10):2051-2057.
    [31]程洪,谢涛,唐春,等.植物根系力学与固土作用机理研究综述.水土保持通报, 2006, 26(1):97-102.
    [32]赵丽兵,张宝贵.紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究.农业工程学报, 2007, 23(9):7-12.
    [33]李国荣,胡夏嵩,毛小青,等.寒旱环境黄土区灌木根系护坡力学效应研究.水文地质工程地质, 2008, 1:94-97.
    [34] Norris J E, Greenwood J R. The supporting roots of trees and woody plants: Form, Function and Physiology. Netherlands: Kluwer Academic Publishers. 2000:287-293.
    [35]王文成.干旱地区植被根系固土护坡机理研究[硕士学位论文].北京:清华大学水利水电工程系. 2006.
    [36] Endo T, Tsuruta T. The effect of tree roots upon the shearing strength of soil. Annual report of the Hokkaido Branch, Forest Place Experimental Station, Sapporo, Japan, 1969:167-182.
    [37] Endo T. Effect of tree roots upon the shear strength of soil. Japan Agricultural Research Quarterly, 1980, 14:112-115.
    [38] Abe K, Iwamoto M. Preliminary experiment on shear in soil layers with a large direct shear apparatus. Journal of the Japan Forest Society, 1986, 68:61-65.
    [39] O’Loughlin C L. An investigation of the stability of the steepland forest soils in the Coast Mountain, southwest British Columbia [Ph.D dissertation]. Vancouver: University of British Columbia.1972.
    [40] Clark J E. Principles of bioengineering with reference to East Nepal [Ph.D dissertation]. UK: Silsoe College, Cranfield University. 1992.
    [41] Tobias S. Shear strength of the soil root bond system.// Barker D H, eds. Vegetation and Slopes, London: Thomas Telford. 1995:280-286.
    [42]杨亚川,莫永京,王芝芳,等.土壤—草本植被根系复合体抗水蚀强度与抗剪强度的实验研究.中国农业大学学报, 1996, 1(2):32-38.
    [43] Ziemer R. Roots and shallow stability of forested slopes.// Timothy R H, Andrew J, eds. Erosion and Sediment Transport in Pacific Rim Steeplands, NewZealand: International Association of Hydrological Sciences, 1981, 132:343-361.
    [44] Wu T H, Beal P E, Lan C. In situ shear test of soil root system. Journal of Geotechnical Engineering, 1988, 114:1376-1394.
    [45]周跃,李宏伟,徐强.云南松幼树垂直根的土壤增强作用.水土保持学报, 2000, 14(5):110-121.
    [46] Xie M. A study on the soil mechanical role of tree roots in the stability of slopes. Proceeding of the Fourth International Symposium on River sedimentation. 1989:246-453.
    [47]解明曙.林木根系固坡土力学机制研究.水土保持学报, 1990, 4(3):7-14.
    [48]解明曙乔灌木根系固坡力学强度的有效范围与最佳组构方式.水土保持学报, 1990, 4(1):17-24.
    [49] Waldron L J. The shear resistance of root permeated homogeneous and stratified soil. Soil Science Society of America Journal, 1977, 41:843-849.
    [50]刘大鹏,尤晓伟.土力学.北京:清华大学出版社. 2005.
    [51]张嘎.粗粒土与结构面静动力学特性及弹塑性损伤理论研究[硕士学位论文].北京:清华大学水利水电工程系. 2002.
    [52]付建.糯扎渡高心墙堆石坝接触面特性实验研究与数值模拟[硕士学位论文].北京:清华大学水利水电工程系. 2004.
    [53] Waldron L J, Dakessian S. Soil reinforcement by roots: calculation of increased shear resistance from root properties. Soil Science, 1981, 132:427-435.
    [54] Gray D H, Ohashi H. Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering, 1983, 109(3):335-353.
    [55] Wu T H, Mcomber R M, Erb R T, et al. A study of soil root interaction. Journal of Geotechnical Engineering, 1988, 114(12):1351-1375.
    [56] Shewbridge S E, Sitar N. Deformation characteristics of reinforced sand in direct shear. Journal of Geotechnical Engineering, 1989, 115(9):1134-1147.
    [57] Riestenberg M M, Sovonick-Dunford S. The role of woody vegetation in stabilizing slopes in the Cincinati area, Ohio. Geological Society of America Bulletin, 1983, 94:506-518.
    [58] Terwilliger V J, Waldron L J. Effects of root reinforcement on soil-slip patterns in the Transverse Range of southern California. Geological Society of America Bulletin, 1991, 103:775-785.
    [59] Ekanayake J C, Phillips C J. A method for stability analysis of vegetated hillslopes: an energy approach. Canadian Geotechnical Journal, 1999, 36:1172-1184.
    [60] Ekanayake J C, Phillips C J. Slope stability thresholds for vegetated hillslopes: a composite model. Canadian Geotechnical Journal, 2002, 39:849-864.
    [61]王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社. 1999.
    [62]洗杏娟,李端义.复合材料破坏分析及微观图谱.北京:科学出版社,1993.
    [63]杜善义,王彪.复合材料细观力学.北京:科学出版社,1998.
    [64]沈观林,胡更开.复合材料力学.北京:清华大学出版社, 2006.
    [65] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society A, 1957, 240:367-396.
    [66] Hashin Z, Shtrikman S. Avariational approach to the theory of the elasticbehavior of multiphase materials. Journal of Mechanics and Physics of Solids, 1963, 11:127-140.
    [67] Kr?ner E. Bounds for effective elastic moduli of disordered materials. Journal of Mechanics and Physics of Solids, 1977, 25:137-155.
    [68] Nomura S, Chou T W. Bounds for elastic moduli of multiphase short-fiber composites. Journal of Mechanics and Physics of Solids, 1984, 51:540-545.
    [69] Tolonen H, Sjolind S G. Effect of mineral fibers on properties of composite matrix materials. Mechanics of composite materials, 1995, 31:345-445.
    [70] Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 1965, 13: 213-222.
    [71] Mori T and Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusions. Acta Metallurgica, 1973, 21: 571-574.
    [72] Boucher S S. Modules effectifs de materiaux guasi homogenes etd’inclusion elastiques, II cas des concentrations finies en enclusions, Revue M. Mecanique, 1976, 22(1):1.
    [73] Mclaughlin R. A study of the differential scheme for composite materials. International Journal of Engineering Science, 1977, 15(4):237-244.
    [74] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: PartⅠyield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.
    [75] Suquet P. Homogenization techniques for composite media. Lecture Notes in Physics 272, New York :Springer, 1987: 193-278.
    [76] Andrianov I V, Starushenko G A, Tokarzewski S. Homogenization procedure and pade approximations in the theory of composite materials with parallelepiped inclusions. International Journal of Heat and Mass Transfer, 1998, 41(1): 175-181.
    [77] Ponter C P. The effective mechanical properties of nonlinear isotropic composites, Journal of the Mechanics and Physics of Solids, 1991, 39: 45-71
    [78]黄国君,苏爱嘉,柳春图.疲劳与断裂2000.北京:气象出版社, 2000 :413-418.
    [79] O’Donnell W J, Porowski J. Yield surfaces for perforated materials. Journal of Applied Mechanics, 1973, 40(1): 263-270.
    [80] Litewka A. Experimental study of the effective yield surface of perforated materials. Nuclear Engineering and Design, 1980, 57(2):417-425.
    [81] Litewka A, Sawczuk a, Stanislawska J. Simulation of oriented continuous damage evolution. Journal de Mecanique Theorique et Appliquee, 1984, 3(5):675-688.
    [82] Kim R Y, Park W J. Proof testing under cyclic tension-tension fatigue. Journal of Composite Material, 1980, 14(1): 69-79.
    [83] Kim R Y, Soni S R. Experimental and analytical studies on the onset of delamination in laminated composites. Journal of Composite Material, 1984, 18(1): 70-80.
    [84] Kim R Y. On the off-axis and angle ply strength of composites. // Chanis C C, eds. Test methods and design allowable for fibrous composites. Dearborn: American Society for Testing and Materials, 1981: 91-108.
    [85] Tan S C, Kim R Y. Fracture of composite laminates containing cracks due to shear loading. Experimental Mechanics, 1988, 28(4): 364-372.
    [86] Pagano N J, Kim R Y. Interlaminar shear strength of cloth-reinforced composites. Experimental Mechanics, 1988, 28(2): 117-122.
    [87] Sun, C T, Chen J L, Sha G T, et al. Mechanical characterization of SCS-6/ Ti-6-4 metal matrix composite. Journal of Composite Material, 1990, 24:1029-1059.
    [88] Pindera M J, Aboudi J. Micromechanical analysis of yielding of metal matrix composites. International Journal of Plasticity, 1988, 4(3):195-214.
    [89] Buhan P, Taliercio A. A homogenization approach to the yield strength of composite materials. European Journal of Mechanics, A/Solids, 1991, 10(2):129-154.
    [90] Taliercio A. Lower and upper bounds to the macroscopic strength domain of a fiber-reinforced composite material. International Journal of Plasticity, 1992, 8:741-762.
    [91] Jansson S. Fully plastic plane stress solutions for biaxially loaded center-cracked plates. ASME Journal of Applied Mechanics, 1986, 53:555-560.
    [92] Jansson S. Mechanical characterization and numerical modeling of non-linear deformation and fracture of a fiber reinforced metal matrix composite. Mechanics of Materials, 1991, 12:47-62.
    [93] Janson S. Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure. International Journal of Solids and Structures, 1992, 29(17):2181-2200.
    [94] Francescato P, Pastor J. Lower and upper numerical bounds to the off-axis strength of unidirectional fiber-reinforced composite by limit analysis methods. European Journal of Mechanics, A/Solids, 1997, 16(2): 213-234
    [95] Thai T H, Francescato P, Pastor J. Limit analysis of unidirectional porous media.Mechanics Research Communications, 1998, 25(5): 535-542
    [96]李华祥.韧性复合材料塑性极限与安定分析的机动方法研究[博士学位论文].北京:清华大学工程力学系. 2002.
    [97] Li H X, Liu Y H, Feng X Q, et al. Micro/macromechanical plastic limit analyses of composite materials and structures. Acta mechanica Solida Sinica, 2001, 14(4):323-333.
    [98]张宏涛.韧性复合材料及结构的极限与安定下限分析. [博士学位论文].北京:清华大学工程力学系. 2004.
    [99] Zhang H T, Liu Y H, Xu B Y. Plastic Limit Analysis of Periodic Heterogeneous Materials by a Static Approach. Key Engineering Materials, 2004, 274: 739-744.
    [100] Chamis C C., Sinclair J H. Ten-deg off-axis test for shear properties in fiber composites. Experimental Mechanics. 1977,17:339-346.
    [101] Nimmer R P. Fiber-matrix interface effects in the presence of thermally induced residual stress. Journal of Composite Technology and Research, 1990, 12:65-75.
    [102] Aghdam M M, Smith D J, Pavier M J. Finite element micro-mechanical modeling of yield and collapse behaviour of metal matrix composites. Journal of the Mechanics and Physics of Solids. 2000, 43:499-528.
    [103] Xia Z, Zhang Y, Ellyin F. An unified periodical boundary conditions for representative volume elements of composites and applications. International Journal of Solids and Structures, 2003, 40:1907-1921.
    [104] Carvelli V, Taliercio A. A micromechanical model for the analysis of unidirectional elastoplastic composites subjected to 3D stresses. Mechanics Research Communications, 1999, 26:547-553.
    [105] Aghdam M M, Pavier M J, Smith D J. Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis. International Journal of Solids and Structures, 2001, 38:3905-3925.
    [106] Taliercio A. Generalized plane strain finite element model for the analysis of elastoplastic composites. International Journal of Solids and Structures, 2005,42 :2361-2379.
    [107] Cox H L. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 1952, 1:72-74.
    [108] Achenbach J. Effect of interface zone on mechanical behavior and failure of fiber-reinforced composites. Journal of the Mechanics and Physics of Solids, 1989, 3:381-393.
    [109] Needleman A. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 1987, 54(3):525-531.
    [110] Tvergaard V. Debonding of short fibres among particulates in a metal matrix composite. International Journal of Solids and Structures, 2003, 40:6957-6967.
    [111] Tvergaard V. Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering:A, 1990, 125:203-213.
    [112] Lissenden C J, Herakovich C T. Numerical modelling of damage development and viscoplasticity in metal matrix composites. Computer Methods in Applied Mechanics and Engineering, 1995, 126:289-303.
    [113] Lissenden C J, Herakovich C T. Interfacial debonding in laminated titanium matrix composites. Mechanics of Materials, 1996, 22:279-290.
    [114]周储伟,杨卫,方岱宁.内聚力界面单元与复合材料的界面损伤分析.力学学报, 1999, 31(3):372-377.
    [115] Haddadi H, Teodosiu C. 3D-analysis of the effect of interfacial debonding on the plastic behaviour of two-phase composites. Computational Materials Science, 1999, 16:315-322.
    [116] Ghosh S, Ling Y, Majumdar B, et al. Interfacial debonding analysis in multiple fiber reinforced composites. Mechanics of Materials, 2000, 32:561-591.
    [117] Hashin Z. Thermoelastic properties of fiber composites with imperfect interface. Mechanics of Materials, 1990, 8:333-348.
    [118] Hashin Z. Composite materials with interphase: Thermoelastic and inelastic effects. // Dvorak J, eds. Inelastic Deformation of Composite Materials: IUTAM Symposium, New York: Springer-Verlag, 1991:3.
    [119]陈浩然,苏晓风,郑长泉.考虑损伤界面的多相复合材料总体平均力学性能的预测.计算力学学报, 1995, 12(1):39-46.
    [120]陈陆平,潘敬哲,钱令希.复合材料纤维基体界面失效问题的参变量有限元数值模拟.复合材料学报, 1993 ,10 (1):71-75.
    [121]叶碧泉,羿旭明,靳胜勇,等.用界面单元法分析复合材料界面力学性能.应用数学和力学, 1996, 17(4):343-348.
    [122]卓家寿,章青.不连续介质力学问题的界面元法.北京:科学出版社, 2000.
    [123]周维垣,杨强.岩土力学数值计算方法.北京:中国电力出版社, 2005.
    [124] Goodman R E, Taylor R L, Brekke T. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 14:637-659.
    [125] Melosh H J, Rasfsky A. A simple and efficient method for introducing faults into finite element computations. Bulletin of the SSA, 1981, 71:1391-1399.
    [126] Zienkiewicz O C. Analysis of nonlinear problems with particular reference to jointed rock systems. Proc 2nd Intl. Conf. Society of Rock Mech. Belgrade. 1970, 3:501-509.
    [127] Ghaboussi J, Wilson E L, Isenberg J. Finite element for rock joints and interfaces. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99:833-848.
    [128] Desai C S, Zaman M M. Thin-layer element for interface and joints, International Journal for Numerical Methods in Geomechanics. 1984, 8:19-43.
    [129]邵炜.结构—地基相互作用中节理及交界面的静动力模拟[硕士学位论文].北京:清华大学水利水电工程系. 1998.
    [130]于丙子,陈连礼,叶伟泉.三维空间的节理单元.岩土工程学报, 1983, 5(3):1-11.
    [131] Yin Z Z, Zhu H, Xu G H. Study of deformation in the interface between soil and concrete. Computers and Geothchnics, 1995, 17(1):75-92.
    [132]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟.岩土工程学报, 1994, 16(3):14-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700