互联电网AGC的动态优化策略及其在线计算平台研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动发电控制(Automatic Generation Control,AGC)是实现电网有功频率控制、维持系统频率质量以及联络线交换计划的一种重要手段。常规的AGC控制策略主要针对如何校正区域控制偏差,其研究重点在于区域总调节功率的生成和AGC机组调节功率的分配。然而,随着新能源的快速发展,CPS新标准的推广应用,大区联网新格局的逐步形成,以及电力市场化进程的进一步深化,现代电力系统的AGC已经发展成为一个需要解决快慢机组协调、分级分区协调以及考虑区域控制性能、安全约束和市场因素协调的复杂问题,需要应用新的思路来发展和完善现有AGC的理论和方法。
     本文在国家自然科学基金项目“输电网中长期状态的精细化模拟与概率评估的基础理论研究”的支持下,基于优化理论和方法,对互联电网下省级与网省两级AGC的动态优化策略、算法及在线计算平台等问题进行深入的研究和探索。主要研究内容和成果如下:
     提出了一种有效的省级电网AGC的动态优化策略,与现有研究比较,模型中考虑了系统频率变化对AGC控制的影响,改进了现有模型关于AGC机组最小持续爬坡时间的约束以及AGC辅助服务费用的目标。模型以CPS1指标最优和AGC辅助服务费用最少为目标,考虑省级电网的功率平衡约束、CPS指标约束、联络线功率偏差约束,以及AGC机组的爬坡能力及机组最小持续爬坡时间等约束,对未来15分钟AGC机组的基点功率进行最优决策。对重庆电网AGC进行的仿真结果表明,所提省级电网AGC的动态优化策略能满足AGC控制的各种性能要求,尤其在考虑风电功率波动较大的情况下,该动态优化策略在CPS指标、辅助服务费用以及AGC各种控制目标等方面均明显优于常规AGC控制策略。
     提出了适合求解省级电网AGC动态优化策略的多目标免疫进化规划算法。省级电网AGC的动态优化策略是一个大规模、多时段、含高阶复杂约束混合整数非线性规划问题。通过仿真发现,通过互补松弛技术转换成一般非线性问题,利用内点法求解时存在收敛性问题。为了有效求解该优化模型,利用目标相对占优方法来处理多目标问题,针对进化规划算法中易出现的早熟问题,将免疫系统的浓度调节机制引入进化规划算法,保证了个体的多样性,并指导进化规划局部寻优的方向。算例结果表明,所提多目标免疫进化规划算法能有效求解省级电网AGC的动态优化策略,表现出稳定的收敛性,并具有较快的计算速度。
     随着我国区域电网特高压的逐步互联,网省两级AGC机组的协调控制困难以及网际联络线功率波动的问题日益突出。针对这一问题,在省级电网AGC的动态优化策略研究的基础上,提出了网省两级AGC的动态优化策略。模型中以网省两级AGC机组的总调节费用最低为优化目标,考虑大区电网和区内各省级电网的功率平衡约束,各省级电网的CPS1和CPS2指标约束,网际特高压联络线和网内各省际联络线的功率偏差约束,以及网省两级AGC机组的动态调节能力约束。针对模型的特点,提出了适合网省两级AGC动态优化策略求解的免疫进化规划算法。算例结果表明,所提网省两级AGC的动态优化策略在满足网省两级电网联络线功率要求和各省CPS考核指标的条件下,有效降低了网省两级AGC机组的调节次数和辅助费用,实现了网省两级电网AGC机组的动态协调优化控制。
     为实现在不同控制中心对省级电网以及网省两级电网AGC的动态优化策略进行测试与应用,研究并开发了互联电网AGC动态优化策略在线计算平台。研究中提出了一种基于XML电力对象可扩展框架的软件功能自动生成方法,采用了基于进程通信的系统架构设计思想,并改进了现有的“看门狗定时器”容错技术,通过基于语义的异构数据集成和基于连接池的内存数据库管理中间件封装等多项关键技术的综合应用,所研发平台能够有效实现省级及网省两级AGC动态优化策略在线计算和测试,能够满足在线计算对计算时间和容错能力的要求,并具有良好的可移植性、可扩展性和可维护性。
Automatic generation control (AGC) is an important research domain in powersystems because it can accomplish the active frequency control of the power grid,maintain the quality of system frequency, and it can maintain the tie line exchangepower within the reasonable range. The traditional AGC control strategies are mainlyfocused on how to correct area control error (ACE), and its investigation centers on theformulation of the total adjustment power and how to distribute. However, with therapid developing of new energy, popularizing of CPS criterion, marketization of powersystem, the AGC in the modern power system is thus developing to a more complicatedproblem. So the new theory and method must be studied to satisfy the new requirementof the new circumstance.
     Based on optimization theories and methods, this dissertation is to research andexplore on model, algorithms and the computing platform for the dynamic optimizationstrategy of AGC, which is well-supported by the national natural science foundation“fundamental theory research on the elaborated simulation and probabilistic evaluationof transmission grid’s states for the mid-term and long-term”. Main research contentsand achievements are listed below:
     An effective dynamic optimization strategy of AGC for the province grid isproposed. With respect to the existing studies, the variation of system frequency isconsidered for the AGC, the constraint of minimum duration time of unit adjustmentand the objective of AGC ancillary service cost are improved. CPS1is optimal and theAGC adjustment ancillary service cost is minimum as objective functions, the CPS1andCPS2indexes, tie line power deviation, the upper and lower limits of unit output, andother constraints of the power system are considered as inequality constraints, to obtainthe optimal plan of base point of AGC unit for the next15min. The results prove thatthe proposed dynamic optimization strategy of AGC for the province grid not only meetthe control performance requirement of the AGC, but also under a power grid with alarge fluctuation by wind power, the CPS index, AGC adjustment ancillary service costare obviously better than other AGC control strategies.
     A multi-objective immune evolutionary algorithm which is more suitable for thedynamic optimization strategy of AGC to solve is proposed. This model is multi-period,large-scale, with high-level complex constraints and mixed-integer nonlinear programming problem. Based on the complementary constraint relaxation technique,this model is converted as a general nonlinear problem, but it has convergence problemif the Interior Point Method is employed. For solving this problem, objective relativedominant is adopted to tackle with the multi-objectives, the density mechanism isnecessarily adopted into the evolutionary programming algorithm to maintain theindividual’s diversity and guiding the optimal exploring direction in the evolution ofgenerations. The solution of study cases verifies that the multi-objective immuneevolutionary algorithm is able to find the optimal solution of the dynamic optimizationstrategy for province grid. While it has the better optimization performance than theconventional evolutionary algorithm’s, and including excellent convergence ability andfast computation speed.
     As ultra-high voltage line (UHVL) is recently interconnected, the AGC units ofprovince grid (PD) and regional grid (RD) is difficult to coordinate and the problem ofpower deviation fluctuation of UHVL is increasing serious. Aiming these problems, adynamic optimization strategy of RD and PD AGC is proposed. The dynamicoptimization strategy of RD and PD AGC take AGC adjustment ancillary service cost isminimum as objective, consider power balance of RD and PD, the CPS index of eachPD’s control area, tie line power deviation of interconnected PD and the UHVL of RD,and the adjustment capacity of PD and RD AGC units as constraint. According to thecharacteristics of this model, the immune evolutionary programming algorithm is usedto solve this model. The study cases show that the proposed strategy can meet the AGCcontrol performance requirement and CPS index, and effectively decrease theadjustment times of PD and RD AGC unit and the ancillary service cost, and eventuallythe optimal coordination control for PD and RD AGC unit is implemented.
     For the purpose of test and application of dynamic optimization strategy of AGCfor the province and the regional grid in the different control center, an onlinecomputing platform of the dynamic optimization strategy of AGC for interconnectedpower system is developed. A function generate method is proposed based on powersystem objects extensible framework which is constructed by XML, the design idea ofsystem architecture based on inter-process communication is adopted, the mechanism ofwatchdog timers is improved. By means of the heterogeneous data integration based onsemantics, memory database management middleware based on connection pool, andother technology, the online computing platform of the dynamic optimization strategyof AGC is developed which can satisfy the requirement of computing time and fault-tolerance, meanwhile, the computing platform has a better performance ofportability, expandability, and maintainability.
引文
[1]刘维烈.电力系统调频与自动发电控制[M].中国电力出版社,2006.
    [2]高翔等.现代电网频率控制应用技术[M].中国电力出版社,2010.
    [3] Kothari D. P., Nagrath I. J. Modern power system analysis [M]. McGraw-Hill Europe,2003.
    [4]李雪峰.互联电力系统的AGC容量需求和控制策略研究[D].大连理工大学,2010.
    [5] Kumar P., Kothari D. P. Recent philosophies of automatic generation control strategies inpower systems. Power Systems, IEEE Transactions on.2005.20(1).346-357.
    [6]刘永奇,韩福坤.华北电网自动发电控制综述[J].电网技术.2005.29(18).1-5.
    [7] Kundur P., Balu N. J., Lauby M. G. Power system stability and control [M]. McGraw-hill NewYork,1994.
    [8] Jaleeli N., VanSlyck L. S., Ewart D. N., Fink L. H., Hoffmann A. G. Understanding automaticgeneration control. IEEE Transactions on Power Systems.1992.7(3).1106-1122
    [9]李滨,韦化,农蔚涛,李林峰,吴阿琴,阳育德.基于现代内点理论的互联电网控制性能评价标准下的AGC控制策略[J].中国电机工程学报,2008,28(25):56-61.
    [10] Cohn N. Some aspects of tie-line bias control on interconnected power systems-Part III[J].Power Apparatus and Systems,1956.75(3).1415-1436.
    [11]刘娆,林伟,李卫东,刘乐,王玮,徐兴伟,柳焯.互联电力系统运行控制性能评价标准的探讨.电力系统自动化[J].2005.29(8).87-91.
    [12] Jaleeli N., VanSlyck L. S. Principal Investigators, Control Performance Standards andProcedures for Interconnected Operation. EPRI TR-107813, April '97.
    [13] Control Performance Criteria Training Document. Http://www.nerc.com.1994.1-19.
    [14] Jaleeli N., VanSlyck L. S. NERC's new control performance standards [J]. IEEE Transactionson Power Systems.1999.14(3).1092-1099.
    [15]唐跃中,张王俊,张健,陈明.基于CPS的AGC控制策略研究[J].电网技术,2004.28(21).75-79.
    [16]郑宝森,郭日彩.中国互联电网的发展[J].电网技术,2003.14(001).30-33.
    [17] Feliachi A., Rerkpreedapong D. NERC compliant load frequency control design using fuzzyrules[J]. Electric power systems research.2005.73(2).101-106.
    [18] Hoonchareon N. B., Ong C. M., Kramer R. A. Feasibility of decomposing ACE to identify theimpact of selected loads on CPS1and CPS2[J]. IEEE Transactions on Power Systems.2002.17(8),752-756.
    [19]周京阳,于尔铿.能量管理系统(EMS)第5讲自动发电控制[J].电力系统自动化,1997,21(5),75-78.
    [20]余涛,王宇名,刘前进.互联电网CPS调节指令动态最优分配Q–学习算法[J].中国电机工程学报,2010.30(7),62-69
    [21]高宗和,滕贤亮,张小白.互联电网CPS标准下的自动发电控制策略[J].电力系统自动化,2005.29(19),40-44.
    [22]高宗和,滕贤亮,涂力群.互联电网AGC分层控制与CPS控制策略[J].电力系统自动化,2004,28(1):78-81.
    [23] Concordia C., Kirchmayer L. K. Tie-Line Power and Frequency Control of Electric PowerSystems-Part II[J]. Power Apparatus and Systems,1954.73(1).133-146.
    [24] Concordia C., Kirchmayer L. K. Tie-line power and frequency control of electric powersystems[J]. Power Apparatus and Systems,1953.72(2),562-572.
    [25] Elgerd O. I., Fosha C. E. Optimum megawatt-frequency control of multiarea electric energysystems[J]. IEEE Transactions on Power Apparatus and Systems,1970, PAS-89(4),556-563.
    [26] Yamashita K., Taniguchi T. Optimal observer design for load-frequency control[J].International Journal of Electrical Power&Energy Systems,1986,8(2),93-100.
    [27] Bohn E. V., Miniesy S. M. Optimum load-frequency sampled-data control with randomlyvarying system disturbances[J]. IEEE Transactions on Power Apparatus and Systems,1972,(5),1916-1923.
    [28] Ross C. W. Error adaptive control computer for interconnected power systems[J]. IEEETransactions on Power Apparatus and Systems,1966,(7),742-749.
    [29] Tao Y., Bin Z. A novel self-tuning CPS controller based on Q-learning method[C]. Power andEnergy Society General Meeting Power and Energy Society General Meeting-Conversion andDelivery of Electrical Energy in the21st Century IEEE,2008,1-6.
    [30]余涛,周斌.基于强化学习的互联电网CPS自校正控制[J].电力系统保护与控制,2009,37(10),33-38.
    [31]余涛,陈亮,蔡广林.基于CPS统计信息自学习机理的AGC自适应控制[J].中国电机工程学报,2008,28(10),82-87.
    [32] Talaq J., Al-Basri F. Adaptive fuzzy gain scheduling for load frequency control[J]. IEEETransactions on Power Systems,1999,14(1),145-150.
    [33] Shoults R. R., Jativa Ibarra J. A. Multi-area adaptive LFC developed for a comprehensive AGCsimulator[J]. IEEE Transactions on Power Systems,1993,8(2),541-547.
    [34] Pan C. T., Liaw C. M. An adaptive controller for power system load-frequency control[J].IEEE Transactions on Power Systems,1989,4(1),122-128.
    [35] Vajk I., Vajta M., Keviczky L., Haber R., Hetthessy J., Kovacs K. Adaptive load-frequencycontrol of the Hungarian power system[J]. Automatica,1985,21(2),129-137.
    [36] Kanniah J., Tripathy S. C., Malik O. P., Hope G. S. Microprocessor-based adaptiveload-frequency control[C]. IEE Proceedings Generation Transmission and Distribution,1984,131(4),121-128.
    [37] Olmos L., de la Fuente J. I., Macho J. L. Z., Pecharromán R. R., Calmarza A. M., Moreno J.New design for the Spanish AGC scheme using an adaptive gain controller[J]. IEEETransactions on Power Systems.2004.19(3).1528-1537.
    [38] Liu X., Zhan X., Qian D. Load frequency control considering generation rate constraints[C].World Congress on Intelligent Control and Automation (WCICA),2010,8th,1398-1401.
    [39] Venkat A. N., Hiskens I. A., Rawlings J. B., Wright S. J. Distributed MPC strategies withapplication to power system automatic generation control[J]. IEEE Transactions on ControlSystems Technology,2008,16(6),1192-1206.
    [40]孔莲芳,罗天祥,吴捷.基于状态收缩约束的模型预测负荷频率控制[J].中国电机工程学报,2007,27(7),18-22.
    [41] Atic N., Rerkpreedapong D., Hasanovic A., Feliachi A. NERC compliant decentralized loadfrequency control design using model predictive control[C]. IEEE Power Engineering SocietyGeneral Meeting,2003,2,13-17.
    [42]展小磊.考虑非线性互联网电力系AGC控制策略研究[D].华北电力大学,2010.
    [43] Khodabakhshian A., Edrisi M. A new robust PID load frequency controller[J]. ControlEngineering Practice,2008,16(9),1069-1080.
    [44]段献忠,何飞跃.考虑通信延迟的网络化AGC鲁棒控制器设计[J].中国电机工程学报,2006,26(22),35-40.
    [45] Azzam M. Robust automatic generation control[J]. Energy conversion and management,1999,40(13),1413-1421.
    [46] Ray G., Prasad A. N., Prasad G. D. A new approach to the design of robust load-frequencycontroller for large scale power systems[J]. Electric power systems research,1999,51(1),13-22.
    [47] Stankovic A. M., Tadmor G., Sakharuk T. A. On robust control analysis and design for loadfrequency regulation[J]. IEEE Transactions on Power Systems,1998,13(2),449-455.
    [48] Wang Y., Zhou R., Wen C. New robust adaptive load-frequency control with system parametricuncertainties[C]. IEE Proceedings Generation, Transmission and Distribution,1994,141(3),184-190.
    [49] Erschler J., Roubellat F., Vernhes J. P. Automation of a hydroelectric power station usingvariable-structure control systems[J]. Automatica,1974,10(1),31-36.
    [50] Al-Hamouz Z. M., Abdel-Magid Y. L. Variable structure load frequency controllers formultiarea power systems[J]. International Journal of Electrical Power&Energy Systems,1993,15(5),293-300.
    [51] Kumar A., Malik O. P., Hope G. S. Variable-structure-system control applied to AGC of aninterconnected power system[C]. IEE proceedings C Generation, Transmission andDistribution),1985,132(1),23-29.
    [52] Sivaramakrishnan A. Y., Hariharan M. V., Srisailam M. C. Switched control of frequency ofinterconnected power systems using variable structure[J]. International journal of systemsscience,1985,16(11),1409-1424.
    [53] Sivaramakrishnan A. Y., Hariharan M. V., Srisailam M. C. Design of variable-structureload-frequency controller using pole assignment technique[J]. International Journal of control,1984,40(3),487-498.
    [54] Chan W. C., Hsu Y. Y. Automatic generation control of interconnected power systems usingvariable-structure controllers[C]. Generation, IEE Proceedings C (Transmission andDistribution),1981,128(5),269-279.
    [55]孟祥萍,薛昌飞,张化光.基于Ackermann公式的分散滑模负荷频率控制[J].东北大学学报(自然科学版),2000,21(2),128-131.
    [56]孟祥萍,薛昌飞,张化光.多区域互联电力系统的PI滑模负荷频率控制[J].中国电机工程学报,2001,21(3),6-11.
    [57] Shayeghi H., Shayanfar H. A. Application of ANN technique based on μ-synthesis to loadfrequency control of interconnected power system[J]. International Journal of Electrical Power&Energy Systems,2006,28(7),503-511.
    [58] Zeynelgil H. L., Demiroren A., Sengor N. S. The application of ANN technique to automaticgeneration control for multi-area power system[J]. International journal of electrical power&energy systems,2002,24(5),345-354.
    [59] Demiroren A., Sengor N. S., Zeynelgil H. L. Automatic generation control by using ANNtechnique[J]. Electric Power Components and Systems,2001,29(10),883-896.
    [60] Demiroren A., Zeynelgil H. L., Sengor N. S. The application of ANN technique toload-frequency control for three-area power system. IEEE Porto Power Tech Proceedings,2001,2,2-5.
    [61] Chaturvedi D. K., Satsangi P. S., Kalra P. K. Load frequency control: a generalised neuralnetwork approach[J]. International Journal of Electrical Power&Energy Systems,1999,21(6),405-415.
    [62] Beaufays F., Abdel-Magid Y., Widrow B. Application of neural networks to load-frequencycontrol in power systems[J]. Neural Networks,1994,7(1),183-194.
    [63] Douglas L. D., Green T. A., Kramer R. A. New approaches to the AGC nonconforming loadproblem. Conference Proceedings Power Industry Computer Application Conference,1993,48-57.
    [64] Feliachi A., Rerkpreedapong D. NERC compliant load frequency control design using fuzzyrules[J]. Electric power systems research,2005,73(2),101-106.
    [65] Juang C. F., Lu C. F. Power system load frequency control by genetic fuzzy gain schedulingcontroller[J]. Journal of the Chinese institute of Engineers,2005,28(6),1013-1018.
    [66] Nanda J., Mangla A. Automatic generation control of an interconnected hydro-thermal systemusing conventional integral and fuzzy logic controller. Electric Utility Deregulation,Restructuring and Power Technologies, Proceedings of the2004IEEE InternationalConference on,1:372-377.
    [67] Demiroren A., Yesil E. Automatic generation control with fuzzy logic controllers in the powersystem including SMES units[J]. International journal of electrical power&energy systems,2004,26(4),291-305.
    [68]赵菁,彭慧敏,谢维廉.基于模糊控制的自动发电控制[J].贵州工业大学学报:自然科学版,2003,32(1).49-53.
    [69] Juang C. F., Lu C. F. Power system load frequency control with fuzzy gain scheduling designedby new genetic algorithms. Proceedings of the2002IEEE International Conference on FuzzySystems,2002,1:64-68.
    [70] Talaq J., Al-Basri F. Adaptive fuzzy gain scheduling for load frequency control[J]. IEEETransactions on Power Systems,1999,14(1),145-150.
    [71] Chang C. S., WEIHUL F. U., Wen F. Load frequency control using genetic-algorithm basedfuzzy gain scheduling of PI controllers[J]. Electric machines and power systems.1998.26(1),39-52.
    [72] Indulkar C. S., Baldev R. Application of fuzzy controller to automatic generation control[J].Electric machines and power systems,1995,23(2),209-220.
    [73]李媛媛,宋永华,魏少岩. AGC机组调配经济型的混沌遗传算法研究[J].电力系统保护与控制,2008.36(14):17-21.
    [74] Aditya. Design of load frequency controllers using genetic algorithm for two areainterconnected hydro power system[J]. Electric Power Components and Systems.2003.31(1):81-94.
    [75] Abdel-Magid Y. L., Dawoud M. M. Optimal AGC tuning with genetic algorithms[J]. Electricpower systems research,1996,38(3):231-238.
    [76] Roy R., Bhatt P., Ghoshal S. P. Evolutionary computation based three-area automaticgeneration control[J]. Expert Systems with Applications.2010.37(8).5913-5924.
    [77]唐跃中,周京阳.上海电网AGC扩展系统的原理与应用[J].中国电力,1999,32(003):19-23.
    [78]高宗和,丁恰,温柏坚,姚建国.利用超短期负荷预报实现AGC的超前控制[J].电力系统自动化,2000,24(11):42-44.
    [79] Yu T., Zhou B., Chan K. W., Chen L., Yang B. Stochastic Optimal Relaxed AutomaticGeneration Control in Non-Markov Environment Based on Multi-Step Q(λ) learning[J] IEEETransactions on Power Systems,2011,26(3):1272-1282.
    [80]李滨.基于优化理论的互联电网CPS标准下的AGC控制策略研究[D].广西大学,2011.
    [81] Luo W., Shi Y. Automatic Generation Control Strategies under CPS Based on Particle SwarmOptimization Algorithm[C]. International Conference on Electrical and Control Engineering(ICECE),2010:3400-3403.
    [82]韦昌福.基于现代内点法含频率预测的AGC控制策略研究[D].广西大学,2011.
    [83]刘斌,王克英,余涛,刘奇. PSO算法在互联电网CPS功率调节中的应用研究[J].电力系统保护与控制,2009,37(6):36-39.
    [84] Dommel Hermann W. Electromagnetic Transients Program: Reference Manual:(EMTP TheoryBook). Bonneville Power Administration,1986.
    [85]杨小煜,沈松林,黄文伟,邵山.多区域自动发电控制软件的开发与应用[J].电网技术,2003,27(7):25-27.
    [86]刘乐,刘娆,李卫东.互联电网频率调节动态仿真系统的研制[J].电网技术,2009,33(7):36-41.
    [87]宋新立,汤涌,卜广全,刘文焯,刘涛,万磊.大电网安全分析的全过程动态仿真技术[J].电网技术,2008,32(22):23-28.
    [88]周劼英,张伯明,郭玉金,何群,姚诸香.火电AGC机组超前控制策略[J].电网技术,2005,29(21):57-60.
    [89] Trudnowski D. J., McReynolds W. L., Johnson J. M. Real-time very short-term load predictionfor power-system automatic generation control[J]. IEEE Transactions on Control SystemsTechnology,2001.9(2),254-260.
    [90] Schulte R. P. An automatic generation control modification for present demands oninterconnected power systems[J]. IEEE Transactions on Power Systems,1996.11(3).1286-1294.
    [91] Q/GDW国家电网公司企业标准-风电场接入电网技术规定,2009.
    [92] Yao Maojun, Shoults Raymond R., Kelm Randy. AGC logic based on NERC's new ControlPerformance Standard and Disturbance Control Standard[J]. IEEE Transactions on powersystems,[J],2000,15(2):852-857.
    [93] Roossien B., van den Noort A., Kamphuis R., Bliek F., Eijgelaar M., de Wit J. Balancing windpower fluctuations with a domestic Virtual Power Plant in Europe's First Smart Grid[C].PowerTech,2011IEEE Trondheim,2011:1-5.
    [94] Luo C., Ooi B. T. Frequency deviation of thermal power plants due to wind farms[J]. IEEETransactions on Energy Conversion,2006,21(3):708-716.
    [95]沈伟,吴文传,张伯明,郑太一,孙宏斌.消纳大规模风电的在线滚动调度策略与模型[J].电力系统自动化,2012,35(22):136-140.
    [96]尚金成.基于时间尺度的节能发电优化调度协调模型及算法[J].电网技术,2008,32(15):56-61.
    [97] Nemhauser George L., Wolsey Laurence A. Integer and Combinatorial Optimization[M], JohnWiley&Sons, New York,1988.
    [98] Baghdadi M., Mortazavi S. S., Saidian A., Tafreshi SMM. Optimal operation of a distributioncompany with integration of reliability considerations based on Generalized BendersDecomposition method[C]. Modern Electric Power Systems (MEPS),2010Proceedings of theInternational Symposium,2010:1-9.
    [99] Zhao Hong-Shan, Chen Liang. Transmission line expansion planning branch and boundmethod[J]. Power System Protection and Control,2010:38(11):60-66.
    [100]Iyer S. Rama, Ramachandran K., Hariharan S. Optimal reactive power allocation for improvedsystem performance[J]. IEEE Transactions on Power Apparatus and Systems,1984,(6):1509-1515.
    [101]Bansal R. C. Optimization methods for electric power systems: An overview[J]. InternationalJournal of Emerging Electric Power Systems.2005.2(1):1-23.
    [102]Alguacil N., Conejo A. J. Multiperiod optimal power flow using Benders decomposition[J].IEEE Transactions on Power Systems,2000,15(1):196-201.
    [103]黄伟,蒋本一.电力系统无功功率综合优化──广义Benders分解法[J].现代电力,1996,13(2):1-6.
    [104]Facchinei Francisco, Pang Jong-Shi. Finite-dimensional variational inequalities andcomplementarity problems[M]. Springer,2003.
    [105]Billups Stephen C., Murty Katta G. Complementarity problems[J]. Journal of Computationaland Applied Mathematics,2000,124(1):303-318.
    [106]Leyffer Sven, López-Calva Gabriel, Nocedal Jorge. Interior methods for mathematicalprograms with complementarity constraints[J]. SIAM Journal on Optimization,2006,17(1):52-77.
    [107]Rosehart William, Roman Codruta, Schellenberg Antony. Optimal power flow withcomplementarity constraints[J]. IEEE Transactions on power systems,2005,20(2):813-822.
    [108]Raghunathan Arvind U., Biegler Lorenz T. An interior point method for mathematicalprograms with complementarity constraints (MPCCs)[J]. SIAM Journal on Optimization,2005,15(3):720-750.
    [109]Fletcher Roger, Leyffer Sven. Solving mathematical programs with complementarityconstraints as nonlinear programs[J]. Optimization Methods and Software,2004,19(1):15-40.
    [110]Capitanescu Florin, Wehenkel Louis. Experiments with the interior-point method for solvinglarge scale Optimal Power Flow problems[J]. Electric Power Systems Research,2013,95:276-283.
    [111]Yan Wei, Liu Fang, Chung C. Y., Wong K. P. A hybrid genetic algorithm-interior point methodfor optimal reactive power flow[J]. IEEE Transactions on Power Systems,200621(3):1163-1169.
    [112]Wei Hua, Sasaki Hiroshi, Kubokawa Junji, Yokoyama R. An interior point nonlinearprogramming for optimal power flow problems with a novel data structure[J]. IEEETransactions on Power Systems,1998,13(3):870-877.
    [113]Irisarri G. D., Wang X., Tong J., Mokhtari S. Maximum loadability of power systems usinginterior point nonlinear optimization method[J]. IEEE Transactions on Power Systems,1997,12(1):162-172.
    [114]Wu Yu-Chi, Debs Atif S., Marsten Roy E. A direct nonlinear predictor-corrector primal-dualinterior point algorithm for optimal power flows[J]. IEEE Transactions on Power Systems,1994,9(2):876-883.
    [115]Balbo Antonio Roberto, Souza Márcio Augusto Da Silva, Baptista Edméa Cássia, NepomucenoLeonardo. Predictor-Corrector Primal-Dual Interior Point Method for Solving EconomicDispatch Problems: A Postoptimization Analysis[J]. Mathematical Problems in Engineering,2012,2012(2012):1-26.
    [116]Chung C. Y., Yan Wei, Liu Fang. Decomposed Predictor-Corrector Interior Point Method forDynamic Optimal Power Flow[J]. IEEE Transactions on Power Systems,2011,26(3):1030-1039.
    [117]Rakpenthai Chawasak, Premrudeepreechacharn Suttichai, Uatrongjit Sermsak. Power systemwith multi-type FACTS devices states estimation based on predictor–corrector interior pointalgorithm[J]. International Journal of Electrical Power&Energy Systems,2009,31(4):160-166.
    [118]余娟.无功优化新模型和算法研究及其在电压稳定风险评估中的应用[D].重庆大学,2007.
    [119]Yan Wei, Yu Juan, Yu D. C., Bhattarai Kalu. A new optimal reactive power flow model inrectangular form and its solution by predictor corrector primal dual interior point method[J].IEEE Transactions on Power Systems,2006,21(1):61-67.
    [120]Yan Xihui, Quintana Victor H. An efficient predictor-corrector interior point algorithm forsecurity-constrained economic dispatch[J]. IEEE Transactions on Power Systems,1997,12(2):803-810.
    [121]蔡广林,张勇军,任震,蔡泽祥.采用非线性互补约束模型确定静态电压稳定临界点[J].中国电机工程学报,2008,28(16):8-14.
    [122]B ck Thomas, Fogel David B., Michalewicz Zbigniew. Evolutionary computation1: Basicalgorithms and operators[M]. Taylor&Francis.2000
    [123]Fogel David, Fogel Lawrence. An introduction to evolutionary programming[C]. Lecture Notesin Computer Science,1996,1063:21-33.
    [124]徐宗本,李国.解全局优化问题的仿生类算法(I)—模拟进化算法[J].1995,14(2):1-13.
    [125]Sinha Nidul, Chakrabarti R., Chattopadhyay P. K. Evolutionary programming techniques foreconomic load dispatch[J]. IEEE Transactions on Evolutionary Computation,2003,7(1):83-94.
    [126]Juste K. A., Kita H., Tanaka E., Hasegawa J. An evolutionary programming solution to the unitcommitment problem[J]. IEEE Transactions on Power Systems,1999,14(4):1452-1459.
    [127]Yang Hong-Tzer, Yang Pai-Chuan, Huang Ching-Lien. Evolutionary programming basedeconomic dispatch for units with non-smooth fuel cost functions. IEEE Transactions on PowerSystems,1996,11(1):112-118.
    [128]时燕.进化规划算法的研究与改进[D].山东师范大学,2008.
    [129]陈慰峰,金伯泉.医学免疫学[M].人民卫生出版社,2000.
    [130]Fearon Douglas T., Locksley Richard M. The instructive role of innate immunity in theacquired immune response [J]. Science (New York, NY),1996,272(5258):50-54.
    [131]舒隽.市场环境中电力系统优化运行模型与方法的研究[D].华北电力大学,2005.
    [132]高小永.基于多目标蚁群算法的土地利用优化配置[D].武汉大学,2010.
    [133]申晓宁.基于进化算法的多目标优化方法研究[D].南京理工大学,2008.
    [134]张鹏翔.多目标进化算法及其在电力系统中的应用研究[D].华中科技大学,2004.
    [135]Yan Wei, Lu Shuai, Yu David C. A novel optimal reactive power dispatch method based on animproved hybrid evolutionary programming technique[J]. IEEE Transactions on PowerSystems,2004,19(2):913-918.
    [136]石立宝,徐国禹.自适应进化规划及其在多目标最优潮流中的应用(Ⅰ)——自适应进化规划算法[J].电力系统自动化,2000,24(7):23-25.
    [137]Gao Wei. Fast immunized evolutionary programming[C]. Proceedings of2004InternationalConference on Machine Learning and Cybernetics,2004,1:198-203.
    [138]曹先彬,刘克胜,王煦法.基于免疫进化规划的多层前馈网络设计[J].软件学报,1999,10(11):1180-1184.
    [139]文学,王坚.南方电网调频模式现状及未来调频模式研究[J].电网技术,2010:34(12):119-123.
    [140]赵旋宇.南方电网直调机组AGC研究[J].继电器,2008,36(7):54-58.
    [141]徐琰,朱翠兰.华中电网AGC分层控制模式的探讨[J].电力系统自动化,2000,24(22):45-48.
    [142]江木,吴文传,张伯明,孙宏斌,李晓红.特高压联网下AGC协调控制策略仿真[J].电力系统自动化,2010,(14):75-78.
    [143]Egido Ignacio, Fernandez-Bernal Fidel, Rouco Luis. The Spanish AGC system: description andanalysis[J]. IEEE Transactions on Power Systems,2009,24(1):271-278.
    [144]Premakumaran N., Parthasarathy K., Khincha H. P., Chidambara M. R. Some aspects ofmultilevel load-frequency control of a power system. Generation, Transmission andDistribution, IEE Proceedings,1982,129(6):290-294.
    [145]Miniesy S. M., Bohn E. V. Two-Level Control of Interconnected Power Plants[J]. IEEETransactions on Power Apparatus and Systems,1971,(6):2742-2748.
    [146]高宗和,陈刚,杨军峰,滕贤亮,姚建国.特高压互联电网联络线功率控制(一) AGC控制策略[J],电力系统自动化,2009,(015):51-55.
    [147]Wood Eileen, Zivcakova Lucia, Gentile Petrice, Archer Karin, De Pasquale Domenica, NoskoAmanda. Examining the impact of off-task multi-tasking with technology on real-timeclassroom learning[J]. Computers&Education,2012,58(1):365-374.
    [148]Duvall Keith E., Hooten Anthony D. Method to control I/O accesses in a multi-tasking virtualmemory virtual machine type data processing system[P].专利号:4742447.
    [149]Rajkumar Ragunathan, Gagliardi Mike, Sha Lui. The real-time publisher/subscriberinter-process communication model for distributed real-time systems: design andimplementation[C]. Real-Time Technology and Applications Symposium,1995:66-75.
    [150]Zhao Ruifeng, Yan Wei, Zhang Jinge, Wen Junhao, Zhao Xia, Yu Juan, Lei Chao. ApplicationResearch on Power System Distributed Computing Model Based on Inter-ProcessCommunication [J]. Journal of Computational Information Systems,2013,9(2):575-583.
    [151]Halevy Alon, Doan AnHai, Ives Zachary. Principles of Data Integration[M]. Morgan Kaufmann,2012.
    [152]王玉标,文俊浩,赵瑞锋,饶锡如.基于Web服务的异构数据库共享及同步机制[J].计算机工程与设计,2009,(024):5774-5777.
    [153]屈振新,唐胜群.信息集成中冲突的语义解决方案[J].计算机科学,2010,(001):167-169.
    [154]Mena Eduardo, Illarramendi Arantza, Kashyap Vipul, Sheth Amit P. OBSERVER: An approachfor query processing in global information systems based on interoperation across pre-existingontologies[J]. Distributed and Parallel Databases,2000,8(2):223-271.
    [155]Wache Holger, Voegele Thomas, Visser Ubbo, Stuckenschmidt Heiner, Schuster Gerhard,Neumann Holger, Hübner Sebastian. Ontology-based integration of information-a survey ofexisting approaches[C]. Proceedings of IJCAI-01Workshop: Ontologies and InformationSharing, Seattle, WA,2001:108-117.
    [156]谢俊,段献忠,石东源.电力系统异构应用信息共享和互操作理论与方法研究[J].华中科技大学学报,2008,7:130-271
    [157]Lee Peter Alan, Anderson Thomas. Fault tolerance [M]. Springer,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700