用户名: 密码: 验证码:
毛白杨无性系耐盐性比较与转耐盐基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以八个毛白杨优良无性系植株为试验材料。在盐胁迫条件下,调查了八个毛白杨优良无性系的存活状况,受害症状及苗高等生长性状,同时测定了植株叶片内叶绿素,脯氨酸,MDA的含量等理化指标。进而,利用农杆菌介导的基因工程方法将mtlD基因导入毛白杨中,获得了转基因植株。经研究获得如下主要结论:
     1.经盐胁迫处理后,毛白杨各个无性系的耐盐能力存在差异,主要表现在苗木存活状况,受害特征出现的时间和受害程度,以及高生长量等方面。
     2.经盐胁迫处理后,随着盐浓度的升高,毛白杨无性系植株的叶片内叶绿素含量逐渐降低,MDA含量逐渐升高,脯氨酸含量先上升后下降。
     3.根据盐胁迫后毛白杨优良无性系植株的生长表现,再辅以生理生化指标,评定八个毛白杨优良无性系的耐盐性,由强到弱可分为三个类型:L5和L16耐盐能力较强;L11、L14和L27耐盐能力中等;L12、L13和L24对盐胁迫敏感。
     4.建立了毛白杨优良无性系的最佳再生体系:最佳增殖培养基是MS+6—BA0.3mg/L+NAA0.1mg/L附加糖3.0%和琼脂0.5%;最佳叶片分化培养基是MS+6—BA3.0mg/L+NAA0.1mg/L附加糖3.0%和琼脂0.5%;最佳生根培养基是1/2MS基本培养基附加NAA0.3mg/L,另加入糖2.0%和琼脂0.5%。
     5.同龄同代的无根组培苗叶片和生根组培苗叶片作外植体,不定芽生成率有差异;不同类型培养基(WPM、MS)对毛白杨叶片再生率的影响无显著差异;在培养基中加入不同浓度梯度的AgNO_3溶液,结果发现4mg/L的AgNO_3能够提高叶片产生不定芽的数量。
     6.按照以下优化的转化体系:菌液OD_(600)=0.3-0.5;侵染时间为10—20min;叶片在黑暗下共培养2-3天;卡那霉素的临界浓度是50mg/L,对筛选出的抗性植株进行PCR及PCR-Southern检测。结果表明,成功获得了转入mtlD基因的毛白杨植株。
In this study, the eight clones of Populus tomentosa were used for evaluating their salt-resistance abilities through the experiments. Under the condition of salt stress, the survival performance, stress appearance and height growth rates of clones were investigated; at the same time, chlorophyll content, proline content and MDA content were measured. Furthermore, the mtlD gene was transformed into the plantlet of Populus tomentosa successfully. The results were as follows:
    1. Under the condition of salt stress, it was all difference among 8 clones indicated by the survival performance, stress appearance and height growth rates.
    2. With the increase of salt concentration, the chlorophyll content decreased; The proline content fluctuated and the MDA content climbed gradually.
    3. According to growth performance of eight clones affiliated with their physiological and biochemical parameters, the salt resistance abilities of clones were judged three types: L5 and L16 had a good tolerance to salt stress; the abilities of LI 1, L14 and L27 to salt resistance were moderate; LI2, L13 and L24 were the most sensitive to salt stress.
    4. The optimum regeneration system of Populus tomentosa was founded as follows: proliferation medium was MS+ 6-BA 0.5mg/L+NAA0.1mg/L+sugar 30g/L+agar 4.5g/L; regeneration medium of leaf-explant was MS+6-BA 3.0mg/L+NAA0.1mg/L+ sugar30g/L+agar 4.5g/L; rooting medium was MS+NAA0.3mg/L+sugar 20g/L+agar 4.5g/L.
    5. The test demonstrated the best leaves for adventitious bud regeneration stem from rooted plant. And, there were significant effects on adventitious bud regeneration by the way of adding different concentrations of AgNO3. At the same time, the effects of
    I
    
    
    different types of media on the regeneration of adventitious shoots were studied, indicating that there was no difference in adventitious shoot induction. 6. The optimized condition for transformation of Populus tomentosa was co-cultured with an engineered A.tumefaciens strain carrying mtlD gene from E. coli. for 2-3days and infected with A.tumefaciens concentration of OD6oo=0.3-0.5 about 10-20min. The buds were screened in the differentiation culture media containing Km 50mg/L. At last, the integration of the mtlD gene into plant genomes of transgenic P. tomentosa was confirmed by PCR-Southern hybridization and PCR analysis.
引文
1 白根本.胡杨天然群体遗传学初步探讨和抗性基因的筛选克隆[学位论文].北京林业大学,1999
    2 卜学贤,林忠平,陈维伦.农杆菌对毛白杨的转化及完整转化植株的获得.植物学报,1991,33(3):206-213
    3 曹孜义,刘国民.实用植物组织培养技术教程.甘肃:甘肃科学技术出版社,1996
    4 陈火英,张建华,张晓宁.栽培番茄耐盐突变体的离体筛选.上海交通大学学报(农业科学版),2002,20(1):1-6
    5 陈维伦,郭东红,杨善英,等.用组织培养快速繁殖毛白杨的研究.植物学集刊,1983,1:135-138
    6 陈贻竹,B帕特森.低温对植物叶片中超氧物歧化酶、过氧化氢酶和过氧化物酶水平的影响.植物生理学报,1988,14(4):323-328
    7 陈颖,韩一凡,李铃.苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究.林业科学,1995,31(2):97-103
    8 杜立群,李银心,李洪杰,等.在1/3海水培养基上筛选豆瓣菜耐盐变异体.植物学报,1999,4 1(6):633-639
    9 杜宁霞.三倍体毛白杨转AhDREB基因的研究[学位论文].北京林业大学,2003
    10 樊军锋.mtlD/gutD双价基因转化杨树、猕猴桃的研究[学位论文].西北农林科技大学,2002
    11 樊军锋,韩一凡,李玲,等.mtlD/gutD双价基因转化美洲黑杨x青杨的研究.林业科学.2002, 38(6):30-35
    12 冯建灿,张玉洁,杨天柱.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响.林业科学研究,2002,15(2):197-202
    13 龚明.盐胁迫下大麦和小麦等叶片脂质过氧化伤害与超微结构变化的关系.植物学报,1989,31(11):841-846
    14 谷文英,裴德清,朱登云,等.杜仲茎段培养的初步研究.莱阳农学院学报,1999,16(1):6-9
    15 郝贵霞,朱祯,朱之悌.毛白杨遗传转化系统优化的研究.植物学报,1999,41(9):936-940
    16 郝贵霞,朱祯,朱之悌.杨树基因工程进展.生物工程进展,2000,20(4):6-10
    17 何卓培.高等植物细胞突变体.细胞生物学杂志,1986,8(1):11-18
    
    
    18 黄绍兴,阎隆飞.高等植物对渗透胁迫的基因表达.农业生物技术学报,1995,3(3):1-6
    19 黄学林,李莜菊.高等植物组织离体培养的形态建成及其调控.北京:科学出版社,1995
    20 江香梅,黄敏仁,王明庥.植物抗盐碱、耐干旱基因工程研究进展.南京林业大学学报(自然科学版),2001,25(5):57-62
    21 荆家海,高俊凤,王珠清,等.植物生理学.西安:陕西科学技术出版社,1994,317-384
    22 李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,197-198
    23 李玲,韩一凡.杨树耐盐突变体筛选的研究.林业科学,1990,26(4):359-362
    24 李际红,张友鹏,刘国兴,等.3个杨树新无性系耐盐力测定初报.山东林业科技,2001,1:10-13
    25 李驹,陈维明.细胞筛选产生的耐盐杨树.杨树科技通讯,1984
    26 李驹,陈维明.杨树耐盐细胞系的筛选及不定苗再生的研究.林业科技通讯, 1984.1:1-3
    27 李浚明.植物组织培养教程.北京:中国农业大学出版社,1992
    28 李周岐,徐养福,郭军战.河北杨体细胞抗盐性突变体抗性稳定性研究.西北林学院学报,1996,11(4):94-97
    29 林凤栖,李冠一.植物耐盐性研究进展.生物工程进展,2000,120(2):20-25
    30 林荣呈,陈龙清,包满珠,等.提高根癌农杆菌介导的香石竹遗传转化的研究.林业科学研究,2003,16(2):123-128
    31 刘斌,李红双,王其会,等.反义磷酸脂D γ基因转化毛白杨的研究.遗传,2002,24(1):40-42
    32 刘凤华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(1):54-58
    33 刘凤华,孙仲序,崔德才,等.细菌mtl-D基因的克隆及在转基因八里庄杨中的表达. 遗传学报,2000,27(5):428-433
    34 刘凤荣,陈火英,刘杨,等.盐胁迫下不同基因型番茄可溶性物质含量的变化.植物生理与分子生物学学报,2004,30(1):99-104
    35 刘俊君,彭学贤,王海云,等.转基因烟草的甘露醇合成和耐盐性.生物工程学报,1996,2f2):206-210
    36 刘岩,彭学贤,谢友菊,等.植物抗渗透胁迫基因工程研究进展.生物工程进展,1997,17(2):31-38
    37 刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994,369-372
    38 卢静军,多立安,刘祥君.盐胁迫下两草种SOD、POD、和脯氨酸动态研究.植
    
    物研究,2004,24(1):115-119
    39 吕士行,吕志英,徐锡增,等.盐胁迫对杨树无性系生理特性及高生长的影响.南京林业大学学报,1994,18(4):13-18
    40 马焕成,王沙生.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节.西南林学院学报,1998,1:15-23
    41 马建华,郑海雷,赵中秋,等.植物抗盐机理研究进展.生命科学研究,2001,5(3):175-179
    42 孟康敏.绒毛白蜡等树种耐盐力研究.辽宁林业科技,1999,3:42-46
    43 俌荣昭,孙勇如.植物遗传转化技术手册.北京:科学技术出版社,1993
    44 饶红宇,黄敏仁.杨树基因工程研究的现状及展望.林业科技开发,1999,4:3-6
    45 宋玉霞,马洪爱,郭生虎等.银河Ⅰ号杨叶外植体再生体系建立.西北植物学报,2002,22(3):661-666
    46 苏金,J Targolli,吴乃虎,等.在转基因植物中实现外源基因最佳表达的途径.生物工程学报,1999,4:3-6
    47 苏梦云.杉木幼苗在渗透胁迫下脯氨酸积累及Ca离子的调节作用.林业科学研究,2003,16(3):335-338
    48 舒卫国,陈受宜.植物在渗透胁迫下基因表达及信号传递.生物工程进展,2000,20(3):3-6
    49 孙仲序,杨红花,崔得才,等.转抗盐基因八里庄组培苗快繁研究.生物技术通报,2002,4:43-46
    50 陶晶.东北主要杨树抗盐机理及抗性品种选育的研究[学位论文].东北林业大学,2002
    51 陶晶,秦彩云,姚露贤,等.杨树耐盐性突变体育种的研究进展.吉林林业科技,2000,29(2):5-8
    52 田吉林,杨玉爱,何玉科.转HALl基因番茄的耐盐性.植物生理与分子生物学学报,2003,29(5):409-414
    53 田颖川,李太元,莽克强,等.抗虫转基因欧洲黑杨的培育.植物学报,1993,9(4):291-297
    54 王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社, 1998
    55 王善平,许智宏,卫志明.毛白杨叶外植体的遗传转化.植物学报,1990,32(3):172-177
    56 王玮,李德全.植物盐分胁迫与水分胁迫的异同.植物生理学通讯,2003,39(5):491-492
    57 王衍安,李际红,张友朋,等.耐盐杨树新无性系选育续报.山东林业科技,1997.4:7-1
    
    
    58 王瑛,贾敬芬.沙打旺耐盐细胞系的筛选及特性分析.应用与环境生物学报,1999,5(6):547-550
    59 吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响.南京林业大学学报,2002,26(3):19-22
    60 肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究.西北植物学报,2000,20(5):818-825
    61 谢承陶.作物品种的耐盐性及其机理.见:谢承陶主编。盐渍土改良原理与作物抗性.北京:中国农业科学技术出版社,184-185
    62 许长成,赵世杰,邹琦.植物组织内丙二醛的分离和鉴定.植物生理学通讯,1992,28(4):288-290
    63 许祥明,叶和春,李国凤,等.芦苇耐盐变异体与野生型植株某些特性的比较.植物学报,2000,42(11):1126-1130
    64 徐云远,王鸣刚,贾敬芬.红豆草耐盐愈伤组织的筛选及植株再生.西北植物学报,2000,20(1):15-21
    65 杨传平,刘桂丰,梁宏伟,等.耐盐基因Bet-A转化小黑杨的研究.林业科学,2001,37(6):34-38
    66 杨茁萌,黄军,石定燧,等.鲁梅克斯K-1杂交酸模耐盐性的初步研究.中国草地,2000,1:26-30
    67 余叔文,汤章城.植物生理与分子生物学(第二版)[M].科学出版社,1998,752-769
    68 苑增武,张孝民,毛齐来,等.大庆地区主要造林树种耐盐碱能力评价.防护林科技,2000,1:15-17
    69 岳玮,夏光敏,陈惠民,等.獐毛愈伤组织耐盐性研究及耐盐变异体的筛选.山东大学学报(自然科学版),2000,35(3):338-347
    70 翟凤林,曹鸣庆.植物的耐盐性及其遗传改良.北京:农业出版社,1989
    71 张恩让,程智慧.大蒜耐盐愈伤组织变异系的选择研究.西北植物学报,2003,23(9):1571-1576
    72 张福锁.环境胁迫与植物育种.北京:农业出版社,1993,330-335
    73 张立钦, 郑勇平, 金佩英.用组织培养技术筛选杨树耐盐种质.浙江林学院学报,1996,13(4):397-404
    74 张立钦,郑勇平,吴纪良,等.黑杨派新无性系水培苗对盐胁迫反应的研究.浙江林学院学报,2000,17(2):121-125
    75 张鹏,傅爱根,王爱国.AgNO_3在植物离体培养中的作用及可能的机制.植物生理学通讯,1997,33f5):376-379
    76 张荃,王淑芳, 赵彦修,等.HAL1基因转化番茄及耐盐转基因番茄的鉴定.生
    
    物工程学报,2001,17(6):658-662
    77 张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    78 张绮纹,苏晓华.杨树定向遗传改良及高新技术育种.北京:中国林业出版社, 1999
    79 张绮纹,张望东.群众杨39无性系耐盐悬浮细胞系的建立和体细胞变异体完整植株的诱导.林业科学研究,1995,8(4):395-401
    80 赵茂林.组培方法筛选杨树耐碱性盐变异体的研究.山西林业科技,1989,4:19-22
    81 赵可夫,冯立田.中国盐生植物资源. 北京:科学出版社,2001
    82 赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999
    83 赵华燕,卢善发,晁瑞堂.杨树的组织培养及其基因工程研究.植物学通报,2001,18(2):169-176
    84 郑海雷,林鹏.培养盐度对海莲和木木榄幼苗膜保护系统的影响.厦门大学学报,1998,37(2):278-282
    85 郑均宝,张玉满,杨文芝,等.741杨离体叶片再生及抗虫基因转化.河北农业大学学报,1995,118f3):20-25
    86 郑均宝,梁海永,孙克南,等.雄性毛白杨离体叶片再生及抗虫基因转化.河北林学院学报,1996,11(2):97-101
    87 钟名其,楼程富,谈建中,等.AgNO_3对桑树叶片培养不定芽分化的影响.浙江大学学报(农业与生命科学版),2000,26(1):97-100
    88 周冀明,卫志明,许智宏.根癌土壤农杆菌介导转化诸葛菜子叶获得转基因植株.生物工程学报,1996,12(1):34-39
    89 注良驹,马凯,姜卫兵,等.NaCl胁迫下石榴和桃植株Na~+和K~+含量与耐盐性的研究,园艺学报,1995,22(4):336-340
    90 朱之悌.毛白杨良种选育战略的若干考虑及其8年研究结果总结.见:林业部科技司主编.阔叶树遗传改良.北京:科学技术文献出版社,1991,59-91
    91 Anil G, Chandan S, Neeti Sanan et al. Taming abiotic stresses in plant through genetic engineering: current strategies and perspective. Plant Science, 1999, 143:101-111
    92 Beyer E M. A polent in hibitor of ethylene action in plants. Plant physiol, 1976, 58:268-271
    93 Binding H, Binding K, Straub J. Selection in Gewebekulturenm it hyloiden zellen. Naturwissinenschaften, 1970, 3:138-139
    94 Bohnert H J, Jenson R. Metabolic engineering for increased salt tolerance-the next step. AUST. Plant Physiol, 1996, 23:661-667
    
    
    95 Bohnert H J, Shen B. Transformation and compatible solute. Scientia Horticulture, 1999,78 (1-4):237-260
    96 Bordas M, Montesinos C, Dabauza M et al. Transfer of the yeast salt tolerance gene HAL1 to cucujmis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Research, 1997, 6:41-50
    97 Calson P S. Induction and isolation of auxotrophic mutants in somatic cell culture of Nicotiana tabacum. Science, 1970, 168:487-489
    98 Chartzoulakis K, Klapaki G. Response of two greenhouse pepper hybrids to NaC1 salinity during different growth stages. Scientia Horticulturae, 2000, 86(3):247-260
    99 Delauney A J , Verma D P S. Proline biosynthesis and osmoregulation in plant. Plant, 1993, 4(2): 2215-2230
    100 Du N X, Li Y, Yu H W et al. Establishment of high frequency regeneration system of Populus tomentosa . Forestry studies in China, 2002, 4(2): 48-50
    101 Fostad O, Pedersen P A. Container-grown tree seedling response to sodium chloride applications in different substrates. Environmental Pollution, 2000, 109(2): 203-210
    102 Gao M, Sakamoto A, Miura K et al. Transformation of Japanese Persimmo (Diospyroskaki Thunb ) with a bacterial gene for Choline oxidase. Molecular Breeding, 2000, 6(5): 501-510
    103 Gaxiola R. A novel and conserved salt introduced protein is an important determination of salt tolerance in yeast. Emboj, 1992, 11:3157-3164
    104 Gervera M, Ortega C, Navarro A et al. Generation of transgenic citrus plants with the tolerance to salinity gene HAL2 from yeast. Journal of Horticulture Science&Biotechnology, 2000, 75(1): 26-30
    105 Gisbert C, Rus A M, Bolarin MC et al. The yeast HAL 1 gene improves salt tolerance of transgenic tomato. Plant Physiol, 2000, 123(1): 393-402
    106 Greeenway H, Munns R. Mechanisms of salt tolerance in non-halophytes. Plant Physiol, 1980, 131:149-190
    107 Grieve G M, Guzy M R, Poss J A et al. Screening Eucalytus clone for salt tolerance. Hortscience, 1999, 34(5):867-870
    108 Hansomn. A. D. Rathinasabapathi. B, Chamberin.B et al. Comparative physiological evidence that β-alanine betaine and choline-o-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiology, 1991, 97:31199-1205
    109 Hayashi H Alia. Tansformation of Arabidopsis thaliana with the coda gene for choline oxidise; Accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant, 1997, 12:133-142
    
    
    110 He P M., Zhang D B, Liang W Q et al. Expression of choline oxidase gene (codA) enhances salt tolerance of the tabacco. Acta Biochirnica Sincia, 2001, 33(5): 519-524
    111 Heimer Y M, Filner P. Regulation of the nitrate assimilation pathway of cultured tobacco cells2: properties of a variant cell line. Biochim-Biophys Acta, 1970, 215:152-165
    112 Hirofumi Sancoka, Chie Saka, Daniel. T Hahn et al. Salt tolerance of glyainebetaine-deficient and containing maize lines. Plant Physiol, 1995,107:631-638
    113 I. Arillaga, R. Gil-Mascarell, C. Gisbert et al. Expression of the yeast HAL2 gene in tomato increases the in vitro salt tolerance of transgenic progenies. Plant Science, 1998, 136(2): 219-226
    114 Jia G X, Zhu Z Q, Chang F Q. Transformation of tomato with the BADH gene from Atriplx improves salt tolerance. Plant Cell Rep, 2003, 21:141-146
    115 Joersbo M, Okkels F T. A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep, 1996, 16:219-221
    116 Li Y X, Chang FQ, Guo B H et al. Genetic transformation of watercress with a gene including for betaine-aldehyte dehydrogenase (BADH). Acta botanica sinica, 2000, 42(5): 480-484
    117 Lilius G, Holmberg N, Bulow L . Enhanced NaC1 stress tolerance in transgenic tobacoo expressing bacterial choline dehydrogenase. Biotechnology, 1996, 14: 177-180
    118 Liu Y , Wang G Y, Liu J J et al. Transfer of E.coli gutD gene into maize and regeneration of salt-tolerant transgenic plant. Science in china series c-life science, 1999, 42(1): 90-95
    119 Maliga P. Isolation and characterization of mutants a plant cell culture. Plant physiol, 1984, 35:519-542
    120 Maqbool B, Zhong H, Maghreby Y et al. Competence of oat shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing HAL1. Theo Appl Gen, 2002, 105:201-208
    121 Marquez J A, Serrano R. Multiple transduction pathways regulate the sodium extrusion genePMR2/ENAlduring salt stress in yeast. Febs Letters, 1996, 382:89~92
    122 McCue K F, Hanson A D. Salt inducible betaine aldehyde dehydrogenase from sugar beet:cDNA cloning and expression. Plant Molecular Biology, 1992, 18:1-11
    123 Metz T D, Dixit R, Earle E D. Agrobacterium tumefacfiens-mediated transformation
    
    of broccoli and cabbage. Plant Cell Reports, 1995,15:287-292
    124 Michelet B, Boutry M. The plasma membrane H~+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiol, 1995, 108:1-6
    125 Michell C T. Expression of a bacterial mtl-D gene in transgenic tobacco leads to production and accumulation of mannitol. Proc. Natl. Acad. Sci-USA, 1992, 2600-2604
    126 Munns R, Termaat A. Whole plant responses to salinity. Plant Physiol, 1986, 13:143-160
    127 Nobors M W, Gibbs S E, Bernstein C S, et al. NaCl-tolerant tobacco plants from cultured cells. Z.Pflanzenphysiol, 1980, 97:13-17
    128 Qin G H, Jiang Y Z, Qiao Y L. Resistence to adversity of new poplar clones. Forestry Studies in China, 2003, 5(4): 18-21
    129 Paul M, Hasegawa, Ray A. Plant cellular and molecular responses to high salinity. Plant Physiol Mol Biol, 2000, 51:463-499
    130 Prosa KVSK, Sharmila P, Kumar PA et al. Bacterial coda gene enhances its tolerance to salt stress. Molecular Breeding, 2000, 6(5): 489-499
    131 Ramon Serrano, Franciso A, Vicente Moreno et al. Genetic engineering of salt and drought tolerance with yeast regulating genes. Horticulture, 1999, 78:261-269
    132 Ray WU, Jin SU, Jayarash Targolli et al. How to obtain optimal gene expression in transgenic plant. The seventh gene symposium in China, 1999
    133 Rios. G, Ferrando. A, Serrano.R et al. Mechanism of salt tolerance conferred by overexpression of the HAL1 gene in Saceharomyces cerevisiae. Yeast, 1997, 13:515-528
    134 Rohila J S, Jain G K, Wu R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley HAL1 cDNA. Plant Sci, 2002, 163(3): 525-532
    135 Sakamoto A, Murata A. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt cold. Plant Molecular Biology, 1998, 35(6): 1011-1019
    136 Sawahel W A, Hassan A H. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnology Letters, 2002, 24(9): 721-725
    137 Shen B, Jensen R G, Bohnert H J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplast. Plant Physiol, 1997, 113:1177-1183
    138 Stoop J M H, Williamson J D. Mannitol metabolism in plants a method for coping
    
    with stress. Trends Plant Sci, 1996, 1:139-144
    139 Szoke A Miao, G H Hong Z, Verma D P S. Subcellular location ofP5CS redutase in root/nudule and leaf of soybean. Plant Physiol, 1992, 99:1642-1694
    140 Troncoso A, Matte C, Cantos M et al. Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties. Vitis, 1999, 38(2): 55-56
    141 Voikmar K M, Hu Y, Steppuhn H. Physiological responses of plant salinity. Can J Plant Sci, 1998, 78:19-27
    142 Yang S X, Zhao Y X, Zhang Q et al. HAL1 mediate salt adaptation in Arabidopsis thaliana. Cell Research, 2001, 11(2): 142-148
    143 Yang W Y, Bai Y Y, Xu Z H. Stimulation of shoot regeneration in leaf tissue culture of Solanum tubersum by silver nitrate. Acta Phytophysiologica Sinica, 1998, 24(1):86-90
    144 Yokoi S, Bressan R A, Husegawa P M. Salt stress tolerance of plant. JIRCAS WorkingRep, 2002, 23(4):25-33
    145 Zhang F H, Guo S L, Wang Z Let al. Recent advances in study on transgenic plants for salt tolerance. Plant Physiol Mol Biol, 2003, 29(3): 171-178
    146 Zhao K F. Effect of salinity on the contents of osmotica of monocotyledonous halophytes and their contribution to osmotic adjustment. Acta Botanica Sincia, 1999, 41(12): 1287-1292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700