河成石灰华泥沙含量及其流域土壤侵蚀趋势研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着环境的日益恶化,人们对当今气候环境的变化日益重视,从而相关问题的研究也越来越多。石灰华作为地表次生碳酸钙沉积物,蕴含着丰富的气候环境信息,而受到环境学者尤其是岩溶学者的极大关注。
     人类活动在一定的流域内进行,所产生的土壤侵蚀效应将在河流中的泥沙含量中有所体现,随着石灰华的连续沉积,泥沙将随之附着在石灰华的沉积物中。流域内土壤侵蚀严重,河流中的泥沙含量就增多,石灰华在沉积过程中所吸附的泥沙就多,石灰华中泥沙含量将随着升高,反之,石灰华中泥沙含量将随着降低。因此石灰华中泥沙含量的变化趋势表征流域内土壤侵蚀的变化趋势。
     本文通过对贵阳市滴水岩、雅河、花溪平桥和天河潭近期沉积的石灰华层理的刮离,并用物理、化学手段研究了刮离样品中泥沙含量及其沉积年龄,同时对其中泥沙含量和其所在流域内土壤侵蚀变化趋势进行了研究,初步得到以下结论:
     1.滴水岩石灰华沉积厚度约0.20 cm/a,沉积速率约0.51g·a~(-1)·cm~(-2)。滴水岩石灰华中泥沙含量变化趋势表征了该流域内近70年来土壤侵蚀的变化趋势,约从1937年到1991年,该流域内土壤侵蚀呈下降趋势,趋势线为:y=0.0621x+0.7112,斜率0.0621;约从1991年开始,该流域内土壤侵蚀日渐严重,趋势线为:y=-0.0693x+11.578,斜率-0.0693。这主要是因为1991年贵阳市人口迅速增加和城市化发展加剧人类活动以及降雨侵蚀力变化造成的。
     2.雅河石灰华沉积厚度约0.24 cm/a,沉积速率约0.50g·a~(-1)·cm~(-2)。雅河石灰华中泥沙含量变化趋势表征其流域内土壤侵蚀变化趋势。自1978年以来,雅河流域内土壤侵蚀总体上一直呈下降趋势,趋势线为:y=0.0383x+5.3299,斜率0.0383。
     3.花溪平桥石灰华沉积厚度约0.43cm/a,沉积速率约1.08g·a~(-1)·cm~(-2)。平桥石灰华中泥沙含量变化趋势表征花溪河流域内近30年来土壤侵蚀变化趋势。花溪河流域内土壤侵蚀变化约从1977年到1999年总体呈上升趋势,趋势线为:y=-0.0046x+4.6694,斜率-0.0046,变化相对较平缓;约从1999年到2007年期间,总体又呈下降趋势,趋势线为:y=0.0408x+2.716,斜率0.0408,变化相对较快。
     4.天河潭石灰华沉积厚度约0.50cm/a,沉积速率约1.18g·a~(-1)·cm~(-2)。天河潭石灰华中泥沙含量的变化趋势表征其流域内土壤侵蚀变化趋势。从总体上来说,距2007年约19年以来,天河潭流域内土壤侵蚀变化趋势约从1988年到2003年逐渐上升,趋势线为:y=-0.1324x+24.738,斜率-0.1324;约从2003年到2007年期间逐渐下降,趋势线为:y=0.159x+10.307,斜率0.159。这主要是因为实施退耕还林(草)。退耕还林(草)政策的实施对减少区域土壤侵蚀的作用是显著的,是利于流域生态环境改善的。
     5.大量降水,特别是暴雨对石灰华中泥沙含量影响较明显,降水越多,石灰华中的单位质量泥沙含量越大,1998年的洪水就比较明显。
In recent years,with the environment getting worse and worse,we human pay more attention to climatic and environmental changes,thereby research variety of related problems of them.Travertine is a secondary surface calcium carbonate sediments and contains a wealth of information on climate and environment,so environmental scholars especially karst scholars great concern the tufa.
     Human activities carry out in certain valleys,the effects of soil erosion that result from human activities will be shown in the river silt content and the silt will be attached to the sediment in the travertine with the continuous deposition of travertine.If soil erosion is serious in valley,silt content will increase in river.Silt content in travertine will increase with the increase of silt in river,on the contrary, silt content in travertine will decrease.Therefore,the change trend of the silt content in travertine shows the change trend of soil erosion in valley.
     In this paper,penman scratched recent travertine deposits of Dishui Rock,Ya River,Huaxi Ping Ridge and Tianhe Pond in Guiyang,researched silt content and age of scratched sample by the physical and chemical means,at the same time,studied the change trend of silt content in sample and soil erosion in valley.Some preliminary conclusions are discussed in the thesis:
     1.Travertine deposition thickness is about 0.20cm/a,and the deposition rate is about 0.51 g·a~(-1)·cm~(-2) in Dishui Rock.The change trend of silt content in travertine showed the change trend of soil erosion in valley near 70 years.Soil erosion degree was downward trend from about 1937 to 1991,the trend line:y=0.0621x+0.7112,and the slope was 0.0621.From 1991,soil erosion degree was increasingly serious,the trend line is y=-0.0693x+11.578,and the slope is minus 0.0693. This resulted from increased human activities,which was caused by population rapid increase urbanized development,as well as change of rainfall erosion power in Guiyang in 1991.
     2.Travertine deposition thickness is about 0.24cm/a,and the deposition rate is about 0.50g·a~(-1)·cm~(-2) in Ya River.The change trend of silt content in travertine shows change trend of soil erosion in Ya River valley.Since 1978,the soil erosion intensity in Ya River valley has been generally downward trend, the trend line is y=0.0383x+5.3299,and the slope is 0.0383.
     3.Travertine deposition thickness is about 0.43cm/a,and the deposition rate is about 1.08g·a~(-1)·cm~(-2) in Ping Bridge.The change trend of silt content in travertine shows the change tendency of soil erosion in valley near 30-year.Soil erosion degree was upward trend from about 1977 to 1999,the trend line was y=-0.0046x+4.6694,the slope was minus 0.0046;Soil erosion degree was downward trend from about 1999 to 2007, the trend line was y=0.0408x+2.716,the slope was 0.0408.
     4.Travertine deposition thickness is about 0.50cm/a,and the deposition rate is about 1.18g·a~(-1)·cm~(-2) in Tianhe Pond.The change trend of silt content in travertine shows the change trend of soil erosion in Tianhe Pond valley.On the whole,Soil erosion degree was gradually upward trend from about 1988 to 2003,the trend line was y=-0.1324x+24.738,and the slope was minus 0.1324;Soil erosion degree was gradually downtrend from 2003 to 2007 in Huaxi valley,the trend line was y=0.159x +10.307,and the slope was 0.159.This was mainly caused by returning farmland to forests,which could effectively control soil erosion,reduce natural disaster and was conducive to improving the ecological environment of the basin.
     5.A large amount of precipitation,especially heavy rain influences obviously silt content in travertine.The unit quality silt content in travertine was larger with more precipitation,and flood was quite obvious example in 1998.
引文
[1]程海.铀系年代学新进展—ICP-MS ~(230)Th测年[J].第四纪研究,2002,22(3):292
    [2]程星.薄水效应初论[J].中国岩溶,1994,13:207-212
    [3]程星,李大勇.陆相碳酸钙沉积特征及水能量分类[J].中国岩溶,2002,21(2):84-88
    [4]程星.陆相碳酸钙沉积实验的晶体扫描电镜研究[J].中国岩溶,2000,19(3):206-211
    [5]程星,周忠发.碳酸钙溶解的界面因素及水运动条件[J].中国岩溶,2000,19(3):206-211
    [6]邓绪荣.凯里地区石灰华的工程特性探讨[J].勘察科学技术,2002,6:38-40
    [7]贵阳市志编纂委员会.贵阳市志城市建设志[M].1990
    [8]贵阳市志编纂委员会.贵阳市志地理志[M].1990
    [9]郭云,支崇远,赵宇中,等.硅藻对地表石灰华沉积的生物作用及其意义[J].上海地质,2007,1:21-24
    [10]何元庆,章典.气候变暖是玉龙雪山冰川退缩的主要原因[J].冰川冻土,2004,26(2):230-231.
    [11]侯居峙,谭明,程海,等.本溪水洞石笋微层年代学初步研究[J].中国科QZCH 学,2001,31(5):387-392
    [12]黄俊华,胡超涌,周群峰,等.长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究[J].沉积学报,2002,20(3):442-446
    [13]李红春,顾德隆,Lowell D.Stott,等.北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系[J].中国岩溶,1997,16(4):285-295
    [14]李华举,廖长君,姜殿强等.钙华沉积机制的研究现状及展望[J].中国岩溶,2006,25(1):57-62
    [15]李强,戴亚南,游省易,等.云南白水台钙化沉积成因及主要沉积类型研究[J].中国岩溶,2002,21(3):178-181
    [16]李铁松.白水台钙华区水化学特征及泉华沉积过程研究[J].西华师范大学学报(自然科学版),2005,26(4):350-353
    [17]李为,余龙江,等.微生物及其碳酸酐酶对岩溶土壤系统钙镁元素淋失的影响[J].中国岩溶,2004,23(1):1-6.
    [18]林玉石,袁道先,张美良,等.洞穴石笋沉积特征研究——以贵州荔波董歌洞4号石笋为 例[J].地球学报,2004,25(4):459-466
    [19]林玉石,张美良,程海,等.贵州荔波第四纪晚近期石笋地质年表与气候事件[J].地学前缘(中国地质大学,北京),2003,10(2):341-350
    [20]刘昌敏.贵州退耕还林工作成效显著[N].西部时报,2005-09-17
    [21]刘星.云南石林地区钙华的ESR测年及其地质意义[J].中国岩溶,1998,17(1):9-14
    [22]刘再华,林玉石,戴亚男,等.水化学和钙华碳氧稳定同位素在古环境重建中的应用—以贵州荔波小七孔景区响水河为例[J].第四纪研究,2004,24(4):447-454
    [23]刘再华,游省易,李强,等.云南白水台景区的水化学和碳氧同位素特征及其在古环境重建研究中的意义[J].第四纪研究,2002,22(5):459-467
    [24]刘再华,袁道先,W.Dreybro(?)dt,等.四川黄龙钙华的形成[J].中国岩溶,1993,12(3):185-191
    [25]秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义——Ⅰ.微层显微特征[J].中国科学(D辑),1998,28(1):91-96
    [26]秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义——Ⅱ.灰度的年际变化[J].中国科学(D辑),2000,30(3):239-248
    [27]任美锷,刘振中.岩溶学概论[M].北京:商务印书馆,1983:53-57
    [28]唐克丽,史立人,史德明,等.中国水土保持[M].北京:科学出版社,2004
    [29]谭明,刘东生.洞穴碳酸钙沉积的古气候记录研究[J].地球科学进展.1996,11(4):388-395
    [30]谭明,刘东生,秦小光,等.北京石花洞全新世石笋微生长层与稳定同位素气候意义初步研究[J].中国岩溶,1997,16(1):1-9
    [31]谭明,邵雪梅,刘晓宏,等.中国近千年石笋-树轮集成温度记录[J].气候变化研究进展,2006,2(3):113-116
    [32]田友萍,何复胜.论旅游资源中石灰华景观的形态建成过程——以四川九寨沟和贵州黄果树等地石灰华群为例[J].地理科学,2000,20(5):456-461
    [33]田友萍,何复胜.石灰华的生物成因研究——以四川九寨沟和贵州黄果树等地石灰华为例[J].中国岩溶,1998,17(1):49-55.
    [34]王礼先,高志义,阎志文,等.水土保持学[M].北京:中国林业出版社,2001
    [35]王兆荣,彭子成,孙卫东,等.洞穴碳酸钙古气候研究进展[J].矿物岩石地球化学通报,1999,18(1):38-41
    [36]王兆荣,彭子成,孙卫东,等.高精度热电离质谱(TIMS)铀系法洞穴沉积物(石笋)年龄的研究[J].沉积学报,2000,18(1):162-164
    [37]魏天兴.黄土残塬沟壑区降雨侵蚀分析[J].水土保持学报,2001,15(4):47-50
    [38]W.M.Edwards,L.B.OwenS,(宋秀清译).大暴雨对土壤总侵蚀量的影响[J].水土保持科技情报,1992,4:38-42
    [39]吴江滢,汪永进,孔兴功.贵州白骨洞石笋记录的全新世季风气候演化与突变[J].海洋地质与第四纪地质,2006,26(5):55-60
    [40]谢红霞,李锐,杨勤科,等.退耕还林(草)和降雨变化对延河流域土壤侵蚀的影响[J].中国农业科学,2009,42(2):569-576
    [41]薛传东,刘星,杨浩.滇中路南石林地区钙华特征与更新世气候变迁[J].矿物岩石,2003,23(3):61-68
    [42]许月卿,蔡运龙,彭建.土地利用变化的土壤侵蚀效应评价——西南喀斯特山区的一个研究案例[M].北京:科学出版社,2007:44-45
    [43]杨琰,袁道先,程海,等.洞穴石笋初始~(234)U/~(238)U值变化的古气候记录意义[J].地质学报,2008,82(5):692-701
    [44]章典,Mervyn Peart,师长兴,等.喀斯特地区瀑布效应产生的自然水软化过程[J].沉积学报,2004,22(2):288-294.
    [45]张捷.川西北岷山灰岩区喀斯特堰塞湖形成中的生物作用[J].地理研究,1992,11(2):26-33
    [46]张美良,林玉石,冯玉梅,等.贵州荔波42.0 ka B.P.~65.0 ka B.P.气候变化的石笋记录[J].广西科学,2004,11(3):218-220
    [47]张英俊,程星,祝安.石灰华沉积机制的实验研究[J].中国岩溶,1994,13(3):197-205
    [48]赵志刚.冰凌山钙华的沉积及成岩过程[D].中国学术期刊(光盘版)电子杂志社,2006:1-57
    [49]周佩华,主占礼.黄土高原土壤侵蚀暴雨的研究[J].水土保持学报,1992,6(3):1-5
    [50]周绪纶.关于四川黄龙钙华CO_2成因的讨论[J].四川地质学报,2006,26(3):143-146
    [51]祝安.河成石灰华成因—掺气效应研究[J].贵州师范大学学报,1994,12(1):33-38
    [52]朱学稳,周绪伦.崛山岩溶区的灰华沉积[J].中国岩溶,1990,9(3):250-264
    [53]Andrews,J.E.Palaeoclimatic records from stable isotopes in riverine tufas:Synthesis and review[J].Earth-Science Reviews,2006,75:85-104
    [54]Andrews,J.E.,Riding,R.,Dennis,RF.Stable isotopic compositions of recent freshwater cyanobacterial carbonates from the British Isles:local and regional environmental Controls [J].Sedimentology,1993,40:303-314
    [55]Atkin CA,Patterson B D and Graham D.Plant carbonic anhydrase:distribution of types among species [J].Plant.Pysiol,1972,50:214-217
    [56]Broecker,W.S.Radio carbon measurement and annual rings in cave formations [J].Nature,1960,185:93-94
    [57]Chrisian Dilenfeld,Maas R.,Norman,M.C.Climatic significance of seasonal trace element and stable isotope variations in a modern freshwater tufa[J].Geochimica et Cosmochimica Acta,2003,67(13):2341-2357
    [58]Edwards R.L.,Cheng H.,Mutrell M.T.,et al.Protactinium-231 Dating of Carbonates by Thermallonization Mass Spectrometry:Implications for Quaternary Climate Change[J].Science,1997,276:782-786
    [59]Edwards R L,Chen J H,Ku T L,et al.Precise timing of the last interglacial period from mass spectrometric analysis of Thorium-230 in corals[J].Science,1987,236:1547-1553
    [60]Edwards R L,Chen J H,Wasserburg G J.238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years[J].Earth and Planetary Science Letters,1986,81:175-192
    [61]Freytet,P.Plet,A.Modern freshwater microbial carbonates:the hormidium stroma -tolites (tufa-travertine) of southeastern Burgundy (Paris Basin,France) [J].Facies 34,1996,219-238
    [62]Fridlyand L E and Kaler V L.Possible CO_2 concentration mechanism in chloroplasts of C_3 plants Role of carbonic anhydrase [J].Gen.Pysiol.Biophys,1987,6:611-617
    [63]Janssen,A.,Swennen,R.,Podoor,N.,Keppens,E.Biological and-diagenetic influence in Recent and fossil tufa deposits from Belgium [J].Sediment.Geol.1999,126,75-95
    [64]Kano,A.,Kawai,T.,Matsuoka,J.and Diara,T.High-resolution records of rainfall events from clay bands in tufa [J].Geology,2004,32:793-796
    [65]Kano,A.,Matsuoka,J.Kojo,T.,et al..Origin of annual laminations in tufa deposits,southwest Japan [J].Palaeogeography,Palaeoclimatology,Palaeoecology,2003,191:243-262
    [66]Li W.X.,Lundberg J.,Dickin A.P,et al..High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies [J].Nature,1989,339:534-536
    [67]Li Yilian,WangYanxin,Deng Anli.Paleoclimate record and paleohydrogeological analysis of travertine from the Nianziguan Karst Springs,northern China [J].Science in China (seriesE),2001,44
    [68]Ludwig K.R.,Simmons K.R.,Szabo B.J.,et al.Mass-Spectrometric ~(230)Th-~(234)U-~(238)U Dating of the Devils Hole Calcite Vein[J].Science.1992,258:284-287
    [69]Matsuoka,J.,Kano,A.,Oba,T.,et al..Seasonal variation of stable isotopic compositions recorded in a laminated tufa,SW-Japan [J].Earth Planet.Sci.Lett.2001,191:31-44.
    [70]M.Soligo,P.Tuccimei,R.Barbed,et al..U/Th dating of freshwater travertine from Middle Velino Valley(Central Italy):paleoclimaticand geological implication[J].Palaeogeography,Palaeoclimatol-ogy,Palaeoecology,2002,184,147-161
    [71]Pazdur A.,Dobrowolski R.,Durakiewicz T.,et al..δ~(13)C and δ~(18)O time record and palaeoclimatic implications of the Holocenecalcareous tufa from south-eastern Poland and eastern India (Orissa)[J].Geochronometria,2002,21,97-108
    [72]Pedley,M.,Andrews,J.,Ordonez,S.,Garcia del Cura,M.A.Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britai [J].Palaeogeography,Palaeo-climatology,Palaeoecology,1996,121:239-257
    [73]Pentecost,A.,Spiro,B..Stable carbon and oxygen isotope composition of calcites associated with modern freshwater cyanobacteria and algae [J].Geomicrobiol,19908,17-26
    [74]Schneider,J.Algae Micro - reef-Coated Grains from Freshwater Environment [M].Berlin:Coated Grains,Springer-Verlag.1983,284-298.
    [75]Schneider,J.Carbonate Construction and Decomposition by Epilithic and Endolithic Microorganisms In Salt and Freshwater [M].Berlin:Fossil algae,Springer-Verlag.1977,248-260.
    [76]Stirling C H,Esat T M,Lambeck K,et al..Orbital forcing of the marine isotope stage 9 interglacial [J].Science,2001,291:290-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700