光强对砀山酥梨石细胞发育过程生理代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石细胞是梨果实所特有的,它是影响梨果实品质的关键因素之一。砀山酥梨是我国华北、西北、黄河故道等地区的主栽品种。由于砀山酥梨外形美观、风味好,营养价值高、耐贮藏、供应时间长,因此深受人们所喜爱,为我国梨出口的主要品种之一。但近年来,由于品种退化或栽培管理不善等原因,砀山酥梨的石细胞含量增多,果肉变粗,口感多渣,严重影响了砀山酥梨的风味和品质。本实验以安徽省砀山果园场40年生砀山酥梨为试材,在4种光照条件下,对砀山酥梨生长发育过程中石细胞发育过程、内源激素(IAA、ZR、ABA)、酶(POD、PAL、PPO)和矿质元素(Ca2+、Zn2+)的变化等方面进行了研究。目的是阐明砀山酥梨石细胞形成的生理代谢基础,揭示影响砀山酥梨石细胞形成的因素,为砀山酥梨在生产上采用合理的栽培技术来减少砀山酥梨石细胞含量,提高砀山酥梨品质提供理论依据。主要研究结果如下:
    1.砀山酥梨果实生长发育过程中,果实鲜重及纵、横径增长均为慢-快-慢的S型曲线,其中前两期是砀山酥梨果实产量和品质形成的关键时期。
    2.通过对砀山酥梨果实石细胞发育过程的研究表明,石细胞是由梨果实的薄壁细胞的细胞壁加厚,继则木质化而形成的。砀山酥梨果实的细胞分裂期是石细胞形成的主要时期,砀山酥梨石细胞形成的最高峰在梨花后第7周,其直径最大值出现于梨花后第11周,石细胞的形成于梨花后第11周停止。因此,在栽培生产中,采取适当的农业措施来控制和减少梨石细胞形成,提高梨品质,关键应在梨果实细胞分裂期前采取措施。
    3.随着梨果实的发育,梨果实内源激素(ZR、IAA、ABA)均有两次高峰期。ZR、IAA、ABA的最高峰均出现在果实盛花后第1周,ZR与IAA在梨花后第7周均有另一小高峰出现,而ABA则在梨花后第20周出现另一小高峰。结果表明,ZR、IAA参与了梨果实细胞分裂与膨大,ABA则是前期促进砀山酥梨果实的对同化物吸收,后期刺激果实成熟。通过对不同光强下砀山酥梨果实内源激素的比较研究,结果为高光强>中光强>弱光强>极弱光强,这表明强光有利于砀山酥梨内源激素(ZR、IAA、ABA)的合成。因此,光强可能是通过刺激梨果实内源激素合成来抑制石细胞形成的。
    4.砀山酥梨发育过程中矿质元素Ca2+、Zn2+变化特点为:Ca2+、Zn2+两次浓度的高峰期均出现于梨花后第1与第7周,这说明Ca2+、Zn2+对砀山酥梨果实幼果生长发育具有重要作用。Ca2+、Zn2+对砀山酥梨石细胞的形成有抑制作用。不同光强下Ca2+、Zn2+的浓度均表现为高光强>中光强>弱光强>极弱光强。
    
    5.砀山酥梨果实生长发育过程中PAL、POD、PPO活性高峰期均出现于砀山酥梨幼果期(梨花后第1-7周),后随果实发育迅速下降。研究表明,PAL、POD、PPO对砀山酥梨的石细胞形成有促进作用。
    6.通过对不同光强下砀山酥梨石细胞含量的测定,结果为高光强<中光强<弱光强<极弱光强。这表明强光可抑制石细胞的形成。从砀山酥梨发育过程中内源激素(IAA、ZR、ABA)、酶(POD、PAL、PPO)和矿质元素(Ca2+、Zn2+)的变化研究结果可知,光强对石细胞形成的抑制是通过影响这些内部的生理因素而作用的。
    7.通过对不同光强下砀山酥梨的品质研究表明,在强光部位梨果实品质好,高光强>中光强>弱光强>极弱光强。光强对砀山酥梨品质的影响主要是通过前期对石细胞的形成影响,后期促进糖的积累,提高糖酸比,改善梨品质。
The stone cell, a characteristic construction in fruit of pears, is one of pivotal factors affecting the quality of pear fruit. Dangshan pear is the main variety planted in northern and Northwest China, ancient channel of Yellow River. Because of nice shape, good flavor, high nutrition value and durable store, Dangshan pear is not only favored extensively, but it is one of the chief pear kinds exported in China. Recently years, due to species degeneration or poor management of cultivation, Dangshan pear stone cell content was becoming more and more, pulp became crude and poor edible quality, which affected seriously the quality of Dangshan pear. Dangshan pears of forty years old planted in Dangshan fruit garden of Anhui province were used as experiment material. Stone cell developing process, changes of endogenous hormone (ZR, IAA, ABA), enzymes (POD, PPO, PAL) and mineral elements etc during growth and development of Dangshan pear under four kinds of light intensities were studied. The purpose is to illuminate the base of physiological metabolism of Dangshan pears’ stone cell formation and to reveal the factors affecting the formation of the stone cell, which would provide the theoretical gist in adopting reasonable planting technology in order to decrease the stone cell content of Dangshan pear and improve the quality of Dangshan pear during planting management. Main results were as follows:
    1.The increase of fruit fresh weight, vertical and horizontal size represent slowing-fasting-slowing model like “s” curve. The two proceeding phase of the growth of Dangshan pear were the primary period of the formation of its yield and quality.
    2.The research on the stone cell growing indicated that the stone cell was formed through the thin cell wall thickening and lignifying. The period of Dangshan pear fruits cell abruption is the pivotal period of the stone cell forming. The peak of the stone cell formation of Dangshan pear is the seventh weeks after flowering and the longest diameter of stone cell appears at the eleventh weeks after flowering. Termination of the stone cell development is the eleventh weeks after flowering. Suitable agriculture measures before
    
    
    stone cell abruption could control and decrease the formation of stone cell and improve quality of Dangshan pear.
     3.During growth and development of Dangshan pear, endogenous hormone (ZR, IAA and ABA) content had two peaks. The highest content time of ZR、IAA and ABA appeared at the first week after blooming. Another peak of ZR and IAA appeared at the seventh week after blooming. But the other peak of ABA content appeared at the twenty weeks after blooming. These results showed that ZR and IAA took part in the pear fruit cell abruption and expanding, when, ABA promoted Dangshan pear absorbed assimilative substance in early period, and stimulated the fruit ripe in late period. The result of comparative study on endogenous hormone content under different light intensity indicated that the content was the highest under high light intensity, the middle light intensity was higher, the thin light intensity was followed, and the thinnest light intensity was worst, which showed light intensity was favor to synthesize endogenous hormone of Dangshan pear. Light intensity may stimulate synthesis of endogenous hormone to reduce the stone cell forming.
    4.The character of mineral elements (Ca2+, Zn2+) changing of fruit during Dangshan pear growth and development was that the two peak of Ca2+ and Zn2+ content appeared at the first and seventh week after pear flowering. This showed Ca2+ and Zn2+ have important function on the unripe growing, and they can restrain the form of the stone cell. The result of comparative study on Ca2+ and Zn2+ content under different light intensity indicated that light intensity was higher, Ca2+ and Zn2+ content was higher.
    5.During growing of Dangshan pear, enzyme (POD, PPO, PAL) activity of fruit at the prophase is higher than anaphase. The result showed POD and PPO and PAL promoted the form of the stone cell of Dangshan pear.
    6.The
引文
[1]林真二. 梨. 农业出版社,1981,293-318
    [2]蒲富慎. 梨品种. 农业出版社, 1987
    [3]山东省莱阳农学院编著. 梨. 科学出版社,1978,73-77
    [4]韦军, 何凤仁. 酥梨、鸭梨果实石细胞群研究. 江苏农学院学报,1988,9(1):35-36
    [5]李正理,张新英. 植物解剖学. 高等教育出版社, 1984,65
    [6]陶世蓉, 辛华, 初庆刚,等. 不同耐贮性梨果实的比较解剖. 莱阳农学院学报,1992,9(3):181-184
    [7]吴少华. 梨果肉石细胞的研究. 福建农业大学学报.1996,25(1):29-32
    [8]Blarieon Lovan Brittain. J. A. Amer Soc Hort Sel. 1961,78:59-64
    [9]吴少华 梨果肉石细胞的研究. 福建农业大学学报,1996,25(1):29-32
    [10]沈德绪, 吴少华. 梨果肉石细胞含量的分析方法. 中国果树,1985,(3):50
    [11]张雅凤, 郭太君, 焦培娟,等. 秋子梨不同品系果实石细胞含量的测定. 特产研究,1988(4):34-35
    [12]牟其芸,李文香,张华云,等. 梨果实中石细胞含量测定及与果实品质相关性的研究 .落叶果树,1996(1):7-9
    [13]顾模, 林凤起, 张冰冰. 梨果肉结构的解剖研究. 中国果树,1989,(4):32-34
    [14]阿拉木萨, 李宝江. 梨果实石细胞团的发育、分布及其对果实品质的影响. 北方果树,1994(4):4-6
    [15]陶世容, 辛华, 初庆刚,等. 窝梨果实结构及发育的研究. 西北植物学报,1999,19(1):123-126
    [16]张冰冰, 林凤起,刘慧涛,等. 梨果及石细胞团发育的研究. 落叶果树,1988,20(2):1-3
    [17]刘庆华, 王奎玲, 周启河,等. 梨果肉石细胞的形态结构与果实品质的关系. 莱阳农学院学报,1992(9)252-255
    [18]李疆,高疆生,张崎. 砀山酥梨石果病的发病规律及其防治效果初探. 新疆农
    
    
    垦科技,1991(1):16-18
    [19]鞠志国. 采期对莱阳茌梨酚类物质代谢和组织褐变的影响. 中国农业科 学,1991,24(2):63-68
    [20]林海萍,吴家森,付顺华,等. 雷竹笋采后贮藏生理的研究. 江苏林业科技,2002,29(2):16-17
    [21]鞠志国, 刘成连, 原永兵,等. 莱阳茌梨酚类物质合成的调节及其对果实品质的影响.中国农业科学,1993,26(4):44-48
    [22]张华云,王善光,牟其云,等. 套袋对莱阳梨果皮结构和PPO、POD活性的影响. 园艺学报,1996,23(1)23-26
    [23]鞠志国, 原永兵, 刘成连,等. PP333对梨果实生长和酚类物质合成的影响. 园艺学报,1993,20(3):216-220
    [24]Quiroga M, Guerrero C, Botella M A et al. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol, 2000, 122:1119-1123
    [25]席玙房,罗自生. 竹笋采后木质化与多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶活性的关系.植物生理学通讯,2001,37(4):294-295
    [26]Basra A S, Salarch R S, Dhillongewal R,et al. Calcium-mediated changes in peroxidase and O-diphenol oxidase activities of cotton fibers and its possible relationship to ABA. Plant Growth Regul. 1992,11:159-164
    [27]Uggla C, Moritz T, Sandberg G, Sundberg B. Auxin as appositional signal in pattern formation in plants. Proc Natl Acad Sci USA, 1996,93:9282-9286
    [28]Fukuda H, Kobayashi H. Dynamic organization of the cytoskeleton during tracheary element differentiation. Dev Growth and Differ,1989,31:9-16.
    [29]中国农业百科全书编辑部编著. 中国农业百科全书(果树卷). 北京:农业出版社, 1993,210
    [30]李正理. 植物制片技术. 北京:科学出版社,1978,23-345
    [31]朱广廉,钟海文,张爱琴. 植物生理学实验[M]. 北京:北京大学出版社,1990:56-57
    [32]Montgomery, M. W. and Sgarbieri, V. C. 1975, Isoenzymes of banana polyphenol oxidase. Phytochem,14:1245-1249
    
    [33]Milton Zucker. Induction of Phenylalanine Deaminase by Light and its Relation to Chlorogenic
    Acid Synthesis in Potato Tuber Tissue. Plant Physilogy,1965,40(5):1542-1551
    [34]李宗霆. 植物激素及其免疫检测技术[M]. 江苏科学技术出版社.1996,124-132
    [35]邹邦基. 栽培植物营养诊断分析测定法.农业出版社,1974,83,104-159
    [36]张宪政,陈凤玉,王荣富.植物生理学实验技术.辽宁科学技术出版社.1994,144-151
    [37]植物生理学(第三版).潘瑞炽,董愚得编著. 高等教育出版社,180-207
    [38]龚明, 李英, 曹宗巽. 植物体内的Ca信使系统. 植物学通报,1990,7(3):19-29
    [39]周卫,林葆. 植物钙素营养机理研究进展. 土壤学进展,1995,23(2):12-17
    [40]王朝晖,孙大业. 植物钙调素研究进展. 植物学通报,1997,14(1):1-7
    [41]植物生理学(第三版).王忠主编. 中国农业出版社,1999,86
    [42]沙广利,郭长城,李光玉. 梨果实糖酸含量及比值对其综合品质的影响(简报). 植物生理学通讯,1997,33(4):264-266
    [43]果树栽培学总论(第二版). 河北农业大学主编. 中国农业出版社,1996,85-87
    [44]阮晓,王强,周疆明,等. 香梨果实成熟衰老过程中4中内源激素的变化. 植物生理学报,2000,26(5):402-406
    [45]牛自勉,王贤萍. 苹果花期前后子房内源激素的变化. 园艺学报,1996,23(3):291-292
    [46]毕平,牛自勉,王贤平,等. 枣花内源激素和可溶性糖含量的变化与坐果的关系. 园艺学报,1996,23(1):8-12
    [47]梁丽兰. 细胞分裂素及其应用. 生物学杂志,1993,(6):7-9
    [48]李学强,李作轩,李秀珍. CPPU 对南果梨果实外观品质的影响. 沈阳农业大学学报,2002,33(4):252-254
    [49]饶景萍,任小林,童斌.植物生长调节剂对果实生长发育的调控. 西北植物学报,1998,18(1):147-154
    [50]杨清平. CPPU 对美味猕猴桃果实重量、可溶性固形物及糖酸含量的影响. 植物科学,2002,30(1):20-21
    [51]李秀菊,刘用生,束怀瑞. 不同成熟型苹果果实生长发育过程中几种内源激素
    
    
    含量变化的比较. 植物生理学通讯,2000,36(1):7-10
    [52]张上隆,陈昆松,叶庆富,等. 柑橘受粉处理和单性结实子房内源IAA、ABA和ZR含量的变化 [J]. 园艺学报,1994,23(21):117-123
    [53]Berutei J. Effect of abscisic acid on sorbitol uptake in growing apple fruits[J]. J Exp Bot, 1983,(34):736
    [54]Browing C, Endogenouscis, trans-abscisic acid and pea seed development: evidence for a role in seed growth from changes induced by temperature[J]. J Expbol,1980,(31):185
    [55]Schussler JR, Brenner ML, Brun WA. Abscisic acid and its relation to seed filling in soybeans. Plant Physiol,1984,76:304
    [56]柏新付,蔡永萍,聂凡. 脱落酸与稻麦籽粒灌浆的关系. 植物生理学通讯,1989(3):40
    [57]Kojima K, Yamada Y, Yamamoto M. Effects of abscisic acid injection on sugar and organic acid contents of citrus fruit, Japan Soc Hort Sci, 1995,(64):17-21
    [58]Saftner RA, Wyse RE. Effect of plant hormones on sucrose uptake by sugar beet root tissue discs. Plant Physiol,1987,74:951
    [59]王碧青,邱燕萍,向旭,等.荔枝结果过程中内源激素变化及单性结果的诱导. 园艺学报,1997,24(1):19-24
    [60]季作梁,梁立锋,柳建良,等. 荔枝果实发育期间内源激素含量动态. 华南农业大学学报,1992,13(3):93-98
    [61]Kiyohide Kojima, Keishi Shiozaki. Changes of endogenous levels of ABA,IAA and GA-Like substances in fruitlets of parthenocarpic persimmon[J]. Japan Soc Hort Sci, 1999,68(2):242-247
    [62]张大鹏,许雪峰,张子连,等.果实始熟机理[J]. 园艺学报,1997,24(1):1-7
    [63]张淑梅, 王兴国, 牛广才,等. 苹果梨果实皮孔陷斑病发病原因的探讨与钙素营养的关系. 北方果树,2001(1):9-10
    [64]王璐,贾静安,朱详文,等. 早酥梨果实木栓化褐变发生规律及防治试验. 中国果树,1990(1):35-36
    
    [65]刘剑锋,张红艳,彭抒昂. 梨果实发育中果肉及种子钙和果胶含量的变化.  园艺学报,2003,30(6):709-711
    [66]罗充, 彭抒昂, 李国怀. 梨不同品种果实发育中钙与钙调素的动态研究. 华中农业大学学报,2001,20(3):286-288
    [67]彭抒昂,岩崛修一. 梨果实发育中CA2+在果肉细胞的定位及变化研究. 园艺学报, 2001,28(6):497-503
    [68]龚云池, 徐季娥, 张淑珍. 鸭梨叶片和果实Ca素含量年周期变化的研究. 园艺学报,1987,14(4):1-5
    [69]龚云池, 徐季娥, 吕瑞江. 梨果实中不同形态钙的含量及其变化的研究. 园艺学报,1992,12(2):129-134
    [70]胥洱. 柑橘与植物生长调节剂. 重庆出版社,1989,88-103
    [71]TAYLOR C B, ARIOLA P A, DELCARDAYRE S B,et al. RNS2: a senescence-associated RNase of Arobidopsis that diverged from the S-Rnase before speciscion. Proc.Natl.Sci.USA,1993,90:5118-5122
    [72]N Milosevic, A J Slusarenko. Active oxygen metabolism and lignification in the hypersensitive response in bean[J]. Physiology and Molecular Plant Pathology,1996,49:143-158
    [73]Meyermans H, Morreel K, Lapierre C. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoy1-coenzyme A O-methy1transferase, an enzyme involved in lignin biosynthesis. J Biol Chem, 2000, 272: 36899-36909
    [74]Zhong R Q, Morrison W H, immelsbach D S. Essential role of caffeoy1 coenzyme A 0- methy1transferase in lignin biosynthesis in woody poplar plants. Plant Physiol, 2000, 124: 563-578
    [75]Rubery R H, Northcote D H. Site of phenylalanine ammonia-1yase activity and synthesis of lignin during xylem differention . Nature(London), 1968, 210: 1230-1234
    [76]Fukuda H. Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophy1 of Zinnia elegans . Plant Physiol, 1980, 65: 57-60
    
    [77]Jin Nakashima, et al. Immunocytochemical localization of phenylalanine ammonia-1yase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyll cells . Plant cell Physiol, 1997, 38(2): 113-123
    [78]Andrea P, Tilman O, Friederike S. A poplastic peroxidases and linginfication in needles of Norway spruce. Plant Physiol, 1994,106:53-60
    [79]Van Huyster R B. Some molecular aspects of plant peroxidase : biosynthetic studies. Ann Rev Plant Physio l and plant mol Bilo. 1987, 38:205-219
    [80]Christensen J H, Bauw G, Welinder K G et al. Purification and characterization of peroxidases correlated with lignification in poplar xylem . Plant Physiol, 1998, 118: 125-135
    [81]Ipelcl Z, Ogras T, Altinkut A. Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar. Plant Biotech, 1999,16:381-387
    [82]Lagrimini L M. Wound-induced deposition of polyphenols in transgenic plants over expressing peroxidase. Plant Physiol,1991,96:577-583
    [83]邓月娥,张传来,牛立元,等. 桃果实发育过程中主要营养成分的动态变化及系统分析方法研究. 果树科学,1998,15(1):48-52
    [84]钟广炎,吴云伦,计玉. 柑橘果实鲜重和体积增长的研究. 植物生理学通讯,1991,27(4):227-230
    [85]甘霖,谢永红,吴正琴,等. 嘉平大枣果实发育过程中糖、酸及维生素C含量的变化. 园艺学报,2000,27(5):317-320
    [86]N Smirnoff. Antioxidant systems and plant response to the enviroment. Enviroment And Plant Metabolism,1995,217-243
    [87]J R Bunkelmann. Ascorbate peroxidase, a prominent membrane protein in oilseed glyoxysomes. Plant Physiol,1996,110:589-598
    [88]郑荣梁. 生物学自由基. 北京:高等教育出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700