基于羟基磷灰石的纳米基因载体的改良及其内耳基因转染的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1)观察新制备的经聚乙烯亚胺(polyethylenimine, PEI)表面修饰的羟基磷灰石纳米载体(hydroxyapatite nanoparticles nHAT)(PEI-nHAT)的生物学性能,评估其体外结合与保护DNA的能力;2)评估携带增强型绿色荧光蛋白报告基因(EGFP)及神经营养素3治疗基因(NT-3)的PEI-nHAT载体-基因复合物(PEI-nHAT-pEGFPC2-NT3)经完整圆窗膜途径向耳蜗转染的安全性及有效性;3)评估PEI-nHAT-pEGFPC2-NT3经完整圆窗膜途径向前庭转染的安全性及有效性。
     方法:1)应用化学共沉淀-水热合成法制备nHAT,用PEI对其进行表面修饰后,对PEI-nHAT进行透射电镜观察并行Zeta电位测定;观察PEI-nHAT在体外的分散性及稳定性;并在不同浓度下观察其与DNA结合能力以及保护DNA抗核酸酶消化的能力。2)将南美栗鼠分成转染实验组、空载体转染组及生理盐水对照组三组,将其麻醉后,行枕后径路打开术耳听泡,分别将20μl PEI-nHAT-pEGFPC2-NT3复合物或20μl PEI-nHAT混悬液或20μ1生理盐水经完整圆窗膜途径向耳蜗转染。在手术前及转染48小时后分别测试双耳在1kHz、4kHz8kHz、12kHz及16kHz处短纯音诱发的听性脑干反应(Auditory Brainstem Response, ABR)及畸变产物耳声发射(Distortion Product Otoacoustic Emissions, DPOAE)。听力学检测完后将动物处死,双侧耳蜗固定、取材,行免疫组织化学、免疫荧光染色、常规耳蜗铺片及冰冻切片,应用激光共聚焦荧光显微镜进行耳蜗组织学和形态学观察及绿色荧光蛋白定位表达观察。3)将南美栗鼠分成转染实验组、空载体转染组及生理盐水对照组三组,将其麻醉后,行枕后径路打开术耳听泡,分别将20μl PEI-nHAT-pEGFPC2-NT3复合物或20μ1PEI-nHAT混悬液或20μ1生理盐水经完整圆窗膜途径向内耳转染。转染48小时后将动物处死,双侧内耳前庭器官固定、取材,行免疫组织化学、免疫荧光染色、常规铺片及冰冻切片,应用激光共聚焦荧光显微镜进行前庭器官组织学和形态学观察及绿色荧光蛋白在前庭中的定位表达观察。
     结果:1)PEI-nHAT颗粒在电镜下形态为短棒状,粒径均匀,分散性及稳定性好,其平均粒径(X±SD)为73.09±27.32nm;在pH为7、浓度为250μg/ml的条件下,PEI-nHAT的Zeta电位(X±SD)为42.46±10.9mV; PEI-nHAT颗粒在125μg/ml-2000μg/ml浓度范围内都有较好的DNA结合能力,并且PEI-nHAT在上述浓度范围内均能良好地保护DNA不被DNase I消化。2)各组动物在转染前及转染后48小时在1kHz、4kHz、8kHz、12kHz及16kHz处短纯音诱发的ABR阈值无明显变化,各频率DPOAE平均幅值差异也无统计学意义(P>0.05)。基因转染48小时后,各组动物耳蜗内、外毛细胞、血管纹上皮及螺旋神经节细胞形态规则,排列整齐,未见明显破坏现象;转染实验组动物在耳蜗基底膜的外柱细胞区域、部分血管纹上皮细胞、螺旋神经管内的部分细胞中出现绿色荧光表达,但转染率不高。3)各组动物术后48小时内均无偏头、步态不稳、强迫环绕运动等前庭功能障碍表现。各组动物前庭毛细胞形态规则,无缺失,纤毛束排列整齐;周围支持细胞大小形态正常。在转染实验组中,浓密的绿色荧光信号存在于前庭的暗细胞区及其过渡细胞区,在椭圆囊斑、球囊斑及壶腹嵴的毛细胞区域中也出现不同程度的绿色荧光。
     结论:1)PEI-nHAT载体表面带正电荷,其体外的分散性和稳定性良好;2)PEI-nHAT载体在体外能有效结合和保护其所携带的重组基因质粒免受酶化学物质的破坏;3)完整圆窗膜途径基因转染对耳蜗的形态学及听力学功能无明显不良影响,该途径是进行耳蜗和前庭局部基因转染的一条安全有效的导入方式;4)前庭暗细胞是PEI-nHAT载体在内耳的一种特异性靶细胞,它可能具有主动摄取PEI-nHAT载体的能力,其原理尚待进一步研究;5)PEI-nHAT是一种具有研究价值的用于内耳基因治疗载体的无机纳米材料。
Objective:1) To investigate the biological properties of hydroxyapatite nanoparticles surface-modified by polyethylenimine (PEI-nHAT), and the DNA-binding and DNA protection capacity of PEI-nHAT in vitro.2) To investigate the safety and effectiveness on transfection of PEI-nHAT carrying enhanced green fluorescent protein with neurotrophin-3(pEGFPC2-NT3) in the cochlea via intact round window membrane (RWM).3) To investigate the safety and effectiveness on transfection of PEI-nHAT-pEGFPC2-NT3in the vestibular system via intact RWM.
     Methods:1) nHAT were synthesized by a chemical coprecipitation-hydrothermal synthesis method. Transmission electron microscopy (TEM) observation and Zeta potential detection were carried out after surface modification with PEI. Dispersibility and stability of PEI-nHAT were also observed, the capacity of PEI-nHAT on DNA-binding and DNA protection against nuclease digestion were assessed in different concentration as well.2) Eight normal adult chinchillas of both sexes were used in this study. The right ears from six animals were used as the experimental group for local application of PEI-nHAT-pEGFPC2-NT3onto the intact RWM, and the left were treated with the same volume of empty vector (PEI-nHAT) as self control. Both ears from another two animals were treated with the same volume of normal saline as blank control. The tone burst-evoked Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions (DPOAE) were recorded in1kHz、4kHz、8kHz、12kHz and16kHz pre-operation and48h post-transfection. Chinchillas were sacrificed after auditory function evaluation. The temporal bones containing cochleae were fixed for surface preparations and cryosections. Immunohistochemistry and immunofluorescence staining were carried out to observe the morphologic changes and localize the EGFP expression in cochlea under confocal microscope.3) Eight normal adult chinchillas of both sexes were used in this study. The right ears from six animals were used as the experimental group for local application of PEI-nHAT-pEGFPC2-NT3onto the intact RWM, and the left were treated with the same volume of empty vector (PEI-nHAT) as self control. Both ears from another two animals were treated with the same volume of normal saline as blank control. The vestibular samples were fixed and then prepared as surface preparations and cryosections after animals were sacrificed. The morphologic observations of vestibular organs and localized observation of EGFP expression were carried out after immunohistochemistry and immunofluorescence staining.
     Results:1) After surface modification with PEI, the shape of PEI-nHAT was similar to a short rod with uniform size. The PEI-nHAT showed good dispersivity and stability in solution. The mean size (Mean±SD) of PEI-nHAT was73.09±27.32(nm). At pH7, the Zeta potential of PEI-nHAT was42.46±10.9mV at the concentration of250μg/ml. PEI-nHAT showed good capacity of DNA-binding and DNA protection against DNase I digestion at concentrations from125μg/ml to2000μg/ml.2) Neither significant threshold shift in tone burst-evoked ABR nor significant amplitude changes in DPOAE occurred at all tested frequencies between pre-operation and48h post-transfection in each group (P>0.05). The cells in cochlear basilar membrane, stria vasularis and cochlear spiral ganglions appeared morphologically normal after48h transfection in each group. EGFP expression was detected in some outer pillar cells in the organ of Corti, a few marginal cells in stria vascularis, some cells in Rosenthal's canal in the PEI-nHAT-pEGFPC2-NT3transfected group, although the transfecton efficiency in cochlea was not high.3) There was no vestibular dysfunction occurred such as step instability, head tilting, rolling or circling after48h transfection in each group. Vestibular hair cells and the supporting cells appeared morphologically normal after48h transfection in each group. Abundant, condensed green fluorescence was found in the zone of dark cells and transitional zone on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells.
     Conclusion:1) PEI-nHAT are positive charged and have good dispersivity and stability;2) PEI-nHAT have good capacity of DNA-binding and DNA protection against nuclease digestion at concentrations from125μg/ml to2000μg/ml.3) The approach of gene transfer through intact RWM has no affect on the morphology of cochlea or auditory function, which can serve as an safe and effective way of transferring gene into cochlea and vestibule.4) Vestibular dark cell is the specific targeted cell of PEI-nHAT for gene therapy in the inner ear. It might have the ability of actively uptaking PEI-nHAT-pEGFPC2-NT3complex, although the detailed mechanism is not clear.5) PEI-nHAT are innogarnic materials which could be a potential vector of gene therapy for the inner ear diseases, especially for the vestibular disorders.
引文
[1]卜行宽.世界卫生组织全球防聋工作[J].中国医学文摘耳鼻咽喉科学2009;24(1):4-6.
    [2]WHO Regional Office for South-East Asia. Prevention of deafness and hearing impairment for development of framework of proposed regional collaboration: report of an intercountry meeting, Bangkok, Thailand,27-28 Nov.2003. WHO Project:ICP DPR 001. New Delhi, February. In,2004.
    [3]沈励,刘民.听力残疾的流行病学研究进展[J].中国康复医学杂志2009;24(3):281-283.
    [4]Wang Y, Yang C, Xu S, Xue X, Li F, Liu Y et al. Report on the study of who ear and hearing disorders survey protocol in Guizhou province [J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2007; 21(16):731-4.
    [5]Cotanche DA. Genetic and pharmacological intervention for treatment/ prevention of hearing loss[J]. J Commun Disord 2008; 41(5):421-43.
    [6]卜行宽,刘铤.世界卫生组织预防聋和听力减退工作情况介绍[J].中华耳鼻咽喉科杂志2000;35(3):237-239.
    [7](残联康字[1999)第222号). 《关于确定“爱耳日”的通知》
    [8]唐志辉,高晗.眩晕疾病非手术治疗的临床研究进展[J].中国医学科学院学报2008;30(6):736-740.
    [9]吴子明.良性阵发性位置性眩晕诊治的现状与挑战[J].中国医学文摘耳鼻咽喉科学2008;23(5):255-256.
    [10]邓洪新,田聆,魏于全.基因治疗的发展现状、问题和展望[J].生命科学2005;17(3):196-199.
    [11]Qasba PK, Aposhian HV. DNA and gene therapy:transfer of mouse DNA to human and mouse embryonic cells by polyoma pseudovirions[J]. Proc Natl Acad Sci U S A 1971; 68(10):2345-9.
    [12]Osterman JV, Waddell A, Aposhian HV. DNA and gene therapy:uncoating of polyoma pseudovirus in mouse embryo cells[J]. Proc Natl Acad Sci U S A 1970; 67(1):37-40.
    [13]Fujiyoshi T, Hood L, Yoo TJ. Restoration of brain stem auditory-evoked potentials by gene transfer in shiverer mice[J]. Ann Otol Rhinol Laryngol 1994; 103(6):449-56.
    [14]Lalwani AK, Walsh BJ, Reilly PG, Muzyczka N, Mhatre AN. Development of in vivo gene therapy for hearing disorders:introduction of adeno-associated virus into the cochlea of the guinea pig[J]. Gene Ther 1996; 3(7):588-92.
    [15]Raphael Y, Frisancho JC, Roessler BJ. Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo[J]. Neurosci Lett 1996; 207(2):137-41.
    [16]任丽丽,杨仕明.纳米基因载体及其在内耳基因治疗中的研究进展[J].中国听力语言康复科学杂志2010;40(3):27-30.
    [17]Kho ST, Pettis RM, Mhatre AN, Lalwani AK. Safety of adeno-associated virus as cochlear gene transfer vector:analysis of distant spread beyond injected cochleae[J]. Mol Ther 2000; 2(4):368-73.
    [18]Sun H, Jiang M, Zhu SH. In vitro and in vivo studies on hydroxyapatite nanoparticles as a novel vector for inner ear gene therapy[J]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2008; 43(1):51-7.
    [19]Sun H, Huang A, Cao S. Current Status and Prospects of Gene Therapy for the Inner Ear[J]. Hum Gene Ther 2011.
    [20]Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE et al. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea[J]. Mol Ther 2010; 18(6):1111-22.
    [21]Wu J, Liu B, Fan J, Zhu Q. Study of protective effect on rat cochlear spiral ganglion after blast exposure by adenovirus-mediated human beta-nerve growth factor gene[J]. Am J Otolaryngol 2011; 32(1):8-12.
    [22]Kawamoto K, Yagi M, Stover T, Kanzaki S, Raphael Y. Hearing and hair cells are protected by adeno viral gene therapy with TGF-betal and GDNF[J]. Mol Ther 2003; 7(4):484-92.
    [23]Oshima K, Shimamura M, Mizuno S, Tamai K, Doi K, Morishita R et al. Intrathecal injection of HVJ-E containing HGF gene to cerebrospinal fluid can prevent and ameliorate hearing impairment in rats[J]. FASEB J 2004; 18(1):212-4.
    [24]Miller JM, Le Prell CG, Prieskorn DM, Wys NL, Altschuler RA. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes:effects of brain-derived neurotrophic factor and fibroblast growth facto[J]r. J Neurosci Res 2007; 85(9):1959-69.
    [25]Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S et al. AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity [J]. Otol Neurotol 2006; 27(4):484-90.
    [26]Chan DK, Lieberman DM, Musatov S, Goldfein JA, Selesnick SH, Kaplitt MG. Protection against cisplatin-induced ototoxicity by adeno-associated virus-mediated delivery of the X-linked inhibitor of apoptosis protein is not dependent on caspase inhibition[J]. Otol Neurotol 2007; 28(3):417-25.
    [27]Pfannenstiel SC, Praetorius M, Plinkert PK, Brough DE, Staecker H. Bcl-2 gene therapy prevents aminoglycoside-induced degeneration of auditory and vestibular hair cells [J]. Audiol Neurootol 2009; 14(4):254-66.
    [28]Staecker H, Liu W, Malgrange B, Lefebvre PP, Van De Water TR. Vector-mediated delivery of bcl-2 prevents degeneration of auditory hair cells and neurons after injury [J]. ORL J Otorhinolaryngol Relat Spec 2007; 69(1):43-50.
    [29]Pfannenstiel S, Praetorius M. Protection and regeneration of sensory epithelia of the inner ear[J]. HNO 2008; 56(1):13-20.
    [30]Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y. Mathl gene transfer generates new cochlear hair cells in mature guinea pigs in vivo[J]. J Neurosci 2003; 23(11):4395-400.
    [31]Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF et al. Auditory hair cell replacement and hearing improvement by Atohl gene therapy in deaf mammals [J]. Nat Med 2005; 11(3):271-6.
    [32]Shou J, Zheng JL, Gao WQ. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1[J]. Mol Cell Neurosci 2003; 23(2):169-79.
    [33]Kawamoto K, Sha SH, Minoda R, Izumikawa M, Kuriyama H, Schacht J et al. Antioxidant gene therapy can protect hearing and hair cells from ototoxicity[J]. Mol Ther 2004; 9(2):173-81.
    [34]Yang Y, Kong WJ, Hu YJ, Li J, Zhong Y, Zhao XY et al. Protection of cochlear function from aminoglycosides ototoxicity by manganese superoxide dismutase gene in aging rat[J]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2009; 44(8):657-63.
    [35]Yuge I, Takumi Y, Koyabu K, Hashimoto S, Takashima S, Fukuyama T et al. Transplanted human amniotic epithelial cells express connexin 26 and Na-K-adenosine triphosphatase in the inner ear[J]. Transplantation 2004; 77(9):1452-4.
    [36]Sun Y, Tang W, Chang Q, Wang Y, Kong W, Lin X. Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochlea[J]. J Comp Neurol 2009; 516(6):569-79.
    [37]Jagger DJ, Forge A. Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea[J]. J Neurosci 2006; 26(4):1260-8.
    [38]Birkenhager R, Zimmer AJ, Maier W, S chipper J. Pseudodominants of two recessive connexin mutations in non-syndromic sensorineural hearing loss? [J]. Laryngorhinootologie 2006; 85(3):191-6.
    [39]Delprat B, Boulanger A, Wang J, Beaudoin V, Guitton MJ, Venteo S et al. Downregulation of otospiralin, a novel inner ear protein, causes hair cell degeneration and deafness[J]. J Neurosci 2002; 22(5):1718-25.
    [40]Zhuo XL, Wang Y, Zhuo WL, Zhang YS, Wei YJ, Zhang XY. Adenoviral-mediated up-regulation of Otos, a novel specific cochlear gene, decreases cisplatin-induced apoptosis of cultured spiral ligament fibrocytes via MAPK/mitochondrial pathway[J]. Toxicology 2008; 248(1):33-8.
    [41]Lalwani AK, Han JJ, Walsh BJ, Zolotukhin S, Muzyczka N, Mhatre AN. Green fluorescent protein as a reporter for gene transfer studies in the cochlea[J]. Hear Res 1997; 114(1-2):139-47.
    [42]Iizuka T, Kanzaki S, Mochizuki H, Inoshita A, Narui Y, Furukawa M et al. Noninvasive in vivo delivery of transgene via adeno-associated virus into supporting cells of the neonatal mouse cochlea[J]. Hum Gene Ther 2008; 19(4):384-90.
    [43]Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y. Gene transfer into supporting cells of the organ of Corti[J]. Hear Res 2002; 173(1-2):187-97.
    [44]Chen Q, Guo WW, Wu Y, Liu H, Zhai SQ, Wang JZ et al. Adenovirus-mediated NT3 gene transfer protects spiral ganglion neurons from degeneration after noise trauma[J]. Sheng Li Xue Bao 2002; 54(3):263-6.
    [45]Han JJ, Mhatre AN, Wareing M, Pettis R, Gao WQ, Zufferey RN et al. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector[J]. Hum Gene Ther 1999; 10(11):1867-73.
    [46]Pietola L, Aarnisalo AA, Joensuu J, Pellinen R, Wahlfors J, Jero J. HOX-GFP and WOX-GFP lenti virus vectors for inner ear gene transfer [J]. Acta Otolaryngol 2008; 128(6):613-20.
    [47]Derby ML, Sena-Esteves M, Breakefield XO, Corey DP. Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors[J]. Hear Res 1999; 134(1-2):1-8.
    [48]Carnicero E, Knipper M, Tan J, Alonso MT, Schimmang T. Herpes simplex virus type 1-mediated transfer of neurotrophin-3 stimulates survival of chicken auditory sensory neurons[J]. Neurosci Lett 2002; 321(3):149-52.
    [49]Praetorius M, Knipper M, Schick B, Tan J, Limberger A, Carnicero E et al. A novel vestibular approach for gene transfer into the inner ear[J]. Audiol Neurootol 2002; 7(6):324-34.
    [50]Sarkis C, Serguera C, Petres S, Buchet D, Ridet JL, Edelman L et al. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector[J]. Proc Natl Acad Sci U S A 2000; 97(26):14638-43.
    [51]Sandig V, Hofmann C, Steinert S, Jennings G, Schlag P, Strauss M. Gene transfer into hepatocytes and human liver tissue by baculo virus vectors [J]. Hum Gene Ther 1996; 7(16):1937-45.
    [52]王俊,王士礼,蔡昌枰,李彪,张一帆.杆状病毒介导内耳基因治疗的实验研究[J].上海交通大学学报(医学版)2007;27(9):1041-1044.
    [53]Maeda Y, Fukushima K, Kawasaki A, Nishizaki K, Smith RJ. Cochlear expression of a dominant-negative GJB2R75W construct delivered through the round window membrane in mice[J]. Neurosci Res 2007; 58(3):250-4.
    [54]Shi L, Dong MM, Shi WJ, Hu YY, Guo W, Zhai SQ et al. Construction of bicistronic eukaryotic vector containing basic fibroblast growth factor and study of their functions in gene therapy for hearing impairment[J]. Zhonghua Er Bi Yan Hou Ke Za Zhi 2003; 38(1):21-3.
    [55]蒋明,张永全,贺广湘,孙虹.阳离子脂质体介导小鼠原代螺旋神经节细胞NT-3基因转染的实验研究[J].中国耳鼻咽喉颅底外科杂志2006;12(1):10-13.
    [56]Serikawa T, Kikuchi A, Sugaya S, Suzuki N, Kikuchi H, Tanaka K. In vitro and in vivo evaluation of novel cationic liposomes utilized for cancer gene therapy [J]. J Control Release 2006; 113(3):255-60.
    [57]Li P, Liu D, Sun X, Liu C, Liu Y, Zhang N. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route [J]. Nanotechnology 2011; 22(24):245104.
    [58]Mario C Filion, Phillips NC. Major limitations in the use of cationic liposomes for DNA delivery[J]. International Journal of Pharmaceutics 1998; 162(1-2):159-170.
    [59]Maeda Y, Sheffield AM, Smith RJ. Therapeutic regulation of gene expression in the inner ear using RNA interference[J]. Adv Otorhinolaryngol 2009; 66:13-36.
    [60]Veiseh O, Kievit FM, Gunn JW, Ratner BD, Zhang M. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells[J]. Biomaterials 2009; 30(4):649-57.
    [61]Braun CS, Vetro JA, Tomalia DA, Koe GS, Koe JG, Middaugh CR. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles[J]. J Pharm Sci 2005; 94(2):423-36.
    [62]胡云霞,原续波,张晓金,常津.阳离子多聚物纳米基因载体系统的研究进展[J].北京生物医学工程2003;22(4):299-302.
    [63]Noushi F, Richardson RT, Hardman J, Clark G, O'Leary S. Delivery of neurotrophin-3 to the cochlea using alginate beads[J]. Otol Neurotol 2005; 26(3):528-33.
    [64]孙虹,蒋明,朱晒红.用羟基磷灰石纳米粒作内耳基因治疗新载体的体内外研究[J].中华耳鼻咽喉头颈外科杂志2008;43(1):51-57.
    [65]张其清,屹梁.纳米技术在生物医学中的应用[J].中国医学科学院学报2002;24(2):197-202
    [66]科学技术部国际合作司.美国的纳米技术研究与开发[J].中国基础科学2003;3:63.
    [67]刘海峰,常津,姚康德.纳米高分子材料在医用载体方面的应用[J].化学通报2001:6:332-338.
    [68]谢谦.纳米基因载体的研究进展[J].国外医学生物医学工程分册2004;27(3):167-169.
    [69]Truong-Le VL, August JT, Leong KW. Controlled gene delivery by DNA-gelatin nanospheres[J]. Hum Gene Ther 1998; 9(12):1709-17.
    [70]Kopke RD, Wassel RA, Mondalek F, Grady B, Chen K, Liu J et al. Magnetic nanoparticles:inner ear targeted molecule delivery and middle ear implant[J]. Audiol Neurootol 2006; 11(2):123-33.
    [71]朱诗国,吕红斌,向娟娟.一种新型的非病毒DNA传递载体:多聚赖氨酸-硅纳米颗粒[J].科学通报2002;47(3):193-197.
    [72]Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D et al. PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection[J]. Adv Funct Mater 2009; 19(14):2244-2251.
    [73]Zhu S, Zhou K, Huang B, Huang S, Liu F, Li Y et al. Hydroxyapatite nanoparticles:a novel material of gene carrier[J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2005; 22(5):980-4.
    [74]Hu J, Liu ZS, Tang SL, He YM. Effect of hydroxyapatite nanoparticles on the growth and p53/c-Myc protein expression of implanted hepatic VX2 tumor in rabbits by intravenous injection[J]. World J Gastroenterol 2007; 13(20):2798-802.
    [75]Zhu S, Huang B, Zhou K, Huang S, Liu F, Li Y et al. Hydroxyapatite Nanoparticles as a Novel Gene Carrier[J]. J Nanopart Res 2004; 6:307-311.
    [76]Li GP, Chen XP, Huang ZY. Hydroxyapatite nanoparticles enhance the efficacy of liposome-mediated gene-transfection into HepG2 cells and its mechanisms[J]. Zhonghua Zhong Liu Za Zhi 2008; 30(2):111-2.
    [77]Jiang M, Zhang YQ, He GX, Sun H. Protective effect of NT-3 gene mediated by hydroxyapatite nanoparticle on the cochlea of guinea pigs injured by excitotoxicity[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2007; 32(4):563-7.
    [78]Parnes LS, Sun AH, Freeman DJ. Corticosteroid pharmacokinetics in the inner ear fluids:an animal study followed by clinical application[J]. Laryngoscope 1999; 109(7 Pt 2):1-17.
    [79]Kilpatrick LA, Li Q, Yang J, Goddard JC, Fekete DM, Lang H. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ea[J]r. Gene Ther 2011.
    [80]Swan EE, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. Inner ear drug delivery for auditory applications [J]. Adv Drug Deliv Rev 2008; 60(15):1583-99.
    [81]Suzuki M, Yagi M, Brown JN, Miller AL, Miller JM, Raphael Y. Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibular toxicity[J]. Gene Ther 2000; 7(12):1046-54.
    [82]徐金操,胡吟燕,徐延军,黄德亮,杨仕明.新霉素对大鼠前庭的损伤及复制缺陷型腺病毒前庭导入的研究[J].听力学与言语疾病杂志2009;17(2):160-164.
    [83]Kawamoto K, Oh SH, Kanzaki S, Brown N, Raphael Y. The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice[J]. Mol Ther 2001; 4(6):575-85.
    [84]Iguchi F, Nakagawa T, Tateya I, Endo T, Kim TS, Dong Y et al. Surgical techniques for cell transplantation into the mouse cochlea[J]. Acta Otolaryngol Suppl 2004; (551):43-7.
    [85]陈伟,杨仕明,郭维,胡吟燕,孙建和,韩东-et al.腺病毒携带EGFP基因经完整圆窗膜转导豚鼠耳蜗的实验研究[J].中华耳科学杂志2007;5(231-234).
    [86]Yamasoba T, Yagi M, Roessler BJ, Miller JM, Raphael Y. Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac[J]. Hum Gene Ther 1999; 10(5):769-74.
    [87]李胜利,朱宏亮,王晓侠,刘晖,黄沂传,姚小宝.内耳疾病基因治疗方法的研究[J].临床耳鼻咽喉头颈外科杂志,2002;16(10):546-549.
    [88]Ghiz AF, Salt AN, DeMott JE, Henson MM, Henson OW, Jr., Gewalt SL. Quantitative anatomy of the round window and cochlear aqueduct in guinea pigs[J]. Hear Res 2001; 162(1-2):105-12.
    [89]Kitamura Y, Teranishi M, Sone M, Nakashima T. Round window membrane in young and aged C57BL/6 mice[J]. Hear Res 2002; 174(1-2):142-8.
    [90]Stenner M, Jecker P, Gouveris H, Mann W. Treatment of sensorineural hearing loss in acute viral otitis media with intratympanic dexamethasone and hyaluronic acid in comparison with intravenous therapy[J]. Laryngorhinootologie 2006; 85(1):32-7.
    [91]Moon IS, Lee JD, Kim J, Hong SJ, Lee WS. Intratympanic dexamethasone is an effective method as a salvage treatment in refractory sudden hearing loss[J]. Otol Neurotol 2011; 32(9):1432-6.
    [92]Tsai YJ, Liang JG, Wu WB, Ding YF, Chiang RP, Wu SM. Intratympanic injection with dexamethasone for sudden sensorineural hearing loss[J]. J Laryngol Otol 2011; 125(2):133-7.
    [93]Flanagan S, Mukherjee P, Tonkin J. Outcomes in the use of intra-tympanic gentamicin in the treatment of Meniere's disease[J]. J Laryngol Otol 2006; 120(2):98-102.
    [94]程小华,胡吟燕,李建雄,郭维,翟所强.经完整圆窗膜途径EGFP基因在大鼠耳蜗中的表达[J].听力学及言语疾病杂志2004;12(1):25-27.
    [95]Jero J, Mhatre AN, Tseng CJ, Stern RE, Coling DE, Goldstein JA et al. Cochlear gene delivery through an intact round window membrane in mouse[J]. Hum Gene Ther 2001; 12(5):539-48.
    [96]彭亚.羟基磷灰石纳米载体经完整圆窗膜渗透途径向内耳转染NT-3基因的研究[D].长沙:中南大学2009.
    [97]Al-Dosari MS, Gao X. Nonviral gene delivery:principle, limitations, and recent progress[J]. AAPS J 2009; 11(4):671-81.
    [98]Marshall E. Gene therapy. NIH picks three gene vector centers[J]. Science 1995; 269(5225):751-2.
    [99]吴立宇,吴筱春.纳米技术在肿瘤诊断与治疗中的应用趋势[J].中华肿瘤防治杂志2007;14(22):1740-1743.
    [100]Rozenberg Y, Medvedkin V, Anderson W. Non-naturally occurring viral gene therapy vector for cell-specific delivery of a nucleic acid to a target cell. NZ517241 2004.
    [101]Yu L, Matsomoto K. Vector for transfection of eukaryotic cells. US2006074045 2006.
    [102]Sun H, Jiang M, Li G, Zhu S. Neurotrophin-3 Gene Transfection of Cochlear Cells with Hydroxyapatite Nanoparticle Vector Abstr. Assoc. Res. Otolaryngology 2006; 29:92.
    [103]Xie G, Sun J, Zhong G, Liu C, Wei J. Hydroxyapatite nanoparticles as a controlled-release carrier of BMP-2:absorption and release kinetics in vitro [J]. J Mater Sci Mater Med 2010; 21(6):1875-80.
    [104]Kichler A, Leborgne C, Coeytaux E, Danos O. Polyethylenimine-mediated gene delivery:a mechanistic study[J]. J Gene Med 2001; 3(2):135-44.
    [105]孙恩杰,杨冬.非病毒型基因载体研究进展[J].中国生物工程杂志2004;24(4):21-25.
    [106]吴雄辉,孙虹,邢晓为,黄利华,黄苏萍.纳米羟基磷灰石表面修饰及其DNA结合性能的实验研究[J].南方医科大学学报2010;30(10):2233-2241.
    [107]李建华,李世普,韩颖超.纳米羟基磷灰石的制备及工艺研究[J].国外建材科技2006;27(6):12-13.
    [108]Brown W. E., C. CL. A new calcium phosphate, water-setting cement. In: Cements Research Progress 1986, Brown P. W., Ed [M]. The American Ceramics Society, Westerville. OH 1987:352-379.
    [109]Feng QL, Cui FZ, Zhang W. Nano-hydroxyapatite/collagen composite for bone repair[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2002; 24(2):124-8.
    [110]Huang R, Ke W, Liu Y, Wu D, Feng L, Jiang C et al. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model [J]. JNeurol Sci 2010; 290(1-2):123-30.
    [111]Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats[J]. J Toxicol Environ Health A 2002; 65(20):1531-43.
    [112]Perez-Martinez FC, Guerra J, Posadas I, Cena V. Barriers to non-viral vector-mediated gene delivery in the nervous system[J]. Pharm Res 2011; 28(8):1843-58.
    [113]Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells[J]. World J Gastroenterol 2003; 9(9):1968-71.
    [114]Uskokovic V, Uskokovic DP. Nanosized hydroxyapatite and other calcium phosphates:chemistry of formation and application as drug and gene delivery agents[J]. J Biomed Mater Res B Appl Biomater 2011; 96(1):152-91.
    [115]沈翔,李木森,曹宁,王成祥,吕宇鹏,白允强.化学沉淀法制备HA粉末过程中水中分散效果的试验研究[J].山东大学学报(工学版)2006;36(3):5-8.
    [116]王扬,王宇明,李海东.纳米羟基磷灰石的制备及工艺优化[J].长春工业大学学报2009;30(2):137-141.
    [117]刘晓荣,曹阳,陈蕾,陈烨,沈玉华,黄毅萍.纳米针状羟基磷灰石晶体的常压水热合成研究[J].化学世界2007;48(3):14-18,49.
    [118]Ashok M, Kalkura SN, Sundaram NM, Arivuoli D. Growth and characterization of hydroxyapatite crystals by hydrothermal method[J]. J Mater Sci Mater Med 2007; 18(5):895-8.
    [119]Yuan Y, Liu CS. Synthesis of nanometer hydroxyapatite by sol-gel method[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2002; 24(2):129-33.
    [120]Mardziah CM, Sopyan I, Hamdi M, Ramesh S. Synthesis and characterization of strontium-doped hydroxyapatite powder via sol-gel method [J]. Med J Malaysia 2008; 63 Suppl A:79-80.
    [121]Liu H, Webster TJ. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications [J]. Int J Nanomedicine 2010; 5: 299-313.
    [122]邢颖.纳米二氧化硅水悬浮液的稳定性研究[J].涂料工业2006;36(8):58-60.
    [123]蓝旭,梁军,葛宝丰,刘雪梅.表面修饰对羟基磷灰石细胞相容性的影响[J].生物医学工程研究2007;26(3):278-281.
    [124]Patnaik S, Arif M, Pathak A, Kurupati R, Singh Y, Gupta KC. Cross-linked polyethylenimine-hexametaphosphate nanoparticles to deliver nucleic acids therapeutics [J]. Nanomedicine 2010; 6(2):344-54.
    [125]Sung SJ, Min SH, Cho KY, Lee S, Min YJ, Yeom YI et al. Effect of polyethylene glycol on gene delivery of polyethylenimine[J]. Biol Pharm Bull 2003; 26(4):492-500.
    [126]Kursa M, Walker GF, Roessler V, Ogris M, Roedl W, Kircheis R et al. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer[J]. Bioconjug Chem 2003; 14(1):222-31.
    [127]Tang GP, Zeng JM, Gao SJ, Ma YX, Shi L, Li Y et al. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer:effects of PEGylation extent[J]. Biomaterials 2003; 24(13):2351-62.
    [128]Yiu HH, McBain SC, Lethbridge ZA, Lees MR, Dobson J. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection[J]. J Biomed Mater Res A 2010; 92(1):386-92.
    [129]Pathak A, Patnaik S, Gupta KC. Polyethylenimine derived nanoparticles for efficient gene delivery[J]. Nucleic Acids Symp Ser (Oxf) 2009; (53):57-8.
    [130]El-Ghannam AR, Ducheyne P, Risbud M, Adams CS, Shapiro IM, Castner D et al. Model surfaces engineered with nanoscale roughness and RGD tripeptides promote osteoblast activity[J]. J Biomed Mater Res A 2004; 68(4):615-27.
    [131]Li H, Wei S, Qing C, Yang J. Discussion on the position of the shear plane. Journal of Colloid and Interface Science 2003; 258(2003):40-44.
    [132]Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N et al. Optical tracking of organically modified silica nanoparticles as DNA carriers:a nonviral, nanomedicine approach for gene delivery[J]. Proc Natl Acad Sci U S A 2005; 102(2):279-84.
    [133]徐慧芳.影响羟基磷灰石纳米颗粒DNA转染率因素的研究[D].长沙:中南大学2011.
    [134]吴雄辉.非病毒型载体介导SOD1基因体外细胞转染及表达的实验研究[D].长沙:中南大学2011.
    [135]蒋明.羟基磷灰石纳米介导NT-3基因治疗豚鼠实验性感觉神经性耳聋的研究[D].长沙:中南大学2006.
    [136]Borkholder DA. State-of-the-art mechanisms of intracochlear drug delivery[J]. Curr Opin Otolaryngol Head Neck Surg 2008; 16(5):472-7.
    [137]Tamura T, Kita T, Nakagawa T, Endo T, Kim TS, Ishihara T et al. Drug delivery to the cochlea using PLGA nanoparticles[J]. Laryngoscope 2005; 115(11): 2000-5.
    [138]Ge X, Jackson RL, Liu J, Harper EA, Hoffer ME, Wassel RA et al. Distribution of PLGA nanoparticles in chinchilla cochleae[J]. Otolaryngol Head Neck Surg 2007; 137(4):619-23.
    [139]Zou J, Saulnier P, Perrier T, Zhang Y, Manninen T, Toppila E et al. Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation [J]. J Biomed Mater Res B Appl Biomater 2008; 87(1): 10-8.
    [140]Praetorius M, Brunner C, Lehnert B, Klingmann C, Schmidt H, Staecker H et al. Transsynaptic delivery of nanoparticles to the central auditory nervous system[J]. Acta Otolaryngol 2007; 127(5):486-90.
    [141]丁大连,蒋涛,亓卫东,曲雁,Salvi RJ内耳科学[M].北京:中国科学技术出版社2010.
    [142]Li Duan M, Bordet T, Mezzina M, Kahn A, Ulfendahl M. Adenoviral and adeno-associated viral vector mediated gene transfer in the guinea pig cochlea[J]. Neuroreport 2002; 13(10):1295-9.
    [143]Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications[J]. Ann Intern Med 2001; 134(7):573-86.
    [144]Kumar P, Fennell P, Robins A. Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities[J]. J Nanopart Res 2010; 12(5):1523-1530.
    [145]Ong HT, Loo JSC, Boey FYC, Russell SJ, Ma J, Peng K-W. Exploiting the high-affinity phosphonate-hydroxyapatite nanoparticle interaction for delivery of radiation and drugs[J]. J Nanopart Res 2008; 10(1):141-150.
    [146]Ding J, Liao G, Yan Z, Liu H, Tang J, Liu S et al. Meta-analysis of proximal gastrectomy and total gastrectomy for cancer of cardia and fundus[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011; 36(6):570-575.
    [147]Lu G, Zhang J, Li JX, Gu YQ, Jiang M, Chen L et al. Surface modification of vascular tissue engineering biomaterial by low temperature plasma with NH3, CO2 and O2[J]. Zhonghua Yi Xue Za Zhi 2007; 87(47):3362-6.
    [148]Deng X, Yin F, Yu Y, Peng J. Clinical characteristics of osteopetrosis in 4 children[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011; 36(6):581-584.
    [149]Dang Y, Zhang Y, Fan L, Chen H, Roco MC. Trends in worldwide nanotechnology patent applications:1991 to 2008[J]. J Nanopart Res 2010; 12(3): 687-706.
    [150]Ho SS, Scheufele DA, Corley EA. Making sense of policy choices: understanding the roles of value predispositions, mass media, and cognitive processing in public attitudes toward nanotechnology [J]. J Nanopart Res 2010; 12(8): 2703-2715.
    [151]Han Y, Wang X, Li S. A simple route to prepare stable hydroxyapatite nanoparticles suspension [J]. J Nanopart Res 2009; 11(5):1235-1240.
    [152]Hu J, Wang L, Yu F. Expression of Merlin protein in non-small cell lung carcinoma and the clinical significance [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011; 36(6):565-569.
    [153]Yin N, Zhao T, Yang Y, Xu X, Wang X, Wu Q et al. Evaluation of minimally invasive peratrial device closure of secundum atrial septal defects in children[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011; 36(6):576-580.
    [154]Corley EA, Scheufele DA, Hu Q. Of risks and regulations:how leading U.S. nanoscientists form policy stances about nanotechnology [J]. J Nanopart Res 2009; 11(7):1573-1585.
    [155]Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A et al. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale:state-of-the-art, potential, and perspectives [J]. J Nanopart Res 2009; 11(7):1521-1554.
    [156]Mondalek FG, Zhang YY, Kropp B, Kopke RD, Ge X, Jackson RL et al. The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field[J]. J Nanobiotechnology 2006; 4:4.
    [157]Chandrasekhar SS, Rubinstein RY, Kwartler JA, Gatz M, Connelly PE, Huang E et al. Dexamethasone pharmacokinetics in the inner ear:comparison of route of administration and use of facilitating agents[J]. Otolaryngol Head Neck Surg 2000; 122(4):521-8.
    [158]Subramanian V, Youtie J, Porter AL, Shapira P. Is there a shift to "active nanostructures"?[J].J Nanopart Res 2010; 12(1):1-10.
    [159]Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity:implications for gene transfer/therapy[J]. Mol Ther 2005; 11(6):990-5.
    [160]Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films[J]. Biomaterials 2007; 28(4):632-40.
    [161]Kimura RS. Distribution, structure, and function of dark cells in the vestibular labyrinth[J]. Ann Otol Rhinol Laryngol 1969; 78(3):542-61.
    [162]Hansen JM, Qvortrup K, Friis M. Vestibular tributaries to the vein of the vestibular aqueduct[J]. Acta Otolaryngol 2011; 131(1):9-13.
    [163]Igarashi Y. Submicroscopic study of the vestibular dark cell area in human fetuses[J]. Acta Otolaryngol 1989; 107(1-2):29-38.
    [164]刘伟,邹宁生,邱治民,蔡兆明,吴翊钦.胎儿壶腹嵴暗细胞的超微结构[J].解剖学杂志1996;19(1):59-61.
    [165]Harada Y, Sugimoto Y. Metabolic disorder of otoconia after streptomycin intoxication[J]. Acta Otolaryngol 1977; 84(1-2):65-71.
    [166]Hunter-Duvar IM. An electron microscopic study of the vestibular sensory epithelium[J]. Acta Otolaryngol 1983; 95(5-6):494-507.
    [167]Kawamata S, Harada Y, Tagashira N. Electron-microscopic study of the vestibular dark cells in the crista ampullaris of the guinea pig[J]. Acta Otolaryngol 1986; 102(3-4):168-74.
    [168]Mann S, Parker SB, Ross MD, Skarnulis AJ, Williams RJ. The ultrastructure of the calcium carbonate balance organs of the inner ear:an ultra-high resolution electron microscopy study[J]. Proc R Soc Lond B Biol Sci 1983; 218(1213):415-24.
    [169]Pote KG, Ross MD. Each otoconia polymorph has a protein unique to that polymorph[J]. Comp Biochem Physiol B 1991; 98(2-3):287-95.
    [170]Dickman JD, Huss D, Lowe M. Morphometry of otoconia in the utricle and saccule of developing Japanese quail[J]. Hear Res 2004; 188(1-2):89-103.
    [171]Xing X, He X, Peng J, Wang K, Tan W. Uptake of silica-coated nanoparticles by HeLa cells[J]. J Nanosci Nanotechnol 2005; 5(10):1688-93.
    [172]Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Lett 2006; 6(4):662-8.
    [173]Zuhorn IS, Kalicharan R, Hoekstra D. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis[J]. J Biol Chem 2002; 277(20):18021-8.
    [174]Singh S, Kumar A, Karakoti A, Seal S, Self WT. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles[J]. Mol Biosyst 2010; 6(10):1813-20.
    [175]Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery[J]. Pharmacol Rev 2006; 58(1):32-45.
    [176]Tan BT, Foong KH, Lee MM, Ruan R. Polyethylenimine-mediated cochlear gene transfer in guinea pigs[J]. Arch Otolaryngol Head Neck Surg 2008; 134(8):884-91.
    [177]Nie C, Liu C, Chen G, Dai J, Li H, Shuai X. Hepatocyte-targeted psiRNA Delivery Mediated by Galactosylated Poly(Ethylene Glycol)-Graft-Polyethylenimine In Vitro [J]. J Biomater Appl 2010.
    [178]Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems[J]. J Biol Chem 1994; 269(17):12918-24.
    [179]Nykjaer A, Willnow TE. The low-density lipoprotein receptor gene family:a cellular Swiss army knife? [J] Trends Cell Biol 2002; 12(6):273-80.
    [180]Christensen EI, Birn H. Megalin and cubilin:multifunctional endocytic receptors[J]. Nat Rev Mol Cell Biol 2002; 3(4):256-66.
    [181]Hama H, Saito A, Takeda T, Tanuma A, Xie Y, Sato K et al. Evidence indicating that renal tubular metabolism of leptin is mediated by megalin but not by the leptin receptors[J]. Endocrinology 2004; 145(8):3935-40.
    [182]Saito A, Nagai R, Tanuma A, Hama H, Cho K, Takeda T et al. Role of megalin in endocytosis of advanced glycation end products:implications for a novel protein binding to both megalin and advanced glycation end products[J]. J Am Soc Nephrol 2003; 14(5):1123-31.
    [183]Tauris J, Christensen El, Nykjaer A, Jacobsen C, Petersen CM, Ovesen T. Cubilin and megalin co-localize in the neonatal inner ear[J]. Audiol Neurootol 2009; 14(4):267-78.
    [184]Arai M, Mizuta K, Saito A, Hashimoto Y, Iwasaki S, Watanabe T et al. Localization of megalin in rat vestibular dark cells and endolymphatic sac epithelial cells[J]. Acta Otolaryngol 2008; 128(6):627-33.
    [185]Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE et al. Hydroxyapatite nano and microparticles:correlation of particle properties with cytotoxicity and biostability[J]. Biomaterials 2009; 30(19):3307-17.
    [1]Hartmut Hahn, Bernd Kammerer, Andre DiMauro,et al. Cochlear microdialysis for quantification of dexamethasone and fluorescein entry into scala tympani during round window administration[J]. Hearing Research,2006,212:236-244.
    [2]孙虹,蒋明,朱晒红.用羟基磷灰石纳米粒作内耳基因治疗新载体的体内外研究[J].中华耳鼻咽喉头颈外科杂志,2008,43(1):51-57.
    [3]Goycoolea MV, Lundman L. Round window membrane. Structure function and permeability:a review[J]. Microsc Res Tech 1997; 36(3):201-11.
    [4]王宜南,刘兆华,姬长友.圆窗膜的定量解剖及功能特性的研究[J].山东大学基础医学院学报,2004,18(3):189-191.
    [5]Kringlebotn M. Rupture pressures of membranes in the ear[J]. The Annals of Otology, Rhinology & Laryngology,2000,109:940.
    [6]Carpenter AM et al. Ultrastructural studies of the human round window membrane[J]. Arch Otolaryngol Head Neck Surg,1989,115(5):585-590.
    [7]Yoko Kitamura, Masa-aki Teranishi, Michihiko Sone, et al, Round window membrane in young and aged C57BL/6 mice[J]. Hearing Research,2002,174:142-148.
    [8]Witte MC, Kasperbauer JL. Round window membrane permeability to transforming growth factor:an in vitro study[J]. Otolaryngol Head-Neck Surg,2000, 123:91.
    [9]Liu Y, Jiang P, Sun JJ, Kong WJ. Quick preparing the sample of round window membrane and its observation using environmental scanning electron microscopy[J]. J Clin Otorhinolaryngol,2005,19:902-904.
    [10]Chandrasekhar SS. Rubinstein RY. Kwartler JA. Gatz M. Connelly PE. Huang E. Baredes S. Dexamethasone pharmacokinetics in the inner ear:comparison of route of administration and use of facilitating agents [J]. Otolaryngology-Head & Neck Surgery.2000; 122(4):521-528.
    [11]Sun JJ, Liu Y, Kong WJ, Jiang P, Jiang W. In vitro permeability of round window membrane to transforming dexamethasone with delivery vehicles- a dosage estimation[J]. Chinese Medical Journal,2007,120(24):2284-2289.
    [12]Mondalek, F.G., et al., The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field[J]. J Nanobiotechnology,2006.4:4.
    [13]鲁海涛,龚树生.圆窗膜的解剖结构、生理功能及临床意义[J].国外医学耳鼻咽喉科学分册,2002,26(4):214-218.
    [14]刘娅,孙建军,内耳局部给药及其研究进展[J].中华医学杂志,2005,85(4):286-288.
    [15]Herr BD,Marzo SJ. Intratympanic steroid perfusion for refractory sudden sensorineural hearing loss [J]. Otolaryngol Head Neck Surg,2005,132:527.
    [16]F. Noushi, R.T. Richardson, J. Hardman, G. Clark, S. O'Leary, Delivery of neurotrophin-3 to the cochlea using alginate beads[J]. Otol. Neurotol.2005,26:528-533.
    [17]J.K.M. Coleman, C. Littlesunday, R. Jackson, T. Meyer, Am-111 protects against permanent hearing loss from impulse noise trauma[J], Hear. Res.2007,226:70-78.
    [18]K. Iwai, T. Nakagawa, T. Endo, Y. Matsuoka, T. Kita, T.-S. Kim, Y. Tabata, J. Ito, Cochlear protection by local insulin-like growth factor-1 application using biodegradable hydrogel[J]. Laryngoscope.2006(116):529-533.
    [19]M. Praetorius, C. Brunner, B. Lehnert, C. Klingmann, H. Schmidt, H. Staecker, B.Schick, Transsynaptic delivery of nanoparticles to the central auditory nervous system[J]. Acta Otolaryngol.2007 (127):486-490.
    [20]T. Tamura, T. Kita, T. Nakagawa, T. Endo, T.-S. Kim, T. Ishihara, Y. Mizushima, M. Higaki, J. Ito, Drug delivery to the cochlea using plga nanoparticles [J]. Laryngoscope.2005,115(11):2000-2005.
    [21]X. Ge, R.L. Jackson, J. Liu, E.A. Harper, M.E. Hoffer, R.A. Wassel, K.J. Dormer, R.D.Kopke, B.J. Balough, Distribution of PLGA nanoparticles in chinchilla cochleae [J]. Otolaryngol Head Neck Surg.2007 (137):619-623.
    [22]Praetorius M, Brunner C, Lehnert B, Klingmann C, Schmidt H, Staecker H et al. Transsynaptic delivery of nanoparticles to the central auditory nervous system[J]. Acta Otolaryngol 2007; 127(5):486-90
    [23]Wu XW, Ding DL, Jiang HY, Xing XW, Huang SP, Liu H, Chen ZD, Sun H. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla[J]. J Nanopart Res 2012; 14(1) doi:10.1007/s11051-011-0708-1
    [24]Roy S, Glueckert R, Johnston AH, Perrier T, Bitsche M, Newman TA et al. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles[J]. Nanomedicine (Lond) 2012; 7(1):55-63.
    [25]Silverstein H. Use of a new device, the microwick, to deliver medication to the inner ear[J]. Ear Nose Throat J,1999; 78:595-600.
    [26]Hillman TM, Arriaga MA, Chen DA. Intratympanic steroids:Do they acutely improve hearing in cases of cochlear hydrops? [J]. Laryngoscope 2003;113:1903-1907
    [27]程小华,胡吟燕,李建雄,郭维,翟所强.经完整圆窗膜途径EGFP基因在大鼠耳蜗中的表达[J].听力学及言语疾病杂志,2004,12(1):25-27.
    [28]冯红云,孙建军,姜伟,江平.缓释载药体泊洛沙姆圆窗灌注对耳蜗结构与听觉功能的影响[J].中华医学杂志,2007,87(32):2289-2291.
    [29]唐月英.地塞米松和地塞米松-透明质酸圆窗灌注对豚鼠圆窗膜形态学的影响[D],长沙,中南大学,2007年6月.
    [30]Chandrasekhar SS. Rubinstein RY. Kwartler JA, et al. Dexamethasone pharmacokinetics in the inner ear:comparison of route of administration and use of facilitating agents[J]. Otolaryngology-Head & Neck Surgery.2000; 122(4):521-528.
    [31]彭亚.羟基磷灰石纳米载体经完整圆窗膜渗透途径向内耳转染NT-3基因的研究[D].长沙:中南大学2009年6月.
    [32]Wang H, Murphy R, Taaffe D, Yin S, Xia L, Hauswirth WW et al. Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane[J]. Gene Ther 2011. doi:10.1038/gt.2011.91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700