脱硫石膏基复合材料的耐水性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟气脱硫石膏,主要来源于燃煤电厂,我国众多的燃煤电厂每年产生大量的烟气脱硫石膏。脱硫石膏是一种优良的胶凝材料,主要应用在建筑行业;但是脱硫石膏制品耐水性能较差,这一缺陷限制了脱硫石膏的应用。在兼顾强度的同时,提高脱硫石膏制品的耐水性能,将会极大地拓展脱硫石膏的应用领域。
     本文主要研究提高脱硫石膏的耐水性能的措施。研究方法有以下几点:通过减少石膏制品内部孔隙率可以密实制品结构,这减少了拌合用水量,提高了强度和耐水性能;在石膏制品中引入防水材料,防水外加剂可以在建筑石膏颗粒表面形成一层致密的保护膜,改变建筑石膏与水的亲和性能,从而阻碍水分的渗入和破坏;在石膏制品中引入水硬性第二骨架可以有效地抵抗水分的破坏,从而提高耐水性能;同时本文还对免煅烧石膏基材料的耐水性能进行了初步探讨。通过研究得出了以下结论:
     (1)聚羧酸减水剂和脂肪族减水剂的加入可以有效地减少脱硫建筑石膏拌合用水量,从而改善其抗水性,在复掺缓凝剂的时候还可以有效延缓流动度经时损失。掺入这两种减水剂能够减少石膏制品的吸水率和提高绝干强度。同等掺量下聚羧酸减水剂对石膏制品吸水率的降低效果更好,而脂肪族减水剂对石膏制品强度的提高效果较优。石膏制品的软化系数随着这两种减水剂掺量的增加均先增大而后略有减小。当减水剂含量是1.6%时,软化系数都出现最大值0.75。
     (2)加入乙烯-乙酸乙烯脂共聚乳液或聚乙烯醇都可以一定程度上改善石膏制品的抗水性。随着这两种防水外加剂的加入,石膏制品的吸水率都先迅速降低而后降低趋势趋于平缓,聚乙烯醇对石膏制品吸水率的减小效果要好于乙烯-乙酸乙烯脂共聚乳液。石膏制品的绝干强度随着这两种防水外加剂掺量的增加先是逐步升高,之后强度却明显降低。石膏制品的软化系数随着聚合物掺量的增加先是快速升高,随后趋于稳定,当乙烯-乙酸乙烯脂共聚乳液和聚乙烯醇的掺量为4%的时候,石膏制品的抗压软化系数分别达到最大值0.80和0.83。
     (3)当在石膏粉煤灰体系和石膏矿粉体系中加入生石灰或水泥时,制品的吸水率都会有明显的降低,绝干抗压强度都会逐渐升高,并且软化系数均先线性增加而后增大趋势趋于平缓。石膏矿粉体系相对于石膏粉煤灰体系表现出更优良的力学性能。这是因为石膏矿粉体系在水泥或生石灰存在的条件下,矿粉的活性被较好地激发出来,与二水石膏一起生成了较多的水硬性产物。热分析和XRD分析表明,产物中有大量的二水石膏结晶,以及较多的C-S-H和少量的AFt。
     (4)掺加3%的水泥可以提高免煅烧脱硫石膏复合材料的抗压强度,最大抗压强度可以达到20.3MPa,但是随着水泥掺加量的增加,复合材料的抗压强度又逐步减小。免煅烧脱硫石膏复合材料在湿热养护时强度的发展好于在水中养护。这种材料的养护是在饱水的环境中进行的,因此使用在湿润的环境中也可以保持一定强度。
Flue gas desulfurization gypsum mainly come from coal-fired power plant and China's numerous coal-fired power plants produce large amounts of flue gas desulfurization gypsum every year. FGD gypsum which mainly used in the construction industry is an excellent cementitious material, but the application of FGD is large limitted because of it's poor water resistance. Improving the water resistance and taking into account of the strength at the same time can greatly expand the applications of the FGD gypsum products.
     This paper mainly studies the measures to improve the water resistance of desulfurization gypsum. The research methods are as follow:Compacting the structure of FGD gypsum products can improve the strengh and water resistance by reducing the mixing water consumption; Introducing waterproof material into gypsum products. Waterproof admixture can form a dense protective film on the surface of the gypsum particles which change the affinity of the building plaster and water, thus the gypsum products can not be destruction by ingressing of the water; Introduct hydraulic skeleton into gypsum products can effectively resist the damage of the water, strong water resistance comes from cementitious products which is insoluble in water; The article also discussed water resistance of free calcined gypsum-based materials. The results show that:
     (1)Adding polycarboxylate superplasticizer and aliphatic superplasticizer can effectively reduce the mixing water of the desulfurization building gypsum, thereby improving its water resistance. Fluidity loss of desulfurization gypsum can be effectively delay by complex doped retarde.The incorporation of these two superplasticizer can reduce water absorption and increase dry strength of gypsum products. Polycarboxylate superplasticizer does well in reducing the water absorption and aliphatic superplasticizer exhibit better in improveing the strength of gypsum products under equal dosage. The softening coefficient of gypsum products increases in the beginning and then decreases slightly as superplasticizer dosage increase. When the superplasticizer content is1.6%, the softening coefficient reach to a maximum value of0.75.
     (2)EVA and PVA can both improves the water resistance of gypsum products to a certain extend. With the increase in the dosage of the two waterproof admixture, the water absorption of the gypsum products are rapidly reduced in the beginning and then decreased to flatten, dry strength increase gradually and then reduce significantly, and softening coefficient are rise rapidly at first and then stabilized. When the dosage of EVA and PVA are4%, the softening coefficien of the gypsum products reach to a maximum value of0.80and0.83.
     (3)The water absorption of the gypsum products reduces significantly,dry strength increases gradually and softening coefficient increase at first and then stabilize when quicklime or cement are added in the gypsum-fly ash system or the gypsum-slag system. Gypsum-slag system exhibit higher strength and better water resistance than gypsum-fly ash system when added the same dosage of cement or lime. A large amount of the hydraulic product are generate in the case of plaster exist as the activity of the slag is prefferably excited in the existing conditions of the cement or lime. Thermal analysis and XRD analysis show that there are a lot of gypsum as well as more C-S-H and a small amount of AFt.
     (4)Free calcined desulfurization gypsum composite materials exhibit high strength when3%cement are added, the maximum compressive strength can reach to20.3MPa, but strength reduces with more cement. Free calcined desulfurization gypsum composite strength exhibit higher strength in the curing of the hot and humid than in the curing of water. Considering that this material are curried in water-saturated environment, the materials can be used in amoist environment and maintain a certain strength.
引文
[1]Gomes S, francoisM, PellisserC, et a.1. Characterization and com2 parative study of coal combustion residues from a pri-mary and Additional flue gas secondary desulphurization process[J]. Cement and Concrete Research,1998,28 (1):1605-1619
    [2]陈云嫩.烟气脱硫石膏的综合利用[J].中国资源综合利用,2003(8):19-21
    [3]吴晓琴,吴忠标.烟气脱硫石膏资源化利用现状及展望.重庆环境科学[J],2003(11),192-195
    [4]张方,马彦涛,胡将军.国内外火电厂烟气脱硫石膏的特点利用及处置.粉煤灰综合利用[J].2003(4):50-51
    [5]王方群,原永涛,齐立强.脱碗石膏性能及其综合利用[J].粉煤灰踪台利用.2004(1):41-44
    [6]Joachim Harder, Trends in the Gypsum Industy[J]. ZKG.2005, (4):18-27
    [7]沈辰兴,沈荣辉.烟气脱硫石膏(FGD)在石膏板生产中的应用[J].粉煤灰综合利用2003,(3):44-46
    [8]王方群,原永涛,齐立强.脱碗石膏性能及其综合利用[J].粉煤灰踪台利用.2004,(1):41-44
    [9]H. J. Engert, Th. Koalowski. The new gypsum binder AlPha2000-Production technology and products[J]. ZKG,1998 (4):229~237
    [10]N.B.Singh, B.Middendorf.Caleium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials.2007,53 (1): 57~77
    [11]Fischer H. C. ASTM Bull.1992,43:1953
    [12]牟国栋.半水石膏水化过程中的物相变化研究.硅酸盐学报.2002,30(4):532-536
    [13]C. Solberg, S. Hansen. Dissolution of CaSO4·1/2H2O and precipitation of CaSO4·2H2O: A kinetic study by synchrotron X-ray power diffraction. Cement and Concrete Research.2001, 31 (4):641~646
    [14]C. Vellmer, B. Middendorf, N. B. Singh. Hydration of a-hemihydrate in the presence of carboxylic acids. Journal of Thermal Analysis and Calorimetty.2006,86 (3):721~726
    [15]谭月华,发展石膏建材促进墙体改革.上海建材.2002(3):35-37
    [16]向才旺.建筑石膏及其制品[M].北京:中国建材工业出版社,1998.31
    [17]彭荣.石膏及建筑石膏制品[J].北京建材,1998(1):38-42
    [18]俎全高,王志,何兆晶.建筑石膏及防水[J].石膏建材,2006(5):543-546
    [19]贺文斌,黄燕生.无机胶凝材料[M].武汉:武汉工业大学出版社.1991:5-20
    [20]姜伟,范立瑛,王,志.煅烧温度对脱硫石膏性能影响.济南大学学报(自然科学版).2008,22(3):25-28
    [21]王裕银,李玉山,高子栋等.脱硫石膏转化为建筑石膏的应用研究[J].砖瓦,2010(4):35-38
    [22]张毅,王小鹏,李东旭.脱硫石膏用作建筑石膏的处理工艺研究.2005,4(3):29-31
    [23]张慧明.燃煤锅炉烟气脱硫概论[J].环境科学进展,1997(5):98-103
    [24]牟国栋.半水石膏水化过程中的物相变化研究[J].硅酸盐学报,2002,30(4):532-535
    [25]陈红霞,冯菊莲等.粉磨对脱硫石膏性能的影响[J].新型建筑材料,2008(10):9-12
    [26]林少敏,韩利榆等.处理工艺对脱硫石膏晶体形态的影响研究[J].河北化工,2008,31(12):16-19
    [27]陈红霞,冯菊莲等.粉磨对脱硫石膏性能的影响[J].新型建筑材料,2008(10):9-11
    [28]李逢仁.熟石膏陈化机理的研究.武汉建材学院学报,1982,4(3):297-312
    [29]余红发,姜毅,裴锐等.石膏脱水相陈化动力学机理及物理力学性能.沈阳建工学院学报,1999,15(1):56-59
    [30]王祈青.石膏基建材与应用[M].北京:化学工业出版社,2008,38-39
    [31]Koslowski Th, Ludwing U. The effect of admixtures in the production and application building plasters[J]. ZKG International,1999, (5):274-285
    [32]王坚.提高石膏制品防水性能的措施[J].科技情报开发与经济,2001,5(11):70-73
    [33]Guozhong Li, Yanzhen Yu, Zhongjian Zhao. Properties study of cotton stalk fiber/gypsum composite[J]. Cement and Concrete Research,2003,33:43~44
    [34]Manjit Singh. Role of phosphogypsum impurities on strength and microstructure of selenite plaster[J]. Construction and Building Materials,2005, (19):480~486
    [35]彭家惠,林芳辉.石膏基外墙粉刷材料耐水性研究[J].新型建筑材料,1995,(6):23-25
    [36]叶林标,陈桂芬.聚氨酯涂膜防水在建筑工程中的应用[J].建筑技术,1981,(5):31-33
    [37]王惠华,周仁公,杨秀英等.石膏制品防水防潮剂的研制与开发[J].化学与粘合,1996,(4):241-242
    [38]张杰,石宗利,吴刊选.提高石膏膨胀珍珠岩复合墙体材料防水性能的研究.新型建筑材料,2006,(10):19-21
    [39]陈莹,张志国,刘洪杰等.石蜡乳液用于石膏砌块防水剂的研究[J],新型墙材,2011(1):30-32
    [40]孟丽丰,刘东辉,王传平.提高建筑石膏抗折强度和表面硬度的研究[J].硅酸盐通报,2009,28(5):919-925
    [41]刘民荣,李国忠,柏玉婷.聚合物改性脱硫建筑石膏的研究[J].武汉理工大学学报,2009,31(18):23-26
    [42]Don G P, Joseph JW. Waterborne acrylic exhibits improved shear performance[J]. Adhesive Age,1990,33 (8):52~56
    [43]Michael J C. Resin modification of acrylic lattices for PSAs:Improving performance through choice[J]. Adhesive Age,1998,41 (2):12~16
    [44]林明涛,蒋煜,储富祥.松香/丙烯酸系复合高分子乳液的制备与性能研究[J].林产化学与工业,2002,22(2)17-20
    [45]吴其胜,黎水平,刘学军等.聚丙烯酰胺乳液对脱硫建筑石膏性能的影响.材料科学与工程学报,2012,30(4):570-575
    [46]刘贤萍,王培铭.羧基丁苯乳液对建筑石膏的改性.建筑材料学报.2004,7(4):451-456
    [47]黄俊,孟丽丰,徐亚丽.提高建筑石膏防水性能的研究.硅酸盐通报,2010,29(6):1334-1337
    [48]李英丁,张铬,徐迅.有机硅防水剂对半水石膏性能影响及微观结构探讨[J].新型建筑材料,2009,(6):72-73
    [49]孙顺杰,洪永顺,张琳.建筑表面用有机硅防水剂的制备及性能研究[J].化学建材,2008,24(3):32-35
    [50]王惠明,赵强.乳液型有机硅憎水剂在外墙防水中的应用[J].新型建筑材料,1999(2):24-26
    [51]吴平.渗透型有机硅憎水剂在混凝土保护中的应用[J].新型建筑材料,2003(6):55-57
    [52]孙中新,李继航,李毅等.有机硅改性丙烯酸建筑涂料的制备及性能研究[J].化学建材,2000(5):32-36
    [53]徐彩蕾,陆文雄.用于建材疏水处理的水性有机硅防水剂.天津化工,2000(6):9-13
    [54]曹青,张铬,徐迅.有机硅BS94对建筑石膏防水性能的影响[J].新型建筑材料,2010(4):78-80
    [55]张南,李家和.有机硅对脱硫石膏硬化体耐水性能影响[J].低温建筑技术,2010(12):16-18
    [56]徐亮.建筑石膏的改性研究进展[J].粉煤灰,2010(2):27-29
    [57]王玉平.水硬性材料对石膏制品的改性研究[J].新型建筑材料,1996(10):31-33
    [58]邓玉和,古野毅.添加剂对石膏刨花板性能的影响[J].林产工业,1998,25(2):5-7
    [59]Elisabeth Badens, St phane Veesler, Roland Boistelle. Crystallization of gypsum from hemihydrate in presence of additives[J]. Journal of Crystal Growth,1999:704~709
    [60]M.K.Baruaha, P. C. Gogoia, P. KotokyB. Sulphate behaviour from dissolution of gypsum in organic acids[J]. Fuel,2000,79:211~216
    [61]田广科,李辉.石膏粉煤灰墙体胶凝材料养护制度研究.新型墙材,2007(3):3-4
    [62]单卫良,曹黎颖,杨波等.新型石膏复合胶凝材料的研究[J].新型建筑材料,2002:32-35
    [63]黎良元,石宗利,艾永平.石膏-矿渣胶凝材料的碱性激发作用[J].硅酸盐学报,2008,36(3):405-406
    [64]沈仰同译.石膏和磷石膏高强建筑材料及制品.建筑工程材料.1983
    [65]Takao kitamura. Effect of polyacrylic Hydrazide Addition on Properties of Compact Molded Gypsum, Gypsum & Lime,1992,5:36~38
    [66]陈健中.混凝土减水剂对石膏作用机理研究.化学建材,1990,5:31-33
    [67]Koslowski. Th, Ludwig. U. The effect of admixtures in the production and application of building plasters. ZKG International,1999,5:274~285
    [68]陈健中.建筑石膏减水增强剂.化学建材,1994,3:32-33
    [67]娄曼邦.无机胶液对石膏体性能的影响.新型建筑材料,1993,10:21-25
    [70]孙天文.石膏减水剂对建筑石膏作用的研究.新型建筑材料,2000,1:3-4
    [71]瞿金东,彭家惠,吴莉等.建筑石膏外加剂研究进展[J].材料科学与工程学报,2004,22(3):466-469
    [72]孙浩,龚燕,毛明富等.新型聚羧酸系减水剂在建筑石膏中的应用研究.新型建筑材料,2011,1:54-56
    [73]J. Bensted, P. Bames. Strueture and peribrmanee of cements(SecondEdition)[M].化学工业出版社,北京,2009,1:218-221
    [74]彭志辉,彭家惠等.二水磷石膏粉煤灰复合胶结材料研究[J].粉煤灰综合利用.2001(1): 3-6
    [75]Degirmenci. N. Utilisation of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and building Materiala,2008 (22):1857~1862
    [76]位建强,刘巧玲,曹明莉.脱硫石膏-粉煤灰-矿粉复合胶结材改性研究.新型建筑材料,2010,4:9-12
    [77]王雪娇,王新堂,张振文.矿物掺合料对脱硫二水石膏粉煤灰复合胶凝材料强度的影响.宁波大学学报,2011,24(3):90-94
    [78]应俊,石宗利,高章韵.新型石膏基复合胶凝材料的性能和结构.新型建筑材料,2010,7:7-10
    [79]彭家惠,张建新.石膏减水剂作用机理研究[J].硅酸盐学报,2003,3(11):1032-1036
    [80]严吴南.建筑材料性能学.重庆:重庆大学出版社:155-156
    [81]张斌等.石膏及石膏制品外加剂.山东建材,1998:13-19
    [82]吴晓明,邓敏.脂肪族高效减水剂对水泥水化的微观作用机理.混凝土,2008,5:75-79
    [83]罗石,刘琦,黄驰.EVA乳液的应用及改性研究进展.皮革科学与工程,2006,16(6):51-52
    [84]曹勇.新型水泥防水用VAE的开发及其应用研究.粘接学术论文,2010(3):44-47
    [85]刘贤萍,王培铭.羧基丁苯乳液对建筑石膏的改性.建筑材料学报,2004(1)2452-456
    [86]范恩荣,文龙.高耐水性复合型石膏粘结剂的开发[J]Building artificial boards,2002 (1) 38~41
    [87]刘民荣,李国忠,柏玉婷.聚合物改性脱硫建筑石膏的研究.武汉理工大学学报,2009 (8):24-26
    [88]N. Voglis, G. Kakali, E. Chaniotakis. Portland-limestone cement properties and hydration compared to those of other composite cements[J]. Cement and Concrete Research,2005,27 (2): 191~196
    [89]Chloup-Bondant M, Evrard O. Tricalcium aluminate and silicate hydration.Effect of limestone and calcium sulfate.In:Colombet P, editor. Proceedings of the 2nd internatinal conference on nuclear magnetic resonance spectroscopy of cement-based materials.Berlin: Springer Verlag,1998::295~08
    [90]Bonavetti V. L, Rahhal V. F, Irassar E. E. Studies on the carboaluminate formation in limestone filler-blended cements[J]. Cement and Concrete Rssearch,2001,31 (6):853~862
    [91]Tsivilis S, Kakali G, Chaniotakis E. A study of the hydration of portland limestone cement by means of TG[J]. Therm Anal,1998 (52):863~870
    [92]Pe'ra. J, Husson. S, Guilhot. B. Influence of finely ground limestones on cement hydration[J]. Cement and Concrete Composite,1999,21 (2)::99~105
    [93]MUN. K. J, HYOUNG. W. K, LEE. C. W. Basic properties of non-sinte-ring cement using phosphogypsum and waste lime as activator [J]. Constr Build Mater,2007,21:1342~1350
    [94]SINGH Manjit, GRAG Mridul. Activation of gypsum anhydrite-slag mixtures [J]. Cem Concr Res,1995,25 (2):332~338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700