半干法水泥纤维板的生产工艺与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥纤维板是以水泥为胶凝材料,用纤维作为填充增强材料制成的新型建筑墙体材料,它兼有水泥和木材的双重优点,如强度高、自重轻、防火、隔音等,可广泛用于非承重内外墙板、天花板、活动房等领域。水泥纤维板作为一种理想的建筑材料,在国外已应用的相当普遍,但我国对水泥纤维板的研究起步较晚,还没有得到广泛应用。本研究选用普通硅酸盐水泥作为胶凝材料,探讨利用桉树化学木浆纤维、竹浆纤维、杨树热磨木纤维等作为增强材料,采用半干法工艺制备纤维增强水泥复合板,并比较各增强纤维水泥复合材料的板材物理性能和分析各工艺因素对板材物理力学性能的影响情况,得出较好的生产工艺参数,为我国水泥纤维板的工业化生产提供参考数据;并借助扫描电子显微镜,探索纤维增强水泥复合材料的增强机理。研究结论如下:
     1.通过纤维形态分析,木浆纤维的纤维长度范围为2.03-2.97mm.,竹浆纤维的纤维长度范围为1.08-2.60mm,热磨木纤维的纤维长度范围为1.01-1.98mm,根据纤维分级标准木浆纤维属于长纤维,竹浆纤维和热磨木纤维均属于中等长度的纤维。
     2.木浆、竹浆和热磨木纤维三种纤维冷水抽出物中的总糖含量分别为11.38mg/g、36.55mg/g及62.96mg/g;木浆纤维中综纤维素含量为93.69%,竹浆纤维和热磨木纤维中的综纤维素含量分别为74.86%、73.69%;木浆纤维中冷水、热水、1%NaOH抽出物含量分别为4.75%、4.93%、6.26%,竹浆纤维中冷水、热水、1%NaOH抽出物含量分别为7.16%、7.70%、12.63%,热磨木纤维中冷水、热水、1%NaOH抽出物含量分别为8.85%、10.02%和26.76%。
     3.木浆纤维与水泥具有较好的相适性,可直接用于纤维水泥板的制备。竹浆纤维和热磨木纤维均对水泥有阻凝作用,其中,热磨木纤维最为严重。化学添加剂可以加快水泥的凝结硬化,减缓纤维中的抽出物和糖分等对水泥水化的不利影响,并且随着添加剂量的增加,促凝作用愈加明显;本研究选用硫酸铝作为促凝剂,且用量为水泥用量的1%时较适于水泥纤维板的制备。
     4.利用半干法制备木浆纤维增强水泥板是可行的。木灰比和水灰比均对板材的物理力学性能有显著的影响。本研究试验条件下,较佳的制板工艺参数为:木灰比为0.22,水灰比为0.42,目标密度为1.3g/cm~3。在此条件下,压制出的板材的静曲强度可达10~14MPa,弹性模量可达3200~3900MPa,内结合强度为0.81~0.94MPa,24h吸水厚度膨胀率为0.41%~1.26%,均达到水泥刨花板标准(GB/T 24312-2009)优等品的要求。
     5.制备竹浆纤维水泥板时须添加化学助剂,利用半干法可以压制出成型的竹浆纤维水泥板,板材的弹性模量、内结合强度及24h吸水厚度膨胀率等物理力学性能均达到GB/T 24312-2009《水泥刨花板》和JC/T 411-2007《水泥木屑板》的要求。竹灰比和水灰比均对竹浆纤维水泥板的物理力学性能有显著的影响。本研究中板材的静曲强度最大为8.76MPa,尚未达到合格要求,须对各原料的配比作进一步的试验。
     6.在制备木浆纤维增强水泥板的较佳工艺参数条件下,向木浆纤维中掺入热磨木纤维仍可以制备出满足标准要求的木浆-热磨木纤维增强水泥板,在满足标准要求的前提下,热磨木纤维在总纤维中的含量比例最大可以达到30%。
     7.通过利用实体显微镜和扫描电镜对制备的纤维增强水泥复合板材的微观结构及纤维在水泥基体中的分布状况进行了观察。水泥水化可形成大量的C-S-H凝胶,纤维与水泥基材料充分混合,在水泥浆中形成多项分布的网络支撑体系,降低了水泥在塑形收缩及冷冻时形成的张力,改善了板材的结构和性能。
     8.本研究的纤维增强水泥复合板实际密度均为1.3 g/cm~3左右,属轻质板材,适用于非承重的内墙板、天花板、地板等领域。
Cement fiberboard is a kind of new building wall material, which the cement is the binder filled with fiber as reinforcing material. It combines the dual benefits of cement and timber, such as high strength, light weight, fire protection, sound proofing, and so on. It can be used for non-load bearing external wall panels, ceiling, activity rooms or other fields. As ideal construction material, the cement-based fiberboard has been applied quite common in foreign countries. However, our study about cement fiberboard has been recently started. It has not been used widely. In this study, the ordinary Portland cement was used as the cementations material, and the wood-pulp fiber, bamboo fiber and hot-mill fiber were used as reinforced material. The semi-dry process was applied to produce cement-based fiberboard, and then the physical properties of the composite boards and compared of various process factors on the physical and mechanical properties of fiberboard were analyzed, so as to obtain better production parameters. This study can provide reference data for the industrial production of cement fiberboard. At the end, the scanning electron microscopy was used to explore reinforced cement composite reinforcement mechanism. The results were as follows:
     1. Though the fiber morphological analysis, the fiber length range of wood-pulp fiber is 2.03~2.97mm, bamboo fiber is 1.08~2.60mm, hot-mill fiber is 1.01~1.98mm. Based on fiber classfication standard, the wood-pulp fibers are long fibers, bamboo fiber and hot-mill fiber are belonged to the middle length fibers.
     2. The total sugar contents of cold water extracts in the wood- pulp fiber, bamboo fiber and hot-mill fiber were 11.38mg/g,36.55mg/g,62.96mg/g.The holocellulose contents of wood-pulp fiber was 99.69%, the holocellulose contents of bamboo fiber and hot-mill fiber were 74.86% and 73.69%. The cold water extract, hot water extract, 1%NaOH extract from the wood-pulp fiber were 4.75%, 4.93%, 6.26%. The cold water extract, hot water extract,1%NaOH extract from the bamboo fiber were 7.16%,7.70%,12.63%.The cold water extract, hot water extract,1%NaOH extract from the hot-mill fiber were 8.85%,10.02% and 26.76%.
     3. Wood-pulp fiber and cement has better compatibility. It can be directly used for production of cement fiberboard. The bamboo fiber and hot-mill fiber both have blocking coagulation, in which the hot-mill fiber is the most serious. The chemical additives can accelerate the coagulation of cement hardening, slow the adverse effects on cement hydration from the extract and sugar in fiber. And with the increase in the amount of additives, the more obvious procoagulant effect will be. The use of Aluminum Sulfate as a coagulant, and the amount of 1% of the amount of cement is better for the preparation of the cement fiberboard.
     4. The semi-dry process can be used for the production of the fiber reinforced cement board. Wood cement ratio and water cement ratio both have a significant impact on the physical and mechanical properties of cement fiberboard. In this study, the better parameters for the board is: wood cement ratio of 0.22, water cement ratio of 0.42, the target density is 1.3g/cm~3, under these conditions, the MOR of board can up to 10~14MPa, the MOE can up to 3200~3900MPa, IB was 0.81~0.94MPa, 24h TS was 0.41%~1.26%, these data can up to the superior product requirements in Cement Particleboard (GB/T 24312-2009) .
     5. The chemical additives should be added while producing cement-based bamboo fiberboard. The semi-dry process can be used to suppress the bamboo fiber cement board. The physical and mechanical properties such as MOE, IB and 24hTS of the board could up to the requirements of GB / T 24312-2009 "cement particle board" and the JC / T 411-2007 "cement wood board". In this study, the MOR (which can up to 8.76MPa) can not yet reached the eligibility requirements, it should be further tested.
     6. In the better process parameters of preparing wood-pulp fiber reinforced cement board, to the incorporation of hot-mill fiber in the wood-pulp fiber can still produce the fiber reinforced cement board which could up to the standard requirements, in the premise of meeting the performance, the hot-mill fiber in the total fiber content can up to 30% of the largest share.
     7. Though the use of microscopes and scanning electron microscopy, the microstructure of the fiber reinforced cement composite board and fiber distribution in the matrix were observed. Cement hydration can form a large number of C-S-H gel. The fiber and cement-based materials mixed enough to form a network support system in the slurry, reducing the tension when the cement contraction and frozen, and then improve board structure and performance.
     8. In this study, the actual density of the fiber reinforced cement composite boards is about 1.3g/cm~3, which belongs to lightweight board. It is possible to be applied for non-load bearing internal wall panels, ceiling, activity rooms and other fields.
引文
[1]华毓坤.人造板工艺学[M].北京:中国林业出版社,2002.
    [2]涂平涛.建筑人造板的市场前景及性能要求[J].林产工业,2002,29(2):7-11
    [3]马维华.浅谈我国新型墙体材料[J].内蒙古科技与经济,2009,(2):90-92
    [4]李国忠.新型墙体材料应用现状与发展趋势[J].21世纪建筑材料,2009,(1):31-33
    [5]姜仁龙.水泥刨花板在我国的应用和发展前景[J].木材工业,1997,11(4):18-20
    [6]刘群,王小雪.我国新型墙体材料[J].《致富时代:下半月》,2010(6):110-110
    [7]解振华.大力发展新型墙体材料加快建设资源节约型、环境友好型社会—在全国发展新型墙体材料现场经验交流会议上的讲话[R].北京:国家发展和改革委员会, 2008
    [8]沈铮,肖力光,赵状.新型墙体材料发展现状[J].吉林建筑工程学院学报,2010,27,(3):36-39
    [9]陈士英,陆熙娴.环保型复合建材—木材水泥复合板[J].人造板通讯,2003(6):19-20
    [10] B.J. Mohr,N.H.El-Ashkar, and K.E. Kurtis. Fiber-Cement Composites for Housing Construction: State-of-the-Art Review
    [11]沈荣熹.国际纤维水泥制品行业近期的发展与动向评述[J].混凝土与水泥制品,2008,(6):37-41
    [12]涂平涛.新型建筑人造板-石膏刨花板[J].中国建材,1990,(3):34-35
    [13]徐辉,卢安琪,陈健等.国内外植物纤维增强水泥基复合材料的研究[J].纤维素科学与技术,2005,13(4):60-63
    [14] C.Asasutjarit,J.Hirunlabh.al .Development of coconut coir-based lightweight cement board Construction and Building Materials,2007,(21):277-288
    [15] J.H.Morton,S.AS.Akers,T.Cooke.Performance of slash pine fibers in fiber cement products.The 10th international Inorganic-Bonded Fiber Composites Conference.,Brazil,2006
    [16] M.Sarigaphuti, S.P.Shah, K.D.Vinson. Shrinkage cracking and durability characteristics of cellulose fiber reinforced concrete[J]. ACI Material Journal, 1993, 90(4): 309-318.
    [17] Eduardo Marcelo Bezerra ,MSc., Ana Paula Joaquim , Dr., Holmer Savastano Jr., Prof. Dr.. some properties of fiber-cement composites with selected fibers. Conferência Brasileira de Materiais e Tecnologias N?o-Convencionais: Habita??es e Infra-Estrutura de Interesse Social Brasil-NOCMAT 2004 :33-42
    [18]李季.纤维表面处理对植物纤维增强水泥的物理力学性能影响[J].建筑科学,2004,(6):61-63
    [19]张洋.水泥麦秸板的工艺研究[J].建筑人造板,2000,(1):20~22
    [20]徐兰英,王厚军,王春明.麦秸一水泥相适性及水泥刨花板的制作研究[J].林业科技,2002,27(2):4l~44
    [21]孙成栋.植物纤维水泥复合板[J].新型建筑材料,2000,(6):25-27
    [22]郭戈,谢海泉,杨亚雷.利用麦秸纤维制备水泥复合板的研究[J].新型建筑材料,2005,(7):21-22
    [23]隆言泉.制浆造纸工艺学[M].北京:轻工业出版社,1987
    [24]沈荣熹.无石棉纤维水泥板的发展趋向[J].新型墙体材料,1997(7):23-25
    [25] Frederick Kurpeil.水泥纤维墙板可能成为美国增强最快的建筑材料.人造板通讯,2002,7
    [26]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004
    [27]沈荣熹.中国纤维增强水泥复合材料的新进展[J].硅酸盐通报,2005,(5):55-59
    [28]涂平涛.水泥刨花板生产中的几个问题[J].林产工业,1994,21(2):19-22
    [29]严建敏,俞友明,钱俊等.快速固化水泥刨花板的工艺试验[J].木材工业,2005,19(2):17-20
    [30]刘义海,陈士英.水泥刨花板快速固化工艺的研究[J].木材工业,1997,11(4):3-7
    [31]张宜生,陈士英,龙玲.半干法石膏纤维板工艺研究[J].木材工业,1998,12(5):8-11
    [32]龙玲,陈士英,张宜生.半干法石膏纤维板工艺研究[J].木材工业,1998,12(6):3-6
    [33]张宜生,汪华福.无机胶合人造板发展机遇与对策[J].木材工业,1998,12(1):18-21
    [34]沈荣熹.纤维水泥制品工业的发展现状与方向[J].水泥与混凝土,2006,(1):33-35
    [35]王戈,徐兰英,李兴安.日本水泥刨花板的生产及对我国的借鉴[J].林业科技,1998,23(2):41-45
    [36] Mahsa Golbabaie .Application of biocomposites in building industry.2006
    [37]何玉梅,许陆文.植物纤维水泥基复合材料复合机理[J].南京航空航天大学学报,1996,28(2):168-171
    [38]郭斌.天然植物纤维增强水泥复合物综述[J].江苏建材,2005,3:49-52
    [39]陈广琪.杨木刨花和水泥相适性的研究[J].南京林业大学学报,1990,14(4):73-76
    [40]叶良明,金永明,傅深渊等.水泥刨花板快速固化添加剂的选择研究[J].浙江林学院学报,2002,19(1):5-8
    [41]张桂兰,王正,高志悦.沙柳材刨花/水泥相适性的研究[J].木材工业,2007,21(6):7-9
    [42]刘正添,韦益民.38种木材对水泥水化的抑制作用[J].林业科学,1989,25(6):529-535
    [43]徐兰英,王厚军,王春明.麦秸-水泥相适性及水泥刨花板的研究[J].林业科技,2002,27(2):41-44
    [44]李国忠,于衍真,司志明.植物纤维增强水泥基复合材料的性能研究[J].硅酸盐通报,1997(3):42-45
    [45]张峰.纤维在水泥混凝土中的作用[J].混凝土与制品,2004,(9):56-58
    [46]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004
    [47] Savastano H,Warden PG,Coutts RSP.Brazilian waste fibers as reinforcement for cement—based composites[J].Cement and Concrete Composites,2000(22):379-384
    [48] Simatumpang, M. H. 1979, The water requirement of manufactured cement-bonded particleboard, Holz-Roh-Werkst, 37:379-382.
    [49]陈广琪,时维铎.杨木水泥刨花板工艺的研究[J].木材工业,1992,6(3):12-15
    [50]袁纳新.黎蒴刨花与水泥相适性的研究[J].木材工业,1999,13(4):21-24
    [51]陈佩蓉,屈维均,何福望.制浆造纸实验[M].北京:中国轻工业出版社,1995
    [52]韦益民,刘正添.水泥刨花板(CPB)生产中原辅材料适应性的评估方法与装置[J].木材工业,1995,9(1):5-9
    [53]周贤康.木材与水泥相容性试验方法与评定指标[J].建筑人造板,1998,(2):9-11
    [54] Sandermann W. Studies on mineral-bonded wood materials[J]. Holzforschung,1964,18(2):53-59
    [55] Sandermann W. H J Preusser, W Schwiens. The effect of wood extractives on the setting of cement-bonded wood materials. Holzforschung, 1960,14(3):70-77
    [56]杨仁党,陈克复.竹子作为造纸原料的性能和潜力[J].林产工业,2002,29(3):8-14
    [57]夏勋载,范思齐.用非木材纤维碱法制浆手册[M].北京:中国轻工业出版,1993
    [58]赵安珍,周定国,潘明珠.狼尾草中密度纤维板的研制[J].林业科技开发,2009,23(5):109-111
    [59]龙玲,王朝辉,李光荣等.竹浆纤维水泥板的制备及板材性能分析[J].木材工业,2010,24(5):39-41
    [60] G.A.斯穆克.制浆造纸工程大全[M].中国轻工业出版社,2001
    [61]蔡金木.孟宗竹.制造水泥刨花板若干工艺因子的研究[J].中华季刊,1979,10
    [62] M.H.Simatupang.The water requirement of manufactured cement-bonded particleboard, Holz Roh-Werkst,1979,37
    [63] Coutts R S P. Wood fiber reinforced cement composites. In: Swanmy R N ed Natural Fiber Reinforced Cement and Concrete. London: Blackie, 1998:1-62.
    [64]宋一然,余德新.橡胶木水泥刨花板的研究[J].建筑人造板,1993(1)
    [65]周贤康.水泥刨花板耐久性的研究[J].混凝土与水泥制品,2004,(4):38-40
    [66]谢朝柱.加快竹林大开发,发展竹子大产业[J].竹子研究汇刊,1997,16(3):1
    [67]东北林学院主编.纤维板制造学[M].北京:中国林业出版社,1989
    [68] A.J.Bolton, etc. The permeability of wood-based composite materials, Holzforschung, 1994, Vol.48, supplement
    [46]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004
    [47] Savastano H,Warden PG,Coutts RSP.Brazilian waste fibers as reinforcement for cement—based composites[J].Cement and Concrete Composites,2000(22):379-384
    [48] Simatumpang, M. H. 1979, The water requirement of manufactured cement-bonded particleboard, Holz-Roh-Werkst, 37:379-382.
    [49]陈广琪,时维铎.杨木水泥刨花板工艺的研究[J].木材工业,1992,6(3):12-15
    [50]袁纳新.黎蒴刨花与水泥相适性的研究[J].木材工业,1999,13(4):21-24
    [51]陈佩蓉,屈维均,何福望.制浆造纸实验[M].北京:中国轻工业出版社,1995
    [52]韦益民,刘正添.水泥刨花板(CPB)生产中原辅材料适应性的评估方法与装置[J].木材工业,1995,9(1):5-9
    [53]周贤康.木材与水泥相容性试验方法与评定指标[J].建筑人造板,1998,(2):9-11
    [54] Sandermann W. Studies on mineral-bonded wood materials[J]. Holzforschung,1964,18(2):53-59
    [55] Sandermann W. H J Preusser, W Schwiens. The effect of wood extractives on the setting of cement-bonded wood materials. Holzforschung, 1960,14(3):70-77
    [56]杨仁党,陈克复.竹子作为造纸原料的性能和潜力[J].林产工业,2002,29(3):8-14
    [57]夏勋载,范思齐.用非木材纤维碱法制浆手册[M].北京:中国轻工业出版,1993
    [58]赵安珍,周定国,潘明珠.狼尾草中密度纤维板的研制[J].林业科技开发,2009,23(5):109-111
    [59]龙玲,王朝辉,李光荣等.竹浆纤维水泥板的制备及板材性能分析[J].木材工业,2010,24(5):39-41
    [60] G.A.斯穆克.制浆造纸工程大全[M].中国轻工业出版社,2001
    [61]蔡金木.孟宗竹.制造水泥刨花板若干工艺因子的研究[J].中华季刊,1979,10
    [62] M.H.Simatupang.The water requirement of manufactured cement-bonded particleboard, Holz Roh-Werkst,1979,37
    [63] Coutts R S P. Wood fiber reinforced cement composites. In: Swanmy R N ed Natural Fiber Reinforced Cement and Concrete. London: Blackie, 1998:1-62.
    [64]宋一然,余德新.橡胶木水泥刨花板的研究[J].建筑人造板,1993(1)
    [65]周贤康.水泥刨花板耐久性的研究[J].混凝土与水泥制品,2004,(4):38-40
    [66]谢朝柱.加快竹林大开发,发展竹子大产业[J].竹子研究汇刊,1997,16(3):1
    [67]东北林学院主编.纤维板制造学[M].北京:中国林业出版社,1989
    [68] A.J.Bolton, etc. The permeability of wood-based composite materials, Holzforschung, 1994, Vol.48, supplement

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700