MICA基因修饰的口腔鳞癌细胞疫苗诱导抗肿瘤免疫应答的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究MHC-Ⅰ类链相关基因A修饰的口腔鳞癌细胞疫苗对免疫重建荷瘤SCID鼠皮下移植瘤生长的抑制作用及诱导机体抗肿瘤免疫应答的有效性,并探讨其可能的作用机制。
     方法
     密度梯度离心法分离人外周静脉血淋巴细胞(hu-PBL),腹腔注射至已用环磷酰胺抑制骨髓造血功能的SCID鼠,建立人免疫功能重建Hu-PBL/SCID动物模型,人IgG ELISA检测试剂盒检测鼠外周血清中人IgG含量以评价重建效果。
     60Co放射源致死剂量照射转染pEGFP-N1-MICA真核表达质粒并稳定过表达MICA的Tb-pEGFP-N1-MICA细胞,并以转染空白质粒的Tb-pEGFP-N1细胞及未转染的Tca8113-Tb细胞作为对照,制备灭活肿瘤细胞疫苗,分别腹腔注射接种免疫功能重建Hu-PBL/SCID鼠,共3次。2周后皮下接种Tca8113-Tb细胞,观察成瘤情况,测量肿瘤体积及重量,计算抑瘤率。
     取SCID鼠外周血及脾脏,流式细胞术检测外周血单个核细胞(PBMC)和脾细胞表面NKG2D的表达,LDH释放法检测PBMC和脾细胞对肿瘤细胞的杀伤活性。
     采用SPSS16.0软件包两独立样本t检测或方差分析对数据进行统计学处理,P<0.05为差异具有统计学意义。
     结果
     1.SCID鼠腹腔注射hu-PBL免疫重建1周后,其外周血清中即能检测到人IgG,且在5周内随时间的延长而升高。
     2.接种灭活肿瘤细胞疫苗的Hu-PBL/SCID鼠皮下注射肿瘤细胞后均能顺利成瘤,成瘤率100%。但Tb-pEGFP-N1-MICA疫苗组与Tca8113-Tb和Tb-pEGFP-N1疫苗组比较,移植瘤体积与重量均明显较少(P<0.05),抑瘤率为63.26%。
     3.流式细胞术及LDH释放法检测结果显示Tb-pEGFP-N1-MICA疫苗组Hu-PBL/SCID鼠PBMC和脾细胞表面NKG2D的表达及杀伤活性均显著高于Tca8113-Tb和Tb-pEGFP-N1疫苗组,差异有统计学意义(P<0.05)。
     结论
     1.SCID鼠腹腔注射细胞密度为2.5×108/mL的Hu-PBL 0.2mL后,其外周血清中可持续检测到人IgG,并随时间延长而增高,表明成功建立了免疫功能重建的hu-PBL/SCID动物模型。
     2.MICA基因修饰的口腔鳞癌细胞疫苗能诱导机体更为强烈的抗肿瘤免疫应答能力,对移植瘤生长具有显著的抑制作用。其机制可能是上调了免疫效应细胞NKG2D的表达,从而促进对肿瘤靶细胞的杀伤。
Objective
     To investigate the inhibition effect of tumor growing and the potency of MHC class I chain-related gene A (MICA) modified oral squamous cell carcinoma cells vaccine to bearing tumor SCID mice.
     Methods
     Hu-PBL was separated by density gradient centrifugation method, and then was injected into abdominal cavity of SCID mice whose hematopoietic function of bone marrow was inhibited by Cyclophosphamide to build the hu-PBL/SCID model. Then the level of human IgG in the sera of hu-PBL/SCID mice was detected with ELISA Kit to judge the effect of immunologic reconstruction.
     The Tb-pEGFP-N1-MICA cells transfected the pEGFP-N1-MICA plasmid and overexpressed MICA were irradiated with 60Co radioactive source in fatal dose to prepare the inactivated tumor cell vaccine, the cells transfected blank plasmid and no transfection were irradiated as control. Then the vaccine was injected into abdominal cavity of SCID mice to reconstruct the immunologic function. Two weeks later, the tumor bearing hu-PBL/SCID model was establish by subcutaneous injection of the Tca8113-Tb cells, then the growth of tumor was observed, the volume and weight of tumor was measured to research the inhibition of tumor with tumor cell vaccine. And the rate of tumour inhibition was calculated.
     The expression of NKG2D and the cytotoxicity in vitro to Tb cells of peripheral blood mononuclear cells (PBMCs) and spleen cells were measured by flow cytometry and lactate dehydrogenase (LDH) release assay.
     The data was analyzed with SPSS 16.0 software package,it is significant when P<0.05.
     Results
     1. Human IgG can be detected in mice's peripheral sera one week after the the hu-PBL/SCID model was built,and it kept rising in 5 weeks.
     2. The tumor mass could be touched in all of the Hu-PBL/SCID mice after inoculating the inactivated vaccine,the tumor formation rate is 100%. Compared with the Tca8113-Tb and the Tb-pEGFP-N1 group,the volume and weight of transplantable tumor in Tb-pEGFP-N1-MICA group decreased obviously (P<0.05).The rate of tumour inhibition is 63.26%.
     3. The results of flow cytometry and LDH release assay suggested that the expression of NKG2D and the cytotoxicity in Tb-pEGFP-N1-MICA group was higer than that of the Tb and Tb-pEGFP-N1 group, the differences was statically significant (P<0.05)
     Conclusion
     1. After injecting 0.2mL Hu-PBL the density of which is 2.5×108/mL, into abdominal cavity of SCID mice,human IgG can be detected in its peripheral sera and it kept rising, suggested that we successed to establish the hu-PBL/SCID model.
     2. The MICA gene modified oral squamous cell carcinoma vaccine can enhance the ability of antitumor immune response. The mechanism may be up-regulated NKG2D and promoted the proliferation,then improved its cytotoxicity effect in tumor target cells.
引文
[1]Van den Broek MF, Kagi D, Zinkernagel RM, et al. Perforin dependence of natural killer cell-mediated tumor control in vivo [J].Eur Immnol, 1995,25:3514-3516.
    [2]Mignogna MD, Fedele S,Russo LL. The World Cancer Report and the burden of oral cancer[J]. Eur J Cancer Prev,2004,13(2):139-142.
    [3]Li P, Morris DL, Willcox BE, et al. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA[J]. Nat Immunol, 2001,2(5):443-451.
    [4]Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J]. Science,1999,285(5428):727-729.
    [5]Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10[J]. Science,1999,285(5428):730-732.
    [6]Kim KS, Zhang YD, Yim D, et al. Rapid communication:linkage mapping of the porcine immunoreceptor DAP10 and NKG2D genes [J]. Anim Sci, 2002,80(5):1377-1378.
    [7]Madjd Z, Spendlove I, Moss R, et al. Upregulation of MICA on high-grade invasive operable breast carcinoma[J]. Cancer Immun,2007,7:17.
    [8]Fuertes MB, Girart MV, Molinero LL, et al. Intracellular Retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity[J]. J Immunol, 2008,180(7):4606-4614.
    [9]Jinushi M, Takehara T, Tatsumi T, et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid[J]. Int J Cancer,2003,104(3):354-361.
    [10]李超,李跃辉,石芳琼,等.MHC-Ⅰ类链相关基因A真核表达载体的构建与稳定转染舌鳞癌细胞的实验研究[J].华西口腔医学杂志,2011,已定稿.
    [11]Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation[J]. Nature,2002,419(6908):734-738.
    [12]Holdenrieder S, Stieber P, Peterfi A, et al. Soluble MICA in malignant diseases[J]. Int Cancer,2006,118(3):684-687.
    [13]Tamaki S, Sanefuzi N, Kawakami M, et al. Association between soluble MICA levels and disease stage IV oral squamous cell carcinoma in Japanese patients[J]. Hum Immunol,2008,69(2):88-93.
    [14]Busche A, Goldmann T, Naumann U, et al. Natural killer celmediated rejection of experimental human lung cancer by genetic overexpression of major histocompatibility complex class I chain-related gene A[J]. Hum Gene Ther, 2006,17(2):135-146.
    [15]Sutherland CL, Chalupny NJ, Schooley K, et al. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells[J]. J Immunol,2002,168(2):671-679.
    [16]Mosier DE, Gulizia RJ, Baird SM, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency[J]. Nature,1988,335 (6187):256-259.
    [17]Wagar EJ, Cromwell MA, Shultz LD, et al. Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid mice[J]. J Immunol,2000 Jul 1,165(1):518-527.
    [18]Shultz LD, Lang PA,Christianson SW, et al. NOD/LtSz-Raglnull mice:an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells[J]. J Immunol,2000 Mar 1,164(5):2496-2507.
    [19]Tary Lehmann M, Saxon A, Lehmann P V. The human immune system in hu-SCID mice[J]. Immunol Today,1995,16(11):529-533.
    [20]Steinsvik T E, Aaberge I S, Gaarder P I, et al. Interleukin 13 and human immunoglobulin E production in severe combined immunodeficiency mice transplanted with human peripheral blood lymphocytes [J]. Scand J Immunol, 1999,49(1):67-72.
    [21]孙安源.rhIL-15和rhIL-12分别促进huPBL在NOD-SCID小鼠体内重建及HBV疫苗的体内免疫应答[J].中国科学技术大学.
    [22]Yokoyama H, Nakanishi H, Kodera Y, et al. Biological significance o f isolated tumor cells and micrometastasis in lymphnodes evaluated using a green fluorescent protein-tagged human gastric cancer cell line[J]. Clin Cancer Res, 2006,12(2):361-368.
    [23]Mosier DE, Gulizia RJ, Baird SM, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency[J]. Nature,1988,335 (6187):256-259.
    [24]景捷.TIMPs对口腔鳞状细胞癌β-DG表达特征影响的研究[J].四川大学.
    [25]白东晓,姚德茂,肿瘤细胞疫苗的研究进展[J].现代肿瘤医学,2006,14(2)245-248.
    [26]Maureen A, Chung Y L, Michael O'Donnell, et al. Development and Preclinical Evaluation of a Bacillus Calmette-Guerin-MUCl-based Novel Breast Cancer Vaccine[J]. Cancel Research,2003,63:1280-1287.
    [27]姜宏景,GM-CSF基因修饰同种异体肺癌细胞系制备瘤苗治疗肺癌的实验研究[J].天津医科大学.
    [28]杨传红,王捷,陈鸣丽,等GM-CSF修饰B16.F10黑素瘤细胞疫苗对小鼠种植肿瘤的抑制作用[J].中国肿瘤生物治疗杂志,2009,16:136-139.
    [29]赵丽丽,姜北海,寿成超,等HER-2/neu肿瘤疫苗的研究进展[J].中国肿瘤生物治疗杂志,2010,17:221-226.
    [30]孙文欣,HER-2/neu基因在肿瘤免疫治疗中的研究进展[J].国外医学免疫学分册,2005,28:13-16.
    [31]Tabi Z, Man S.Challenges for cancervaccine development[J].Adv Drug Deliv Rev, 2006,58(8):902-915.
    [32]Vermorken JB, Claessen AM, van Tintern H, et al. Active specific immunotherapy for stage Ⅱ and stage Ⅲ human colon cancenarandomized trial[J]. Lancet,1999,353:345-350.
    [33]Hockertz S.Present and future of cancer vaccines[J].Toxicology, 2005,214(1-2):151-161.
    [34]罗晨,疫苗与肿瘤免疫治疗[J].国际病理科学与临床杂志,2006,26:4333-4336.
    [35]Nakamura M, Iwahashi M, Nakamori M, et al. Dendritic cells genet-ically engineered to simultaneously ecperss endogenous tumor anti-gen and ganulocyte macrophage colony-stimulating factor elicit potent the rapeutic antitumor immunity [J].Clin Cancer Res,2002,8(8):2742-2749.
    [36]Sutherland CL, Chalupny NJ, Schooley K, et al. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells[J]. J Immunol,2002,168(2):671-679.
    [37]Jamieson AM, Diefenbach A, McMahon CW, et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity[J]. 2002,17(1):19-29.
    [38]黄慧静,MHC Ⅰ类链相关基因A分子在舌鳞状细胞癌组织中的表达及意义[J].中南大学.
    [39]Jinushi M, Takehara T, Tatsumi T, et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid[J]. Int J Cancer,2003,104(3):354-361.
    [40]Groh V, Wu J,Yee C, et al.Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation[J]. Nature,2002,419(6908):734-738.
    [41]李超,石芳琼,杨丹,等.口腔鳞癌患者血清可溶性MHC-Ⅰ类链相关蛋白A的检测及其临床意义[J].中南大学学报(医学版)
    [42]Banerjee S, Hussain M, Wang Z,et al. In vitro and in vivo molecular evidence for better therapeutic efficacy of ABT-627 and taxotere combination in prostate cancer[J]. Cancer Res,2007,67(8):3818-3826.
    [43]Curiel LC, Mahnke K, LabeurM, et al. Transfection of immaturemurine bonemarrow-derived dendritic cellswith the granulocyte-macrophage colony-stimulating factor gene potently enhances their in vivo antigen-presenting capacity [J]. Immuno,1999,163(1):174-183;
    [44]谢斌辉,刘凤恩,王小农,等.肝癌mRNA致敏的DC对SCID荷瘤鼠的抑瘤作用[J].岭南现代临床外科,2008,8(5):368-371.
    [45]姚德茂,许康玲,张亚玲,等.自体肿瘤疫苗主动特异性免疫治疗对结肠癌病人细胞免疫功能的影响[J].现代肿瘤学,2003,11(2):91-93.
    [1]Mosier DE, Gulizia RJ, Baird SM, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency[J]. Nature,1988,335 (6187):256-259.
    [2]Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse [J]. Nature,1983,301(5900):527-530.
    [3]Tam Y K, Miyagawa B, Ho V C. lmmunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK92[J]. J He-matother,1999,8(3):281-290.
    [4]张开明,李新华,尹国华.人骨髓造血细胞经腹腔内和尾静脉注射移植SCID鼠的研究[J].中国免疫学杂志,2005,21(2):118-120.
    [5]Vassilev T, Mihaylova N, Voynova E, et al. IgM- enriched human intravenous immunoglobulin suppresses T lymphocyte functions in vitro and delays the activation of T lymphocytes in hu- SCID mice[J]. Clin Exp Immunol,2006; 145(1):108-115.
    [6]Gao H, Bian A, Zheng Y, et al. sBAFF mutants induce neutralizing antibodies against BAFF[J]. FEBS Letters,2007,581(4):581-586.
    [7]Wang M, Zhang L, Han X, et al. A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma[J]. Clin Cancer Res,2008, 14(7):2154-2160.
    [8]McCune J, Kaneshima H, Krowka J, et al. The SCID-hu mouse:A small animal model for HIV infection and pathogenesis [J]. Annu Rev Immunol,1991,9:399-429.
    [9]Steinsvik T E, Aaberge I S, Gaarder P I, et al. Interleukin 13 and human immunoglobulin E production in severe combined immunodeficiency mice transplanted with human peripheral blood lymphocytes [J]. Scand J Immunol, 1999,49(1):67-72.
    [10]席泓,周恒,朱一蓓,等.人源化SCUD小鼠模型的建立及其鉴定[J],中国免疫学杂志,2006,22:76-79.
    [11]Yokoyama H, Nakanishi H, Kodera Y, et al. Biological significance o f isolated tumor cells and micrometastasis in lymphnodes evaluated using a green fluorescent protein-tagged human gastric cancer cell line[J]. Clin Cancer Res. 2006,12(2):361-368.
    [12]黄嘉凌,刘燕艳,刘然义,等.腹腔注射人淋巴细胞建立人肝癌PBL-SCID鼠嵌合模型[J].中华肝胆外科杂志,2005,11(2):121-124.
    [13]Williamson LM, Warwick RM. Transfusion-associated graft- versus-host disease and its prevention[J]. Blood Rev,1995,9:251-261.
    [14]姚凤球.人腹水型卵巢癌SCID鼠腹腔移植瘤的建立[J].安徽医科大学学报,2006,2:124-126.
    [15]文澜,张琍,刘晓莎,等.肾包膜下移植瘤模型应用于肿瘤新生血管生成的研究[J].肿瘤学杂志,2005,11:39-41.
    [16]万旭英,凌昌全,肿瘤体内药物敏感性测定与肾包膜下移植法[J],癌症,2002,21(8):920-922.
    [17]Maureen A.Chung, Yi Luo, Michael O'Donnell, et al. Development and Preclinical Evaluation of a Bacillus Calmette-Guerin-MUC1-based Novel Breast Cancer Vaccine[J]. Cancel Research,2003,63:1280-1287.
    [18]YIN Xiaoyu, Huang Jialing, Mingde, et al. Establishment of SCID murine model of subcutaneous transplantation of human hepatocellular carcinoma and reconstruction of human immune system[J], Chinese Journal of Hepatobiliary Surgery,2004,3:236-240.
    [19]Durai M, Krueger C, Ye Z, et al. In vivo functional efficacy of tumorspecific T cells expanded using HLA-Ig based artificial antigen presenting cells (aAPC) [J]. Cancer Immunol Immunother,2009,58(2):209-220.
    [20]谢斌辉,刘凤恩,王小农,等.肝癌mRNA致敏的DC对SCID荷瘤鼠的抑瘤作用[J].岭南现代临床外科,2008,8(5):368-371.
    [21]Busche A, Goldmann T, Naumann U, et al. Natural killer cell-mediated rejection of experimental human lung cancer by genetic over expression of major histocompatibility complex class I chain related gene A[J]. Hum Gene Ther,2006, 17(2):135-146.
    [22]席泓,DC疫苗在hu-SCID小鼠B淋巴瘤及乳腺癌治疗中的实验研究,兰州大学.
    [23]李帅,王小平,肿瘤细胞疫苗研究进展,现代肿瘤医学[J].2010,18:618-620.
    [24]白东晓,姚德茂,肿瘤细胞疫苗的研究进展[J],现代肿瘤医学,2006,14(2)245-248.
    [25]周海滨,颜汝平,王剑松.荷瘤SCID-hu鼠模型及其肿瘤实验研究现状[J],中国比较医学杂志,2009,19(10):65-67.
    [26]王斌,米振国,李志斌,等.荷人膀胱癌SCID鼠人化复合模型的建立[J],临床泌尿外科杂志,2007,22(10):784-786.
    [27]刘世会,胡自力.人免疫重建荷人肾癌SCID小鼠模型的建立及其鉴定[J],重庆医科大学学报,2007,32(11):1143-1146.
    [28]Tary Lehmann M, Saxon A, Lehmann P V. The human immune system in hu-SCID mice[J]. Immunol Today,1995,16(11):529-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700