压裂液用非氟碳助排剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压裂液助排剂由表面活性剂组成,含氟表面活性剂有良好的抗温及降低表面张力的性能,但它的使用成本较高且对环境有一定的污染,故碳氢系表面活性剂复配助排剂仍有应用前景。
     通过对助排剂的助排机理及助排剂的使用特点的探讨,围绕助排剂的表面张力,油水界面张力,对石英砂的润湿角以及助排剂与压裂液的配伍性进行了实验与分析。运用阴/阳离子表面活性剂复配理论,优选表面活性剂,用AES作为增溶剂,增大阴/阳离子表面活性剂络合物的互溶能力,使复配后有优异的表面活性。最后优选出表面张力和界面张力较低的两个助排剂配方:助排剂A:12%(ABS+LP)+8%AES+25%溶剂+55%水,助排剂B:14%(K-12+OS)+6%AES+25%溶剂+55%水。
     助排剂A的1‰水溶液表面张力为26.4 mN/m,与煤油界面张力为1.2 mN/m;助排剂B的1‰水溶液的表面张力为25.0 mN/m,与煤油界面张力为1.3 mN/m。
     助排剂B虽然降低表面张力的能力较强,但原油与破胶液乳化倾向严重,破乳率低,助排效果不好。助排剂A加量为0.5‰时,原油与破胶液的乳化倾向小,恒温60℃、4 h破乳率为99%;加助排剂A的破胶液的表面张力小于28 mN/m,与煤油的界面张力小于2 mN/m,最后测定助排率为90.1%,与含氟助排剂F的助排率相当。
The cleanup additives of fracturing fluid are often made of surfactants.Though the fluorine-containing surfactants have the performance of anti-temperature and low surface tension,they are usually costly and contaminative.Therefore,the surfactants with hydrocarbon chains still have the prospect of application.
     The mechanism and characteristic of the cleanup additives were discussed.The surface tensions,the oil-water interfacial tensions of the cleanup additives were measured.The contact angles on the surface of the sands and the compatibility of the cleanup additives and the fracturing fluids were also tested.According to the mixturing theory of the anionic/cationic surfactants,the surfactants were optimized.AES as solubilizer could increase the solubility of anionic/cationic surfactant complexes and surfacial activity of the mixtures.Then,two formulas of the cleanup additives were chosen.
     A:12%(ABS+LP)+8%AES+25%solvent+55%water
     B:14%(K-12+OS)+6%AES+25%solvent+55%water
     The surface tension of A with 1‰aqueous solution is 26.4 mN/m and the interfacial tension with kerosene is 1.2 mN/m.And the surface tension of B with 1‰aqueous solution is 26.4 mN/m and the interfacial tension with kerosene is 25.0 mN/m,and the interracial tension with kerosene is 1.3 mN/m.
     Though its capability of lowering the surface tension is very strong,B could result in serious emusication between the crude oil and gel-breaking fluid,which leads to less efficiency of emulsion-breaking and of cleaning up.A with the dosage of 0.5‰,the liability of the emulsification is less.The demulsification rate is 99%after 4h at the temperature of 60℃.The surface tension of the gel-breaking fluid containing A is below 28 mN/m.Finally,the cleanup rate of 90.1%is obtained,which is about the result of the fluorine-containing cleanup additive F.
引文
[1]Raymaond,L.R.and Binder,G.GJr.Productivity of Wells in Vertieally Fraetured,Damaged Formations,JPT(Jan 1967) 120-130.
    [2]M.Tinsley and J.R.Williams.Vertical Fractured Height-Its Effect on Steady-State Production Increase.SPE.AIME(May1969),633-638.
    [3]Dyes,A.B.,KemP,C.E.and Candle,B.H.Effeet of Fractures on Sweep-Out Pattern.Trans,AIME(1958)245-249.
    [4]Prats,M.(1961),Effect of Vertival Fractures on Reservoir Behavior-Incompressible Fluid CaseS,oc Pet Eng.J.I:105-118.
    [5]Yizhu Liao and W.J.Lee,New Solutions for Wells Well With Finite-Conductivity Fraetures Ineluding Fracture-Face Skin:Constant well Pressure Cases,SPE.28605.
    [6]Liao,y.and LeeW.J.New Solutions for Wells with Finite Conductivity Fractures Ineluding Wellbore Storage and Fraeture-Faee Skin,SPE.26912.
    [7]郭睿,蔡亚岐,江桂斌.高效液相/四极杆-飞行时间串联质谱法分析活性污泥中的全氟辛烷磺酸及全氟辛酸[J].环境化学,2006,25(6):674-577.
    [8]金一和,刘晓,张迅,等.人血清中全氟辛烷磺酰基化合物污染现状[J].中国公共卫生,2003,19(10):1200-1201.
    [9]范铁欧,金一和,麻懿馨,等.全氟辛烷磺酸对雄性大鼠生精功能的影响[J].卫生研究,2005,34(1):7-39.
    [10]李莹,金一和.全氟辛磺酸对大鼠中枢神经系统谷氨酸含量的影响[J].卫生毒理学杂志,2004,18(4):232-234.
    [11]王昕,陈誉华.全氟辛烷磺酸基化合物(PFOS)对脑血管内皮细胞的损伤作用[J].中国现代医学杂志,2006,16(11):1646-1648.
    [12]吴敏,周钮明,薛静,等.含氟有机化合物优势降解菌的筛选[J].江苏环境科技,2003,16(1):30-32.
    [13]陈振东.表面活性的协同效应[J].表面活性剂工业,1990(4):20-25.
    [14]朱步瑶,赵国玺.表面活性剂溶液起泡性研究Ⅱ:正负离子表面活性剂混合体系[J].精细化工,1994,11(4):60-61.
    [15]杜志平,王万绪.阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅱ)[J].日用化学工业,2006,36(4):247-250.
    [16]杜志平,王万绪.阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅲ)[J].日用化学工业,2006,36(5):317-320.
    [17]侯德霞.海上油田压裂用助排剂的实验研究[J].石油化工腐蚀与防护,2007,24(2):30-31.
    [18]梅万会.压裂过程中伤害因素分析[J].内蒙古石油化工,2006,5:162.
    [19]王宇,郎学军,刘洪升.户部寨地区Es23—Es43段压裂损害机理与地层保护[J].断块油气田,7(2):57-58.
    [20]刘洪升,王俊英,党民芳.水力压裂支撑裂缝损害机理试验研究[J].断块油气田,2001,(5):46-48.
    [21]张毅,周志.压裂用陶粒支撑剂短期导流能力试验研究[J].西安石油学院学报(自然科学版),2000,15(5):37.
    [22]蒋海,杨兆中,杨亚东,等.压裂酸化排液影响因素分析[J].内蒙古石油化工,2005,9:114.
    [23]梁梦兰.表面活性剂和洗涤剂[M].北京:科学技术文献出版社,1992,186.
    [24]朱瑶.表面活性剂复配规律[J].日用化学工业,1988(4):374-375.
    [25]郑中,胡纪华.表面活性剂的物理化学原理[M].广州:华南理工大学出版社,1995:1461.
    [26]张志庆,徐桂英,叶繁,等.十二烷基甜菜碱/十二烷基硫酸钠复配体系的表面活性[J].物理化学学报,2001,17(12):1122-1125.
    [27]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991:120.
    [28]陈伟章,徐国财,章建忠,等.复合表面活性剂溶液体系的超起泡性能研究[J].精细与专用化学品,2007,15(3/4):21-22.
    [29]石明理,丁兆云,王仲妮.表面活性剂复配规律的研究[J].高等学校化学学报,1991,12(10):1341.
    [30]李学刚,赵国玺.混合阴、阳离子表面活性剂溶液中的分子相互作用和相分离[J].物理化学学报,1995,11(5):450-453.
    [31]邹利宏,方云,吕栓锁.阴-阳离子表面活性剂复配研究与应用[J].日用化学工业,2001,31(5):37-40.
    [32]崔正刚.阴离子/阳离子混合表面活性剂体系协同效应及其应用[J].日用化学品科学,1999(4):23-27.
    [33]崔正刚.一些二元阴/阳离子表面活性剂混合体系的混合胶束形成和表面张力降低的效能[J].日用化学工业,1997,(4):1-5.
    [34]刘纲勇,王军.碳链长度对阴阳离子表面活性剂体系性质的影响[J].日用化学工业,2001,31(6):10-15.
    [35]王仲妮,邹志琛,周武,等.阴阳离子表面活性剂混合溶液的表面活性[J].山东师大学报,1995,10(1):101-109.
    [36]吴自强,曹红军.阴—阳离子表面活性剂复配体系的研究[J].上海涂料,2004,42(3):10-14.
    [37 陈振东,表面活性剂的协同效应[J].表面活性剂工业,1990,(4):212-213.
    [38]邹利宏,方云,吕栓锁.阴-阳离子表面活性剂复配研究与应用[J].日用化学工业,2001,10(5):37-38.
    [39]孙大伟,郭腊梅.阴/阳离子表面活性剂复配体系在绢纺除油方面的研究[J].四川丝绸,2005,4:35-36.
    [40]史东,谷惠先,刘晓英,等.阴/阳离子表面活性剂复配体系的物化性能—不同乙氧基化数对溶解性及表面张力的影响[J].日用化学工业,2004,34(4):249-250.
    [41]马艳华,姜蓉,赵剑曦.C9pPHCNa与C10TABr混合水溶液的表面吸附和胶团形成[J].物理化学学报,2005,21(8):939-943.
    [42]张莹,陈莉,肖进新,等.高浓度无机盐对正负离子等摩尔混合表面活性剂表面活性的影响[J].化学学报,2004,62(16):1491-1494.
    [43]李干佐,顾强,毛宏志,等.适用于纯梁原油的天然混合羧酸盐ASP体系[J].油田化学,2000,17(4):350-352.
    [44]唐军,贾殿增,张红艳,等.硫酸酯盐与烷醇酰胺复配体系的界面张力研究[J].新疆大学学报(自然科学版),2003,20(1):95-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700