卫星油田压裂潜力及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.通过分析影响卫星油田压裂效果的地质因素,结合反九点法井网压裂数值模拟结果,建立了卫星油田压裂后产量与储层压力、储层厚度和含水等关键参数关系的数学模型,筛选确定了卫星油田选井、选层的标准;
     2.根据卫星油田的储层特点,优选出适合卫星油田的压裂液体系配方,根据压裂液优化研究结果,推荐采用下列配方:基液:0.40%胍胶+0.07%助排剂+0.05%破乳剂SP-169+1.0%KCl,交联液:0.90%硼砂,交联比:20 :1,破胶剂:0.10%过硫酸钾。
     3.通过压裂数值模拟研究,根据裂缝参数对卫星油田反九点法井网条件下油井压后增油量和累积增油量的影响分析,确定最佳裂缝穿透比为应该在0.30~0.35(扶杨油层0.6~0.7),最优裂缝导流能力为30~35dc.cm。
     4.根据周边类似区块压裂情况,综合上述分析,研究确定了卫星油田合理的压裂方法:提出了对低压层采取高效助排等进一步降低压裂液伤害的措施,推荐了采用分段压裂工艺和葡萄花油层选用粒径为0.45~0.9mm普通石英砂作为支撑剂,扶杨油层可选用陶粒作为支撑剂。确定了10口待措施单井的压裂施工参数。
     5.卫星油田油井压裂后日产油量呈指数递减变化规律,根据10口井压裂生产数据建立了油井压裂增产措施的指标预测模型,并以W2-18-14井为例,进行了产量、含水变化规律的预测。
     6.经济评价结果,卫星油田压裂措施是可行的。
1. By analyzing the geological factors which impact the fracturing effect of nearby field, combined with the fracturing simulation results of inverted nine spot pattern, the mathematical models of the relationships among some key parameters such as production and reservoir pressure after fracturing, production and reservoir thickness and water content of nearby field were established, the standards of well selection, selection-layer of nearby field were determined by screening.
     2. Based on the characteristics of nearby field, the formula of fracturing fluid system were optimized, according to results of optimization of the fracturing fluid, the following formula is recommended: base fluid: 0.40% Gua Gum +0.07% cleanup additive +0.05% demulsifier SP-169 +1.0% KCl, crosslinked fluid: 0.90% borax, crosslinked ratio: 20: 1, breaker: 0.10% potassium persulfate.
     3. Through the study on fracturing simulation, based on the analysis of influence that fracture parameters on oil increment and cumulative oil increment after fracturing in the situation of inverted nine spot pattern of nearby field, to determine the optimum fracture penetration ratio should be 0.30 ~ 0.35 (Fuyang reservoir 0.6 ~ 0.7), the optimum fracture conductivity is 30 ~ 35dc.cm.
     4. According to the fracturing circumstances of surrounding similar block, integrate with the above analysis, the reasonable fracturing approach of nearby field was determined, some measures which can further reduce the injury of fracturing fluid were proposed, such as efficient cleanup for weak zone, recommended to make use of staged fracturing technology and the particle size of Putaohua reservoir is 0.45 ~ 0.9mm, ordinary quartz sand as a proppant and for Fuyang reservoir, ceramsite is proppant. Identified the fracturing parameters of ten single wells to be measured.
     5. The barels oil per day of nearby field after fracturing presented exponential decline regular, according to the fracturing production data of 10 wells, established the indicators prediction model of fracturing stimulation measures for oil well, and taked well W2-18-14 as example, to forecast the yield, water content changes regular.
     6. Economic evaluation results, the fracturing measures of nearby field are feasible.
引文
[1] J.L.Gidley,etc.水力压裂技术新发展[M].北京:石油工业出版社,1995,1-90.
    [2]王鸿勋,张琪.水力压裂技术原理[M].石油工业出版社,1986.
    [3]张士诚,唐汝众.重复压裂技术及应用[M].世界石油工业,1995,22(9):23-26.
    [4]王琴,张士诚.限流压裂工艺技术研究[J].重庆科技学院学报(自然科学版)2009,11(1):41-43.
    [5]郭建春,杨立君,赵金洲.压裂过程中孔眼摩阻计算的改进模型及应用[J].天然气工业,2005,25(5):69-71.
    [6]宁正福,韩树刚,程林松,李春兰.低渗透油气藏压裂水平井产能计算方法[J].石油学报,2002,23(2).
    [7]徐严波.水平井水力压裂基础理论研究[D].西南石油学院博士论文,2004.
    [8] Horne RN.Relative productivities and Pressure Transient Modeling of Horizontal Wells with Multiple Fractures [C].SPE 29891,1995.
    [9]大庆油田井下作业指挥部.选择性压裂[J].石油钻采工艺,1979,(4):68-76.
    [10]周望,何师荣,赵春生.大庆油田压裂裂缝形态及特征[J].石油勘探与开发,1982(3):66-70.
    [11]赵金洲,郭建春.水力压裂效果动态预测[J].石油钻采工艺,1995,17(6):55-61,88.
    [12]吴忠宝.低渗透油藏大型整体压裂数值模拟[J].油气地质与采收率,2006,13(6):101-104.
    [13]刘永喜,班丽.定位平衡压裂技术在大庆油田的应用[J].石油钻采工艺.1999,21(6):90-92.
    [14]谢风猛,金花,王昌龄,李治平.限流压裂设计和数值模拟方法研究[J].2007,35(2):62-65.
    [15]金毓荪主编.采油地质工程[M].北京:石油工业出版社,1985:26-48.
    [16]赵卫蕊.七个泉油田压裂选井选层技术研究[D].中国石油大学硕士论文,2007.
    [17]牛世忠.红岗油田压裂选井选层方法研究与应用[J].石油天然气学报(江汉石油学院学报),2005,27(6):916-917.
    [18]蒋廷学,江绪刚.水力压裂选井选层的快速评价方法[J].石油钻采工艺,2003,25 (4):49-52.
    [19]蒋廷学.重复压裂选井选层的模糊识别方法[J].石油钻采工艺,1997,19(3):60-62.
    [20]肖芳淳.压裂酸化中选层的模糊物元评价分析[J].石油钻采工艺,1996,18(6):49-53.
    [21]付永强,郭建春.多层次模糊聚类在压裂酸化选井选层中的应用[J].天然气工业,2001,21(5):58-60.
    [22]刘洪,赵金洲.模糊神经网络系统在优选压裂井层中的应用[J].钻采工2002,25(5):34-37.
    [23]杜卫平.重复压裂选井选层人工神经网络方法[J].钻采工艺,2003,26 (4):106-109.
    [24]吴业红,李秀生.人工神经网络在压裂选井及选层中的应用[J].石油大学学报(自然科学版),2001,25(5):42-44.
    [25]刘长印,孔令飞.人工智能系统在压裂选井选层方面的应用[J].钻采工艺,2003,26(1):37-38.
    [26] Robert F.Shelley.Artificial Neural Networks Identify Restimulation Candidate in the Red Oak Field[C],SPE 52190,1999.
    [27] Christian Oberwinkler,Michael J.Econmides.The Definitive Identification of Candidate Wells for Refracturing[C],SPE 84211,2003.
    [28] S.R.Reeves,etal.Benchmarking of Restimulation Candidate Selection Techniques in Layered,Tight Gas Sand Formations Using Reservoir Simulation[C],SPE 63096,2000.
    [29] S.Mohaghegh,etal.Candidate Selection for Stimulation of Gas Storage Wells Using Available Data With Neural Networks and Genetic Algorithms [C],SPE 51080-MS, 1998.
    [30]位云生,胡永全.人工神经网络方法在水力压裂选井评层中的应用[J].断块油气, 2005,12(4):42-44.
    [31] Shahab Mohaghegh,etal.Development of an Intelligent Systems Approach for Restimulation Candidate Selection[C],SPE 59767,2000.
    [32]米卡尔J.埃克诺米德斯,肯尼斯G诺尔特.油藏增产措施[M].北京:石油工业出版社,2002,372-505.
    [33] Thomas,R.L.and Milne,A.The Use of Coiled Tubing During Matrix Acidizing of Carbonate Reservoirs[C],SPE 29266,1995.
    [34]田晓宇,梁静国.基于压裂层位选择的模糊优化模型研究[J].哈尔滨商业大学学报(自然科学版),2005,21(3):391-393.
    [35]刘育骥,耿新宇.石油工程模糊数学[M].成都:成都科技大学出版社,1994:336-345.
    [36]区栾勤,张先迪.模糊数学原理及应用[M].成都:成都电讯工程学院出版社,1998:125-148.
    [37]吴建发,赵金洲.模糊综合决策优选压裂井层河南石油[J].2006;20(4):50-52.
    [38]张国东,林辉.GM(1,N)的灰色模型在压裂井评井选层中的应用[J].天然气工业,2002,22(3):31-33.
    [39]李志军,张春燕.七个泉油田近年压裂措施效果分析[J].青海石油,2006,24(1):52-55.
    [40]张文斌,郭子义.油基压裂工艺在青海七个泉油田的应用[J].石油钻采工艺,2003,25(2):58-61.
    [41]何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态[J].石油大学学报,1990:16-25.
    [42]杨能宇.注水开发油田整体压裂改造水力裂缝参数对采收率的影响研究[D].北京石油大学,1993.
    [43]陈志海.低渗透油田压注采水力裂缝参数优化研究[D].北京石油大学,1997.
    [44]张学文.低渗透率油藏压裂直井开发数值模拟研究[[J].断块油气田,1998,5(4): 20-22.
    [45]姜春堂,杨兆中.水力压裂产能预测二维二相二重介质模型的建立与求解[J].河南石油,2003,17(4):35-39.
    [46]张建国.端部脱沙压裂产能预测数值模拟[D].中国石油大学(华东),2007.
    [47] J.I吉德利著,蒋阆,单文文,等译.水力压裂技术新发展[M].石油工业出版社,1995.
    [48]王鸿勋,张士诚.水力压裂设计数值计算方法[M].石油工业出版社,1998.
    [49]王新纯.压裂系统工程[M].石油工业出版社,2002.
    [50]高雅琴,周文.致密低渗砂岩气藏压裂效果综合评价[J].油气井测试,2007,(10).
    [51]李建波,戴平生.低渗透油气层压裂效果分析新方法[J].油气井测试,2002,(2).
    [52]谢润成,周文.大牛地上古生界气藏压裂效果试井评价[J].油气井测试,2005,14(5):39-41.
    [53] Keith.F,Evans,Gary.R,The mapping of nitrogen gas induced hydraulic fractures in Devonian shale by observation of the associated surface deformation[C].SPE 8933,1980.
    [54] C.A.Wright,E.J.Davis,Surface Tiltmeter Fracture Mapping Reaches New Depths 10,000 Feet and Beyond[C],SPE 39919,1998.
    [55] S.C.Maxwell.Microseismic imaging of hydraulic fracture complexity in the Barnett shale[C],SPE 77440,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700