嗜热真菌Thermomyces lanuginosus丝/苏氨酸蛋白激酶的基因克隆和序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号转导是外界同生物体或生物体细胞间的信息传递的重要手段。许多研究证实,生物信号在细胞内传递的基本和主要的方式就是蛋白激酶和蛋白磷酸酶催化的蛋白质可逆磷酸化。通过磷酸化和去磷酸化作用,蛋白质发生构型和构象的变化,从而活性受到调节,通过激酶级联信号传导途径将信号传导到细胞核,通过对转录因子和离子通道蛋白的调控而调节基因的表达。
    Thermomyces lanuginosus是一类可以在50℃培养条件下正常生长的真菌。印度科学家Ray(1994)等发现在Pseudomonas syringae细胞膜上存在三个分子量不同的蛋白,这些蛋白在细菌感受外界温度变化时发生磷酸化作用,并猜测其中的一个是组氨酸蛋白激酶。本研究拟通过RT-PCR的方法结合RACE获得嗜热真菌的一个蛋白激酶基因,并研究其在信号传导中的作用。
    本实验通过RT-PCR的方法获得了一个长1243bp的cDNA片断。编码一个长365个氨基酸的序列,长度和酵母的dsk1激酶相似,其推断的氨基酸和裂殖酵母dsk1激酶的同源性达到60%以上。利用DNAman软件进行分析发现,在推断的3'氨基酸序列中存在着Ⅵ、Ⅶ、Ⅷ、Ⅸ、Ⅹ和Ⅺ保守亚区。进行核苷酸比较发现和其他基因的核苷酸同源性很差(不到10%),同源区域长度不到40nt;GC%含量比其他物种要高(达到56%),表现出一定的物种特异性。对比其密码子偏好性,GC%含量达到53%,作者认为如此高的GC%含量可能是该真菌在50℃的较高温度下正常生长的遗传基础。随后通过5'RACE进行的5'末端的克隆,因为未知区域的长度过长而没有得到5'末端。利用Southern blot对cDNA片断进行拷贝数鉴定发现,在嗜热真菌T. lanuginosus的基因组里,该序列可能是单拷贝的。
     本实验通过网络信息资源对已经得到的cDNA片断进行了二级结构疏水性区域、跨膜区域和功能域等基本性质进行了探讨,对其编码的蛋白质的三维结构进行了预测。Interpro程序分析认为,推断的氨基酸序列和PKA/PKG激酶相同的激酶磷酸化位点是39和254位氨基酸残基;和PKC
    
    相同的磷酸化位点为61、124、215、229、253和353位氨基酸残基;和Casein 蛋白激酶II型激酶的相同的磷酸化位点为353位氨基酸残基。氨基酸2-270组成了类似激酶区域。经过PHD预测,我们可知此序列形成的主要功能域可以形成5个螺旋和5个β折叠。通过Swiss-pdbViewer程序观察到预测的蛋白质3D结构3个螺旋, 1个β折叠和3个β-strand。
    通过对cDNA的C端的二级结构进行预测,发现其保守的功能区域具有和激酶类似的特征。
All living cells must constantly be interfered by all kinds of factors during their life cycle of proliferation, differentiation, development and death. These factors include not only the intercellular hormones but also extracellular light, temperature and water so on. All these request the cell to recognize and receive these signal factors correctly and respond to them as soon as possible to control the courses of progression and cellular activities. In this way, the receivers lie in the membrane of the cell recognizing the external ligand. Then the external signals are transducted into the nucleolus to regulate the gene expression and enzyme activity leading to the cell response. We can conclude that signal transduction plays an important role in the processes of environment-cell interaction.
    A lot of studies have resulted that kinases and phosphatases are likely to be important mediators of signal transduction. Through phosphrylation and dephosphorylation, the activity and structure of protein changed. External signal are transducted into the cell nucleolus by the signal cascade. Protein kinase mediated phosphorylation regulates protein function, membrane channels and pumps and transcription factors by which changed the gene expression. Indian scientist Ray found in 1994 that three membrane proteins they isolated from Pseudomonas syringae which were phosphorylated in response to temperature changes and resulted that one of these proteins was possibly a histidine kinase. Thermomyces lanuginosus is a kind of heat-endurable fungus which can live normally at about 50℃.In order to probe the molecular mechanism of the characteristics of heat-enduration we have been trying to clone the gene of a protein kinase and looking for the molecules upstream and downstream of it. Using RT-PCR, one 1243bp cDNA fragment was obtained. Sequencing analysis showed that the cloned cDNA of T. lanuginosus was similar to that of fission yeast protein kinase dsk. Comparison results showed that the homogeneity of the 3'-deduced amino acids was above 60%. Six conservative amino acid subdomains which most ser/thr protein kinase contain can be found in the deduced amino acid sequence. Comparison of the necleotide sequence resulted that the homogeneity is not high(10%). Homogeneity domains is as short as 40nt. However, we can find that GC% of the cDNA is higher (about 56%), which showed an organism specificity. Looking into the preference codons of T. lanuginosus , we found the average value of GC% is about 53%. We surmise that such a high GC% value may be important factor for this kind of fungus to
    
    live normally at about 50℃. We tried to obtain the 5'-end of the cDNA by 5'RACE(rapid amplification of cDNA ends). Unfortunately ,due to the complexity of 5'RACE and use of a single gene-specific primer(with the anchor primer),the length of 5'-end fragment we estimated is too long to be captured. We failed to isolate the 5'-ends of the cDNA. Southern blot analysis showed that T. lanuginosus genome may contain one homology of the cDNA fragment.
    Bioinformatics is pushed ahead quickly because of the internet development. Using the internet information to explore the distinction of life becomes one major research field. Human genome project was carried out and brought rapid growth to bioinformation. All these make it possible to use bioinformation for gene cloning, sequence analysis and protein function prediction. We used the bioinformation in internet to predict the transmembane domain, secondary structure and 3D structure for the deduced amino acid sequence of the cDNA fragment.
引文
1. 陈长征,杨毅,夏其昌等. 酵母cAMP依赖的蛋白激酶催化亚基基因A的克隆与表达[J]. 生物化学与生物物理学报, 1994, 2: 197-206.
    2. 巩学千,陈受宜. 蛋白激酶: 一个飞速发展的领域[J]. 生物工程进展, 1996, 16(1): 11~15.
    3. 靳利霞,唐焕文. 蛋白质结构预测方法简述[J]. 自然杂志, 2001, 234: 217-221.
    4. 李翠凤.老年性痴呆与信号传导[J]. 生命的化学, 2000, 20(6): 278-281.
    5. 李晖. 稻瘟菌诱导性水稻蛋白激酶基因的cDNA克隆及其功能研究[D]. 中国农业大学博士论文, 2002.
    6. 林福呈,陈卫良,龚鸿飞等. 病原真菌和细菌毒性基因的分离和鉴别[J]. 生物工程进展, 1997 ,17(5): 41-48.
    7. 林明群,张宗梁 . 蛋白激酶C的激活转位和它介导的信号通路[J]. 生命科学, 1996, 8(1): 15-19.
    8. 刘洪斌. 生物信息学[J]. 生物工程进展,2000,20(6): 58-62.
    9. 刘树俊,魏荣宣,有江力等. 稻瘟病菌致病突变体的REMI诱变与鉴定[J]. 生物工程学报, 1998, 7(3): 254-259.
    10. 刘小丽. 植物蛋白质激酶和MAPK信号传递系统[J]. 河北师范大学学报(自然科学版), 2001, 25(2): 385-388.
    11. 缪德年,陈溥言,樊生超等. 哺乳动物MAPK信号级联及其功能[J].上海畜牧兽医通讯, 2002, 1: 6-7.
    12. 庞永珍,姚剑虹. 葱莲凝集素基因的克隆[J]. 西南师范大学学报(自然科学版), 2002, 27(3): 433-436.
    13. 秦丽雅,崔肇春. 有丝分裂原激活的蛋白激酶(MAPK)在信息传递中的作用[J]. 生命的化学, 1995, 15 (4): 17-21.
    14. 邱嵘. 周期蛋白依赖性蛋白激酶活性的调控[J]. 生命的化学 , 1996, 16(5): 19-23.
    15. 邱为民,张思仲,武辉. 一种新的cDNA末端快速扩增获取全长cDNA的方法[J]. 遗传,2001, 23(5): 480-482.
    16. 孙红宇,陈明. PKC对K+-ATP通道调节研究中的影响因素[J]. 国外医学·生理、病理科学与临床分册, 1999, 19(6): 467-468.
    17. 唐慧,陈善娜,鄢波等. 一种cDNA 5'末端的克隆方法[J]. 云南大学学报(自然科学版), 2001, 23(3): 238-240.
    18. 童坦君. 信号传导新热点: 双特异性蛋白激酶[J]. 生理科学进展, 1994 , 25(3): 236.
    王政逸,李德葆. 尖镰刀菌黄瓜转化型的限制酶介导整合转化[J]. 浙江
    
    19. 农业学报, 2001, 13(5): 309-311.
    20. 徐 勇. MAPK家族与糖尿病并发症[J]. 国外医学内分泌学分册, 2001, 21( 1): 8-10.
    21. 杨彧,于秉治. 蛋白激酶C研究的最新进展[J]. 生物化学与生物物理进展, 1994, (4): 308-313.
    22. 姚剑虹,孙小芬,唐克轩. 石蒜凝集素基因的克隆[J]. 复旦学报(自然科学版), 2002, 41(1): 102-105.
    23. 余刚,罗勇,彭国光等. PKC同工酶研究进展[J]. 重庆医科大学学报,2001, 26(1): 103-106.
    24. 赵江潮. 尖孢镰刀菌侵染棉根诱导性SOD cDNA的克隆[D].中国农业大学硕士学位论文, 2000.
    25. 周志琦,刘 强. 真核生物的MAPK级联信号传递途径[J]. 生物化学与生物物理进展,1998, 25 ( 6): 496-503.
    26. Abramovitch, R. B., Yang, G., Kronstad J. W. The ukb1 gene encodes a putative protein kinase required for bud site selection and pathogenicity in Ustilago maydis[J]. Fungal genetics and Biology, 2002, 37: 98-108.
    27. Aderen, A. The MARCKS brothers:A family of protein kinase C substrates[J]. Cell, 1992, 71: 713-716.
    28. Alex, L. A., Korch, C., Selitrennikoff, C. P., et al. COS1, a two-component histidine kinase kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans[J]. PNAS, USA , 1998, 95: 7069-7073.
    29. Alex, L. A., Borkovich, K. A., and Simon, M. I. Hyphal development in Neurospora crassa:Involvement of a two-component histidine kinase [J]. PNAS, USA, 1996, 93: 3416-3421.
    30. Arpaia, G., Catalanotto, C., Cerri, F., and Macino, G. Protein kinase C, a novel component of blue light transduction pathway in Neurospora crassa,1997. 19th Fungal Genetics Conference, Asilomar, CA.
    31. Azzi, A., Boscoboink, D., and Hensey, C. The protein kinase C family [J]. Eur. J. Biochem, 1992, 208: 547-557.
    32. Banuett, F., and Herskowitz. ,I. Identification of fuz7,a Ustilago maydis MEK/MAPKK homolog required for (-locus-dependent and -independent steps in the fungal life cycle[J]. Genes Dev., 1994, 8:1367-1378.
    33. Bencina, M., Panneman, H., Ruijier, G. J. G., et al, Characterization and overexpression of the Aspergillus niger gene encoding the cAMP-dependent protein kinase catalystic subunit [J]. Microbiology, 1997, 143: 1211-1220.
    Bettignies, de, Thoraval, D., Morel, C. Overactivation of the protein
    
    34. kinase C-signaling pathway suppresses the defects of cells lacking the Rho3/Rho4-GAP Rgd1p in Saccharomyces cerevisiae[J]. Genetics, 2001, 159 (4): 435-1448.
    35. Borgia, P. T. Roles of orlA, tseE and bimG genes of Aspergillus nidulans in chitin synthesis [J]. J. Bacteriol., 1992 , 174: 384-389.
    36. Bruno, K. S., Aramayo, R., Minke, P. F., et al. Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent mutant altered in the regulatory subunit of cAMP-dependent protein kinase [J]. EMBO J., 1996, 15: 5772-5782.
    37. Buhr, T. L., Oved,S., Truesdell, G. M., et al. A kinase encoding gene from Colletotrichum trifolii complements a colonial growth mutant of Neurospora crassa[J]. Mol. Gen. Genet, 1996, 251: 565-572.
    38. Chang, C., Kwok, S. F., Bleeker, A. B.,et al. Arabidopsis ethylene-reponse gene ETR1: Similarity of product to two-component regulators[J]. Science, 1993, 262: 539-544.
    39. Chen, B., Gao, S., Choi, G. H.,et al. Extensive altetation of fungal gene transcript accumulation and alteration of G-protein regulated cAMP levels by virulence-attenuating hypovirus[J]. PNAS, USA, 1996, 93: 7996-8000.
    40. Cho-chung, Y, S., Pepe, S., Clair, T., et al. cAMP-dependent protein kinase: Role in normal and malignant growth[J]. Crit. Rev. Oncology/Hematology , 1995, 21:33-61.
    41. Choi, G. H., Chen, B., and Nuss. D. L. Virus-mediated or transgenic suppression of a G-protein subunit and attenuation of fungal virulence[J]. PNAS, USA, 1995, 92:305-309.
    42. Chomezynski, P., and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction [J]. Anal. Biochem., 1987, 162: 156-159.
    43. Chu, S., DeRisi, J., Eisen, M. et al. The transcriptiona program of sporulation in budding yesat[J]. Science, 1998, 282:699-705.
    44. Cobb, M. H., and Goldsmith, G. J. How MAP kinase are regulated [J]. J. Biol. Chem., 1995, 270: 14842-14846.
    45. Coghlan, V. M., Perrino, B. A., Howard, M., et al. Assicuation of protein kinase A and protein phosphatase 2B with a common anchoring protein [J]. Science, 1995, 267: 108-111.
    46. Cohen,P. Novel proteinserine/threnonine phosphatases:Variety is the spice of life[J]. Trends Biochem. Sci., 1997, 22: 254-251.
    Cohen,P. The stucture and regulation of protein phosphatase [J]. Annu.
    
    47. Rev. Biochem.,1989, 58: 453-508.
    48. de Jong, J. C., McCormak, B. J., Smirnoff, N., et al. Glycerol genetates turgor in rice blast[J]. Nature, 1997, 389: 244-245.
    49. de Olivera. J. C. F., Borges, A. C., Marques, M. V.,et al. Cloning and characterization of the gene for the catalystic subunit of cAMP-dependent protein kinase in the aquatic fungus Blastocladiella emersonii[J]. Eur. J. Biochem, 1994, 219: 555-562.
    50. Dekker, L. V., and Parker, P. J. Protein kinase C: A question of specificity [J]. Trends Biochem. Sci., 1994, 19: 73-77.
    51. Dombradi, V. Compatative analysis of Ser/Thr protein phosphatases[J]. Trends Com. Biochem. Physiol., 1997, 3: 23-48.
    52. Doonan. J. H., MacKintosch. C., Cohen, P., et al. A cDNA encoding rabbit muscle protein phosphatase la complenments the Aspergillus cell-cycle mutation bimG11 [J]. J. Biol.Chem., 1991, 262: 188889-188894.
    53. Doonan. J. H., and Morris, R. N. The bimG gene of Aspergillus nidulans requires for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase-1[J]. Cell, 1989, 57: 987-996.
    54. Dufresne, M., Bailey, J. A., Dron, M., et al. clk1, a serine/threonine protein kinase encoding gene, is involved in pathogenicity of Colletotrichum lindemuthiaum on common bean [J]. Mol. Plant Microbe Interact., 1998, 11: 99-108.
    55. Durrenberger, F., and Kronstad, J. The ukc1 gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis[J]. Mol. Gen. Genet, in press.
    56. Durrenberger, F., Wong, K., and Kronstad, J. W. Identification of a cAMP-dependent protein kinase catalystic subunit required for virulence and morphogenesis in Ustilago maydis [J]. PNAS, USA, 1998, 95: 5684-5689.
    57. Eynde, A. van, Beullens, M., Stalmans, W. et al. Full activation of a nuclear species of protein phosphatase-1 by phosphorylation with protein kinase A and casein kinase-2[J]. Biochemical-Journal 1994, 297(3): 447-449.
    58. Faux, M. C., and Scott, J. D. More on target with protein phosphorylation: Conferring specificity by localization [J]. Trends Biochem. Sci., 1996, 21: 312-315.
    Flaisham, M. A., Hwang, C. S., and Kolattukudy, P. E. Involvement of protein phosphorylation in the induction of appressorium formation in
    
    59. Collectotrichum gloeosporioides by its host surface wax and ethylene [J]. Physiol. Mol. Plant Pathol., 1995, 47: 103-117.
    60. Gold, S. E., Brogdon, S. M., Mayorga. M. E.et al. The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize [J]. Plant Cell , 1997, 9: 1585-1594.
    61. Gold, S. E., Duncan, G. A., Barrett, K. J.,et al. cAMP regulates morphogenesis in the fungus Ustilago maydis[J]. Genes Dec., 1994, 8: 2805-2816.
    62. Gould. K. L. and Nurse. F. Tyrosine phosphorylation of the fission yeast cdc2(protein kinase regulates entry into mitosis.) [J] Nature 1988, 342: 39-45.
    63. Gray. P. C., Tibbs, V. C., Catterally, W. A,et al. Identification of a 15-KDa cAMP-dependentprotein kinase-anchoring protein associated with skeletal muscle L-type calcium channels[J]. J. Biol. Chem, 1997, 272: 6279-6302.
    64. Griffin, D. H., Timberlake, W. E, and Cheney, J. C. Regulation of macromolecule synthesis, colony development and specific growth rate of Achlye bisexualis during balanced growth[J]. J. Gen. Microbiol., 1974, 80: 381-388.
    65. H. W. Schnaper. Signal transduction through protein kinase C [J]. Pediatr Nephrol , 2000, 14: 254-258.
    66. Hanks, S. K., Quinn, A. M., Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains[J].Science, 1988,241:42-52.
    67. Hanks, S. K., and Hunter, T. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification based on phylgenetic analysis[M]. In the protein kinase facts book(D.C.Hardie and S. K. Hands , Eds. )pp. 7-47, 1995, Academic Press, London.
    68. Hardie, G., and Hanks, S. The protein kinase Facts Book: protein-serine kinases[M]. 1995, Academic press,San Diego.
    69. Hardle, R. C., Peretz, A., Suss, Toby,E.et al. Protein kinase C is required for light adaptation in Drosophila photoreceptors[J]. Nature. 1993, 363 (6430): 634-637.
    70. Harris . S. D. Morrell J. L., and Hamer J. E. Identification and characterization of Aspergillus nidulans mutants defective in cytokinsesis [J]. Genetics,1994, 136:517-532.
    71. Hartwell. L. H., and Kasten, M, B. Cell cycel control and cancer[J]. Science, 1994, 266: 1821-1828.
    Herskowitz,I. MAP kinase pathways in yeast: for mating and more[J] .
    
    72. Cell, 1995, 80: 187-197.
    73. Hidaka, H., and Kobayashi, R. Use of protein kinase activators and inhibitors to study protein phosphorylation in intact cell. In protein phosphorylation: A ractical approach(D. C. Hardie and S. K. Hands , Eds.)pp:,87-107[M]. 1993, IRL Press.
    74. Higuchi, S., Tamura, J., Giri, P. R, et al. Calmodulin-dependent protein phosphatase from Neurosproa crassa; molecular cloning and exprssion of recombinant catlaytic subunit[J]. J. Biol. Chem, 1991, 266: 18104-18112.
    75. Huang, J. M., Wei, Y. E., Kim, Y. H., et al. Purification of a protein histidine kinase from the yeast Saccharomyces cerevisiae. The first member of this class of protein kinase[J]. J. Biol. Chem., 1991, 266: 9023-9031.
    76. Hughes, M. , Arundhati, A., Lunness, P., et al. A temperature-sensitive splicing mutation in the bimG gene of Aspergillus produces a N-terminal fragment which interfers with type 1 protein phosphatase function[J]. EMBO J. , 1996,(15):4574-4583.
    77. Hunter, T., and Plowman, G. D. The protein kinase of budding yeast: six score and more[J]. Trends Biochem. Sci. ,1997, 22: 18-22.
    78. Jarvis, W. D., Turner, A. J., Povick, L. F., et al. Induction of apoptotic DNA fragment and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C[J]. Cancer Res. 1996, (54): 1707-1714.
    79. Jellito. T. C., Page, H. A., and Read, N. D. Role of external siganals in regulating the pre-penetration phase of infection by the rice blast fun- gus, Magnaporthe grisea[J]. Planta ,1994, 194: 471-477.
    80. Jimenez, R., Zarzuelo, A., Galisteo, M. et al. Involvement of protein kinase C and Na+/K+-ATPase in the contractile response induced by myricetin in rat isolated aorta[J]. Planta med , 2002, 68 (2) : 133-137.
    81. Justice, R. W., Zillan, O., Woods, D. F., et al. The Drosphila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and I srequired for the control of cell shape and proliferation[J]. Genes Dev., 1995, 9: 534-546.
    82. Keller, N. P., and Hohn, T. M. Metabolic pathway gen clusters in filamentous fungi[J]. Fung. Genet. Biol. 1997, 21:17-29.
    Kincaid, R. Calmodulin-dependentprotein phosphatases from microoganisms to man. A study in structural conservatism and biological diversity[J]. Adv. Second Messenger Phosphoprot. Res , 1993 ,27:
    
    83. 1-23.
    84. Knighton, D. R., Zheng, J., Ten Eyck, et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent knase[J]. Science, 1991, 253: 414-420.
    85. Kothe, G. O., and Free, S. J. The isolation and characerization of nrc-1 and nrc-2, two genes encoding protein kinase that control growth and development in Neurospora crassa[J]. Genetics, 1998, 149: 117-130.
    86. Kronstad, J., De Maria, A., Funnell, D., et al. Signaling via cAMP in fungi: interconnections with mitogen- actived protein kinase pathways[J]. Arch. Microbiol.,1998, 170: 395-404.
    87. Kronstad, J. S. Virulence and cAMP in smuts, blasts and blights[J]. Trends Plant Sci., 1997, 2: 193-199.
    88. Kumar, C. K., Moyer, M. P., Dudeja, P. K. et al. A protein-tyrosine kinase-regulated, pH-dependent, carrier-mediated uptake system for folate in human normal colonic epithelial cell line NCM460[J]. The-Journal-of-biological-chemistry, 1997, 272(10): 6226-6231.
    89. Lu, S., Lyngholm, L., Yang, G., et al,.PNAS USA,1994, 9(1):12649-12653.
    90. Larson, T. G., and Nuss, D. L. Altered transcriptional response to nutrient availability in hypovirus-infected chestnut blight fungus[J]. EMBO J. ,1994,13: 5616-5623.
    91. Lauter, F. R., Marchfelder, U., Russo, V. E. A., et al. Photoregulation of cot-1, a kinase-encoding gene invovled in hyphal growth in Neurospora crassa[J]. Fung. Genet. Biol., 1998, 23: 300-310.
    92. Lee, Y. H. and Dean, R.A. cAMPregulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea[J]. Plant Cell, 1993, 5: 693-700.
    93. Lendenfeld, T. and Kubicek, C. P. Characterization and properties of protein kinase C from the filamentous fungus Trichoderma reesei[J]. Biochem. J.,1998, 330: 689-694.
    94. Levin, D. E. Bishop, J. M. A putative protein kinase gene (kin1+) is important for growth polarity in Schizosaccharomyces pombe[J]. PNAS,USA, 1990, 87(21) : 8272-8276.
    95. Li, D., Rogers, L., and Kolattukudy, P. G. Cloning and expression of a cDNA encoding a mitogen-activated protein kinase from a phytopathogenic filamentous fungus[J]. Gene,1997, 195:161-165.
    96. Lu, K.P. and Hunter. Evidence for a NIMA-like mitotic pathway in vertebrate cells[J]. Cell ,1995,81: 413-424.
    MacKintosch, C., and MacKintosch, R. W. Inhibitors of protein kinases
    
    97. and phosphatases[J]. Trends Biochem Sci. ,1994,19: 444-448.
    98. Madhani, H. D., Style, C. A., and Fink,G. R. MAP kinases with distinct inhibitory functions impart signaling spedificity during yeast differentiation[J]. Cell ,1997, 91: 673-684.
    99. Madihani, H. D. ,and Fink, G. R. Combinatorial control required for the specificity of yeast MAPK signaling[J]. Science, 1997, 275: 1314-1317.
    100. Maeda,T., Wurglermurphy, S. M., and Saito, H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast[J]. Natrue 1994,369: 242-245.
    101. Mahadevan, M. S., Amemiya, C., Jansen, G., et al. Structure and genomic sequence of the myotonic dystrophy kinase gene[J]. Hum. Mol. Genet., 1993,2: 299-305.
    102. Martin B. D., and Oded Y. Serine/Threonine protein kinases and phosphatases in filamentious fungi[J]. Fung. Genet. Biol., 1999, 26: 99-117.
    103. Mazzei, G. J. Schmid, E. M., Knowles., K.C. et al. A Ca2+-independent protein kinase C from fission yeast[J]. J-Biol-Chem.1993, 268 (10): 7401-7406.
    104. Mitchell T. K., and Dean R. A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea[J]. Plant Cell, 1995, 7: 1869-1878.
    105. Mizuno, K. Hasemi,T., Ubukata, T et al. Counteracting regulation of chromatin remodeling at a fission yeast cAMP responsive element-related recombination hotspot by stress-activated protein kinase, cAMP-dependent kinase and meiosis regulators[J]. Genetics, 2001, 159 (4): 1467-1478.
    106. Mojca B., Henk P., Genorge, J. G. R, et al. Charaterization and overexpression of the Aspergillus niger encoding the cAMP-dependent protein kinase catalytic subunit. Microbiology, 1997, 143: 1211-1220.
    107. Morawetz, R., Lendenfeld, T., Mischak, H., et al. Cloning and characterization of genes(pkc1and pkcA) encoding protein kinase C homologues from Trichoderma reesei and Aspergillus niger[J]. Mol. Gen. Genet. , 1996, 250: 17-28.
    108. Morgan, D. O. Cyclin-dependent kinases: Engines, clocks, microprocessors[J]. Annu. Rev. Cell Dev. Biol., 1997, 13: 261-291.
    109. Nuss, D. L. Using hypoviruses to probe and perturb signal transduction processes underlying fungal pathogenesis [J]. Cell, 1996, 8: 1845-1853.
    
    
    110. Paveto, C. Passeron, S. Corbin, J. D. et al. Two different intrachain cAMP sites in the cAMP-dependent protein kinase of the dimorphic fungus Mucor rouxii[J]. Eur-J-Biochem. 1989, 179 (2): 429-434.
    111. Pu, R. T., Xu, G., Wu, L, et al. Isolation of functional homolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues[J]. J-biol-chem, 1995, 270 (30): 18110-18116.
    112. Ray M. K., Seshu K., and Shivaji S. Phosphorylation of membrane proteins in response to temperature in an Antarctic Psudomonas syringae[J]. Microbiology, 1994, 140: 3217-3223.
    113. Takano, Y. Komeda, K. Kojima, K. et al. Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium[J]. Mol-plant-microb-interact, 2001, 14 (10): 1149-1157.
    114. Takeuchi, M. and Yanagida, M. A mitotic role for a novel fission yeast protein kinase dsk1 with cell cycle stage dependent phosphorylation and localization[J]. Mol. Biol. Cell, 1993, 4 (3), 247-260 .
    115. Tatsuya M., Yoshinori W., Hirofumi K., et al. cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein in Schizosaccharomyces pombe[J]. J. B. C, 1994, 269(13): 9632-9637.
    116. Timblin, B. K., Tatchell, K., Bergman, L. W. et al. Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae[J]. Genetics, 1996, 143(1): 57-66.
    117. van Damme ELM, Smeets K, Van Leuven F. et al. Molecular cloning of mannose-binding lectins from Clivia minita[J]. Plant Mol. Biol., 1994, 24(5): 825-830.
    118. Woodgett, J.R. A kinase with Ku-dos[J]. Current Biol., 1993, 3: 449.
    119. Yarden, N. Expression of calcium-sensing receptor gene by avian parathyroid gland in vivo: relationship to plasma calcium[J]. Gen-comp-endocrinol., 2000, 117 (2): 173-181
    120. Zufall, F. Hatt, H. Dual activation of a sex pheromone-dependent ion channel from insect olfactory dendrites by protein kinase C activators and cyclic GMP[J]. PNAS, USA. , 1991, 88 (19): 8520-8524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700