切花菊蚜虫抗性鉴定与机理探讨及LLA转基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花[Chrysanthemum grandiflorum (Ramat.) Kitamura]是我国十大传统名花、世界四大切花之一,在园林、家庭绿化美化中占有十分重要的地位。然而,菊花病虫害危害严重,蚜虫、蓟马、黑斑病、褐斑病等是其常见病虫害,在幼苗至成苗期时有发生,多危害芽心嫩尖,抑制植株的生长发育,严重影响观赏品质和应用,蚜虫不仅直接为害菊花,而且是TAV、PVP、CMV病毒的媒介者。目前,蚜虫的防治多采用化学方法,不仅消耗人力物力、造成环境污染,而且导致农药残留,使得蚜虫群体产生抗药性。因此,蚜虫的防治已成为菊花产业化生产中的一大难题,创造抗蚜虫菊花新种质已成为菊花抗性育种亟待解决的问题。目前关于切花菊抗蚜虫的研究较少,从切花菊中鉴定抗蚜虫性资源和利用转基因技术提高切花菊蚜虫抗性的研究尚未见报道。本研究旨在探讨切花菊抗蚜虫性鉴定方法,阐述蚜虫抗性机理及通过基因工程创造抗蚜虫切花菊新种质,进行了室内人工蚜虫接种的抗性鉴定,比较分析了不同蚜虫抗性品种间相关叶片结构特征、蚜虫接种后抗氧化酶与防御酶活性变化,并尝试了石蒜凝集素基因LLA转化切花菊的研究,主要研究结果如下:
     1.切花菊抗蚜虫性的抗性等级及不同品种的抗蚜虫性
     对35个切花菊品种进行了室内人工接种蚜虫的抗性鉴定研究,结果显示不同的菊花品种对蚜虫的抗性表现出明显差异,蚜虫接种21 d时各品种上虫口数量差异甚大,为0~267头不等;根据蚜量比值可将切花菊抗蚜虫性分为5级,分别为:高抗,0~0.25;中抗,0.26~0.50;抗,0.51~0.75;低抗,0.76~1.25;不抗:>1.25。其中,‘神马’、‘风车菊1’、‘南农红枫’等15个品种蚜量比值在1.25以上,为不抗品种;‘小丽’、‘韩1’、‘南农茶香’等4个品种蚜量比值为0.76~1.25,为低抗品种;‘阳光’、‘馒头菊’、‘优香’(3个品种)蚜量比值为0.51~0.75,为抗虫品种;‘韩5’、‘韩6’(2个品种)蚜量比值为0.26-0.50,为中抗品种;‘韩4’、‘南农紫勋章’、‘精云’等11个品种蚜量比值为0~0.25,为高抗品种。
     2.抗感切花菊品种的叶片结构特征、抗氧化酶及防御酶活性
     以高抗品种‘精云’、中抗品种‘韩6’和不抗品种‘神马’为材料,比较分析了三者相关叶片表面结构特征(表皮毛、腺体、蜡质等)及蚜虫接种对抗氧化酶、防御酶活性变化的影响,结果发现,‘精云’的表皮毛致密,单个表皮毛长度和高度、腺体大小及蜡质含量均高于‘韩6’和‘神马’,初步说明叶片表皮毛、腺体、蜡质含量等与切花菊抗蚜虫性具有一定的相关性;蚜虫接种后,抗氧化酶和防御酶活性水平变化均存在显著差异。在抗性品种中,超氧化物岐化酶(SOD)、过氧化物酶(POD)、抗坏血酸酶(APX)活性水平上升速度快,出现峰值较不抗品种早。APX活性变化幅度亦明显大于不抗品种。POD、POD活性在蚜虫接种后期(3d-7d)保持上升趋势。多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)活性均有所提高,抗性品种响应快,上升幅度大,且接种后期保持较高的活性水平。说明蚜虫接种前后切花菊抗感材料叶片的活性氧系统和防御酶系统与抗虫性密切相关,可作为其苗期蚜虫抗性评价的生理指标之一。
     3.农杆菌介导的LLA基因转化切花菊的研究
     以目前生产应用比较广泛的切花菊‘神马’为材料,对其遗传转化中合适的抗生素筛选浓度进行了研究,结果表明叶片对潮霉素、羧苄青霉素十分敏感,10 mg·L-1的潮霉素能够完全抑制叶片分化,20 mg·L-1的潮霉素完全抑制了不定芽生根;确定了‘神马’叶盘再生筛选以8~10 mg·L-1的潮霉素为宜,生根筛选以18 mg·L-1的潮霉素为宜。羧苄青霉素对菊花叶片的再生有一定的抑制作用,随着浓度的升高,抑菌效果增加,但芽的分化率逐渐下降,500 mg·L-1的羧苄青霉素能够完全抑制农杆菌的滋生,但严重抑制了叶片的分化,浓度降至300 mg·L-1时,能够完全抑制农杆菌的滋生并保证50%的再生率,故确定羧苄青霉素抑菌浓度早期以500 mg·L-1为宜,后期以250~300 mg-L-1为宜。
     通过农杆菌介导的叶盘法将长筒石蒜凝集素LLA基因转入‘神马’,获得了105个抗性芽,生根筛选后获得54个潮霉素抗性植株;PCR及RT-PCR分子检测显示有7个株系检测到目的条带的整合与表达;对该7个转基因株系采用室内人工蚜虫接种试验进行鉴定,结果表明转基因切花菊幼苗对蚜虫密度有明显的抑制作用,且不同转化株系的抗蚜性差异较大,蚜口密度抑制率为12.2%~76.8%不等,平均蚜口密度抑制率为41.8%。
Chrysanthemum is one of ten traditional famous flowers in China and four cut flowers in the world, it play an important position on gardens and greening. However, chrysanthemum is seriously infested by pests from the time of its seedling establishment to its flowering stage. Aphid infestation usually hurt tender bud tip, inhibiting the plant growth and development, results in dwarf plant, yellowing leaf and yield loss, effectting the quality and ornamental value seriously, it as a result of their direct jeoprridize chrysanthemum itself, and their indirect action as vectors of TAV, PVP, CMV viruses. Currently, chemical pesticide was the major method to control aphid during horticultural practices, which not only consumed higher agrochemical costs, caused environmental pollutions but also resulted in pesticide residue. Thus, the control of aphid had become a major problem on industrial production of chrysanthemum. Development of the genetic resistance to aphid infestation has become a priority in chrysanthemum breeding programmes. However, there was a few reports of studies on the aphid resistance of chrysanthemum. So, the purpures of this study was to explore the identification of the method of aphid-resistance in chrysanthemum cultivars, describe the aphid resistance mechanisms and develope the new aphid-resist germplasm of chrysanthemum via genetic engineering. We carried a series studies on artificial aphid inoculation test, compared different aphid resistant varieties of leaf epidermal surface morphology, antioxidant and defense enzyme activity in response to aphid infestation and try to transformation of chrysanthemum with LLA gene. The main results are follows:
     1. Chrysanthemum aphid resistance grade and different aphid-resistance to different cultivars.
     In order to discover aphid resistant germplasm, aphid number and aphid number ratio were investigated in 35 cut chrysanthemum cultivars via artificial aphid inoculation test. The results indicated that different chrysanthemum cultivars had different levels of aphid resistance. By 21 days after inoculation, the number of aphid varied upon to cultivars ranging from 0 to 267. The aphid resistance of chrysanthemum can be divided into five grades in terms of aphid number ratio, i.e., high resistance with an aphid number ratio of 0-0.25, moderate resistance (0.26-0.50), resistant grade (0.51-0.75), low resistance (0.76-1.25) and non-resistant grade (>1.25), respectively. Among 35 tested cultivars,15 cultivars represented by'Jinba','Fengcheju 1', 'Nannonggongfen' are non-resistant cultivars with aphid number ratio above 1.25. Four cultivars represented by'Xiaoli','Han 1', 'Nannongchaxiang' are cultivars of low resistance to aphid with aphid number ratio of 0.76-1.25. Three cultivars, 'Yangguang' , 'Mantouju' and 'Youxiang' , are aphid resistant cultivars (aphid number ratio,0.51-0.75). Two cultivars,'Han 5' and' Han 6', are moderately resistant to aphid (aphid number ratio,0.26-0.50), while 11 cultivars represented by'Han 4', 'Nannongzixuanzhang','Keiun' are highly resistant to aphid (aphid number ratio,0-0.25).
     2. Study on leaf epidermal micro-morphology of different aphid resistance cultivars, activities of antioxidant and defense enzymes in chrysanthemum cultivars of different aphid resistance in response to aphid inoculation.
     Using high-resistant cultivar'Keiun', morderate-resistant cultivar'Han 6'and susceptible cultivar 'Jinba' as material, a comparative analysis of structural characteristics of leaf surface (trichomes, glands, wax, etc.) and antioxidant and defense enzyme activity in response to aphid infestation, we found that high resistant cultivar'Keiun' had thicker, higher and denser trichomes, bigger and full glands, and more waxiness on the lower leaf epidermis than that on moderately resistant'Han 6'and susceptible'Jinba'. Preliminary inferred that aphid resistance in chrysanthemum had related to leaf trichomes, glands, wax content. After aphid inoculation, the activity of antioxidant and defense enzymes levels were significantly different. In resistant cultivars, superoxide dismutase (SOD), peroxidase (POD), ascorbic acid enzyme (APX) activity levels rising faster than susceptible cultivar and peaking earlier. APX activity has been significantly changed in resistant cultivars. Preliminary inferred that aphid resistance in chrysanthemum had related to leaf trichomes, glands, wax content. After aphid inoculation, the activity of antioxidant enzymes and defense levels were significantly different. In resistant cultivars, superoxide dismutase (SOD), peroxidase (POD), ascorbic acid enzyme (APX) activity levels rising faster than susceptible cultivar and peaking earlier. APX activity has been significantly changed in resistant cultivars and the activity of SOD, POD during 3 d to 7 d were observed in resistant cultivars of 'Keiun' and 'Han6' than in 'Jinba'. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) activity were enhanced in aphid inoculated plants compared with the control. It responsed increased fastly and peak earlier, and maintain high activity levels post-inoculation. We suggest that antioxidant and defense enzymes both contribute to aphid resistance of these chrysanthemum cultivars, it can be used as one of biochemical marker for aphid resistance of seedlings of cut flower in chrysanthemum.
     3. Transgenic Chrysanthemum Plants Expressing a LLA Gene via Agrobacterium-mediated.
     Using leaf disks of cut-flower chrysanthemum 'Jinba' as explants, the concentration of the appropriate antibiotic selection has been studied, The results showed that the leaf was very sensitive to hygromycin (Hyg) and carbenicillin (Carb),10 mg·L-1 of Hyg concentration had been completely inhibited differentiation and rooting of adventitious buds could be completely restricted with 20 mg·L-1. In actual research, concentration of Hyg for selecting was a little lower than critical concentration, so we chose 8-10 mg·L-1 as the optimal concentration of Hyg for Leaf disc regeneration and 20 mg·L-1 for root selecting. Also, the leaf was very also sensitive to Carb. The Carb concentration had a certain degree inhibition of chrysanthemum. As the concentration elevated, the effect of inhibition increased, but the rate of bud differentiation had declined. Carb concentration 500 mg·L-1 could completely control the growth of bacterium but inhibit the shoot regeneration severely. While the concentration declined with 300 mg·L-1, it could be restrain the bacterium completely but keep higher regeneration rate of 50%. So we carried with gradual-reducing bacterium controlling method, using 500 mg·L-1 of Carb concentration in the early stage, then declined to 250-300 mg·L-1.
     The LLA gene was successfully transferred into chrysanthemum via Agrobacterium-mediated leaf transformation, One hundred and five resistance bud were obtained. Fifty-four putative transformants of chrysanthemum were obtain after root screening. Polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR) analysis showed that the LLA gene was successfully integrated into the chrysanthemum genome and expressed in seven transgenic lines. The artificial aphid inoculation test showed that the aphid resistance of different transgenic plants was different, and the rate of aphid population inhibition ranged from 12.2% to 76.8% with an average inhibition rate of 41.8% in transformed chrysanthemum.
引文
1. Agarwal RA. Characteristics of sugarcane and insect resistance. Entomological Experimentalis at Applicata,1969,12:767-776.
    2. Annadana S, Mlynarova L, Udayakumar M, et al. The potato Lhca3. St.l promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters. Molecular Breeding,2001,8:335-344.
    3. Annadana S, Rademaker W, Ramanna M, et al. Response of stem explants to screening and explant source as a basis for methodical advancing of regeneration proyocols for chrysanthemum. Plant Cell Tiss Org Cult,2000,62:47-55.
    4. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373-399.
    5. Argandona VH, Chaman M, Cardemil L, et al. Ethylene production and peroxidase activity in aphid-infested barley. J Chem Ecol,2001,27:53-68.
    6. Aswath CR, Mo SY, Kim SH, et al. IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendrathema grandiflora (Ramat.) Kitamura). Plant Sci,2004,166: 847-854.
    7. Baldwin IT, Schultz JC. Rapid changes in tree leaf chemistry induced by damage evidence of communication between plants. Science,1983,221:277-279.
    8. Boase MR, Bradley JM, Borst NK, et al. Genetic transformation mediated by Agrobacterium tumefaciens of'florists'chrysanthemum(Dendranthema xgrandiflorum) cultivar'Peach Margaret'. In Vitro Cell Dev Biol Plant,1998,34(1):46-51.
    9. Boase MR, Butler RC, Borst NK. Chrysanthemum cultivar-Agrobacterium interactions revealed by GUS expression time course experiments. Scientia Horticulture,1998,77:89-107.
    10. Bostwick DE, Skaggs MI, Thompson GA. Oranization and characterization of cucurbita phloem lectin genes. Plant Mol Boil,1994,26:887-897.
    11. Boulter D. Additive protective effects of incorporating two different higher plant insect resistance genes in transgenic tobacco plants. Corp Protect,1990, (9):351-354.
    12. Boyko EV, Smith CM, Thara VK, et al. The molecular basis of plant gene expression during aphid invasion:wheat Pto-and Pti-like sequences are involved in interactions between wheat and russian wheat aphid (Homoptera: Aphididae). J Eco Entomol,2006,99:1430-1445.
    13. Cammue BPA, Peeters B, Peumans WJ. A new lectin from tulip (Tulipa) bulbs. Planta,1986,169: 583-588.
    14. Chakrabarty DA, Mandal KA, Datta SK. Management of chimera throuth direct shoot regeneration from florets of chrysanthemum. Journal of Hort Sci and Biotech.1999,74 (3):293-296.
    15. Chapman R F. The chemical inhition of feeding by phytophagous insects:a review. Bull Ent Res, 1974,64:339-363.
    16. Chen W, Zhou Q, Li X, et al. Physiological responses of different rice cultivars under herbivore stress. Acta Ecol Sin,2006,26:2161-2166.
    17. Chrispeels MJ, Raikhel NV. Lectin genes and their role in plant defense. Plant Cell,1991,3:1-9.
    18. Ciepiela AP, Sempruch C, Chrzanowski G. Evaluation of natural resistance of winter triticale cultivars to grain aphid using food coefficients. Applied Entomology,1999,123:491-494.
    19. Ciepiela A. Biochemical basis of winter wheat resistance to the grain aphid, Sitobion avenae. Entomol Exp Appl,1989,51:269-275.
    20. Courtney-Gutterson N, Napoli C, Lemieux C, et al. Modification of lower color in florist's chrysanthemum:production of a white-flowering variety through molecular genetics. Bio-Technology,1994,12:268-271.
    21. Courtney-Gutterson N, Otten A, Firoozabady E, et al. Production of genetically engineered color-modified chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta Hortic,1993,336:57-62.
    22. Czapla TH, Lang BA. Effect of plant lectins on the larval development of European corn borer and Southern corn rootworm. Journal of Economic Entomology,1990,83:2480-2485.
    23. Deng YM, Chen SM, Lu AM, et al. Production and characterization of the intergeneric hybrids between Dendranthema morifolium and Artemisia vulgaris exhibiting enhanced resistance to chrysanthemum aphid (Macrosiphoniella sanbourni). Planta,2010,231:693-703.
    24. Devonshire AL, Field LM. Gene amplification and insecticide resistance. Annu Rev Entomol,1991, 36:1-23.
    25. Dicke M. Local and systemic production of volatile herbivore-induced terpenoids:their role in plant mutualism. Plant Physiol,1994,143:465-472.
    26. Dolgov SV, Mityshkina TU, Rukavtsova EB, et al. Production of transgenic plants of chrysanthemum motifolium ramat with gene of Bacthuringiensisdelta-endotoxin. Acta Hort,1995, 420:46-47.
    27. Eigenbrode SD, Espelie KE, Shelton AM. Behavior of neonate diamondback moth larvae on leaves and on extracted leaf waxes of resistant and susceptible cabbages. Chem Ecol,1991,17: 1691-1704.
    28. Farenkel GS. The arison detre of secondary plant substances. Science,1959,129:1466-1470.
    29. Felton GW, Donato KK, Broadway RM, et al. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore Spodoptera exigua. J Insect Physiol,1992,38: 277-285.
    30. Felton GW, Summers CB, Muller AJ. Oxidative responses in soybean foliage to herbivoryby bean leaf beetle and three cornered alfalfa leafhopper. J Chem Ecol,1994,20:639-650.
    31. Fitches E, Gatehouse AMR, Gatehouse JA. Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth(Lacanobia oleracea) larvae in laboratory and glasshouse trials. Insect Physiol,1997,43:727-739.
    32. Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell,2005b,17:1866-1875.
    33. Gaspar T, Penel C, Hagege D, et al. Peroxidases in plant growth, differentiation, and development processes. In: Lobarzewski J, Greppin H, Penel C, Gaspar T.(Eds.), Biochem Mol Physiol. Aspects of Plant Peroxidases. University M. Curie-Sklodowska, Lublin, pp,1991,249-280.
    34. Gerasimova NG, Pridvorova SM, Ozeretskovskaya OL. Role of L-phenylalanineammonia lyase in the induced resistance and susceptibility of potato plants. Appl Biochem Microbiol,2005,41: 103-105.
    35. Gomez SK, Oosterhuisb DM, Hendrixc DL, et al. Diurnal pattern of aphid feeding and its effect on cotton leaf physiology. Environ Exp Bot,2006,55:77-86.
    36. Havlickova H. Differences in level of tolerance to cereal aphids in five winter wheat cultivars. Rostlinna Vyroba,1997,43 (12):593-596.
    37. Hilder VA, Powell KS, Gatehuse AMR, et al. Expression of tobacco plants results in added snow drop lectin transgenic protectin against aphids. Trans-genic Ressearch,1995,4:18-25.
    38. Hong B, Tong Z, Ma N, et al. Heterologous expression of the AtDREBlA gene in chrysanthemum in creases drought and salt stress tolerance. Science in China Series C. Life Sciences,2006,49 (5): 436-445.
    39. Hong B, Tong Z, Ma N. Kasuga M, et al. Heterologous expression of the AtDREBIA gene in transgenic chrysanthemum enhances tolerance to low temperature. Journal of Horticultural Science and Biotechnology,2006,81 (6):1002-1008.
    40. Ieamkhang S, Chatchawankanphanich O. Augmentin as an alternative antibiotic for growth suppression of Agrobacterium for tomato (Lycopersicon esculentum) transformation. Plant Cell Tiss Org,2005,82:213-220.
    41. Jeffree CE. The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, function and evolution. In:Insects and plant surface (ed.by B.E. Juniperand S.R.Southwood). Edward Arnold Ltd,1986.
    42. Karban R, Kuc J. Induced resistance against pathogens and herbivores:An overview. In:Agrawal A A, Tuzun S, Bent E, eds, Induced plant defenses against pathogens and herbivores. APS Press, St. Paul, Minnesota pp,1999,1-15.
    43. Karle R, Meldrajs J. Druka A, et al. Fransient expression of a foreign gene in chrysanthemum protoplasts. In: Dala B, Latvijas Zinamu Akademijas Vestis. Eds. Dabaszinatnes,1993,62-64.
    44. Kaul V, Miller RM, Hutchinson JF, et al. Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev (syn Chrysanthemum morifolium Ramat). Plant Cell Tiss Org, 1990,21:21-30.
    45. Kerstiens G. Plant cuticles. Bios Scientific Publishers Limited,1996:201-221.
    46. Kim M, Kim J, Hee Y. Plant regeneration and flavonoid 3V,5V-hydroxylase gene transformation of Dendranthema indicum and Dendranthema zawadskii. J Kor Soc Hortic Sci,1998,39:355-359.
    47. Ledger SE, Deroles SC, Given NK. Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep,1991,10:195-199.
    48. Le-Feuvre RR, Ramirez CC, Olea N, et al. Effect of the antimicrobial peptide indolicidin on the green peach aphid Myzus persicae (Sulzer). Journal of Applied Entomology,2007,131:71-75.
    49. Lemieux C. Transformation of chrysanthemum cultivarswith Agrobacterium tumefaciens [C] //Horticulture Biotechnology Symposium. Davis: University of California,1989:21-23.
    50. Lowe HJB. Development and practice of a glasshouse screening technique for resistance of wheat to the aphid sitobion avenae. Annals of Applied Biology.,2008,104:297-305.
    51. Maffei ME, Mithofer A, Boland W. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochem,2007,68:2946-2959.
    52. Matern U, Kneusel RE. Phenolic compounds in plant disease resistance. Phytoparasitica,1988,16: 153-170.
    53. May RA, Triginano RN. Somatic embryogenesis and plant regeneration from leaves of Dendranthema grandiflora. Am Soc Hortic Sci,1991,116 (2):366-371.
    54. Meyer P. Variation of transgene expression in plants. Euphytica,1995,85:359-366.
    55. Mitiouchkina TY, Dolgov SV. Modification of chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes introduction. Acta Hortic,2000b,508:163-169.
    56. Mohase L, van der Westhuizen AJ. Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J Plant Physiol,2002,159:585-590.
    57. Moloi MJ, van der Westhuizen AJ. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J Plant Physiol,2006,163:1118-1125.
    58. Moran PJ, Thompson GA. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol,2001,125:1074-1085.
    59. Nauerby B, Billing K, Wyndaele R. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci,1997,123:169-177.
    60. Ni X, Quisenberry SS, Hegn-Moss J, et al. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera:Aphididae) feeding. J Eco Entomol,2001,94:743-751.
    61. Paiva NL. An introduction to the biosynthesis of chemicals used in plant-microbe communication. J Plant Growth Regul,2000,19:131-143.
    62. Panda N. Principles of host-plant resistance to insect pests. New York:John Wwiley&Sons,1979.
    63. Pang YZ, Yao JH, Shen GA, et al. Transgenic tobacco expressing Lycoris radiata Agglutinin showed enhanced resistance to aphids. Acta Botanica Sinica,2004,46 (7):767-772.
    64. Park SJ, Huang Y, Ayoubi P. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta,2005,223: 932-947.
    65. Pedrobarbosa A. Peaaphid (Homoptera:Aphididae) fecundity, reat of increase, and within-plant distribution unaffected by plant morphology. Environmental Entomology,2000,29 (5):987-993.
    66. Petty LM, Thompson AJ, Thomas B. Modifying chrysanthemum(Dendranthema grandiflorum) growth habit by genetic manipulation. Acta Hort,2000,508:319-321.
    67. Peumans WJ, Van Damme EJM. Plant lectins:Versatile proteins with important perspectives in biotechnology. Biotechnology and Genetic Engineering Reviews,1998,15:199-228.
    68. Powell G, Tosh CR, Hardie J. Host plant selection by aphids:behavioral, evolutionary, and applied perspectives. Annu Rev Entomol,2006,51:309-330.
    69. Qin QJ, Shi XY, Liang P, et al. Induction of phenylalanine ammonia-lyase and lipoxygenase in cotton seedlings by mechanical wounding and aphid infestation. Pro Natural Sci,2005,15: 419-423.
    70. Qubbaj T, Reineke A, Zebitz CPW. Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomol Exp Appl,2005,115:145-152.
    71. Renou P, Brochard P, Jalouzot R. Recovery of transgenic Chrysanthemum(Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci,1993,89:185-197.
    72. Ripoll C, Favery B, lecomte P, et al. Evaluation of the ability of lectin from snowdrop glanthus nivalis to protect plants against root-knot nematodes. Plant Sci,2003,164 (4):517-523.
    73. Ro TH, Long GE. GPA-Phenodynamics, a simulation model for the population dynamics and phenology of green peach aphid in potato: formulation, validation, and analysis. Ecological Modelling,1999,119:197-209.
    74. Robert TG, Jan P. Change in response of rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomol Exp Appl,2001,94:325-331.
    75. Rout GR, Das P. Recent trends in the biotechnology of chrysanthemum:a critical review. Sci Hort, 1997,69 (3/4):239-257.
    76. Russin JS, Guo BZ, Tubajika KM, et al. Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Biochem Cell Bio,1997,87:529-533.
    77. Sandstrom JP, Moran NA. Amino acid budgets in three aphid species using the same host plant. Physiological Entomology,2001,26:202-211.
    78. Sauge MH, Lacroze JP, Poessel JL, et al. Induced resistance by Myzus persicae in the peach cultivar 'Rubira'. Entomologia Experimentalis et Applicata,2002,102:29-37.
    79. Shepherd T, Robertson GW, Griffiths DW, et al. Epicuticular wax ester and triacylglycerol composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochem,1999,52:1255-1267.
    80. Sherman JM, Moyer JW, Daub ME. Tomato spotted wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene[J]. Plant Disease,1998,82:407-414.
    81. Shi Y, Wang MB, Powell S. Use of the rice surrose synthasel promoter to direct pheoem-specific expression of p-glucuronidase and snowdrop lectin genes in transgenic tobacco plants[J]. Journal of Experimental Botany,1994,45:623-631.
    82. Shinoyama H, Kazuma T, Komano M. An efficient transformation system in chrysanthemum [Dendranthema×grandiflorum (Ramat.) Kitamura] for stable and non-chimeric expression of foreign genes. Plant Biotech,2002,19 (5):335-343.
    83. Smith CM, Boyko EV. The molecular bases of plant resistance and defense responses to aphid feeding:current status. Entomol Exp Appl,2007,122:1-16.
    84. Spiller NJ. Comparison of the level of resistance in diploid Triticum monococcum and hexaploid T.aeslivum wheat seedling to the aphids Metoohium dirkodum and R.Padi. Annals of Applied Biology,1986,109:173-177.
    85. Sun DX, Shang XW, Shi GY, et al. Effect of four kinds of enzymes on resistance to aphid of spring wheat. J Gansu Agric Univ,2006,5:45-49.
    86. Taiz L, Zeiger E. Plant Physiology. Sinauer Associates Inc. Publishers. Sunderland, Massachetts, 1998.
    87. Takatsu Y, Nishizawa Y, Hibi T, et al. Transgenic chrysanthemum [Dendranthema grandiflorum (Ramat.) Kitamura] expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Scientia Horticulturae,1999,82:113-123.
    88. Tanaka K, Kanno Y, Kudo S, et al. Somatic embryogenesis and plant regeneration in chrysanthemum [Dendranthema×grandiflorum (Ramat.) Kitamura]. Plant Cell Rep,2000,19: 946-953.
    89. Tang KX, Tinjiang JP, Xu YN, et al. Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta,1999,208 (4):552-563.
    90. Toguri T, Ogawa T, Katitani M, et al. Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora) plants with a disease resistance gene (pacl). Plant Biotechnol,2003, 20:121-127.
    91. Tunispeed SG. Influence of trichome variations on populations of phttophagous insect in soybean. Environ Entomol,1977,6:815-817.
    92. Turlings TCJ, Tumlinson JH. Do parasitoids use herbivore-induced plant chemical defenses to ocate hosts? Florida Entomol,1991,74 (1):42-50.
    93. Urban LA, Sherman JM, Moyer JW, et al. High frequency shoot regeneration and Agrobac terium-mediated transformation of chrysanthemum (Dendranthema grandiflord). Plant Sci,1994, 98:69-79.
    94. Waibel H. The economics of integrated pest control in irrigated rice-A case study from the phillipines. Berlin:springer-verlag,1987.
    95. Wang ZY, Sun XF, Tang KX, et al. Enhacement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants. J Biosci,2005b,30 (5):627-638.
    96. Wang ZY, Sun XF, Wang F, et al. Enhanced resistance of snowdrop lectin (Galanthus nivali agglutinin) expressing maize to Asian corn borer (ostrinia furncalis Guenee). J Integrative Plant Biol,2005a,47 (7):873-880.
    97. Vaughn KC, Duke SO. Function of polyphenol oxidase in higher plants. Physiol Plant,1984,60: 106-112.
    98. Wei HR, Li FL. Some relationships between leaf structure and resistance to insects of elms. J Beijing Forest Univ (English Ed.),1995,1:17-26.
    99. Wilkinson TL, Douglas AE. Phloem amino acids and the host plant range of the polyphagous aphid, aphis fabae. Entomological Experimentalis at Applicata,2003,106:103-113.
    100. Xinzhi NI, Sharron QS, Blair SD, et al. Influence of cereal leaf epicuticular wax on diuraphis noxia probing behavior and nymphoposition. Entomologia Experimentalis et Applicata,1998,89: 111-118.
    101. Ye HF. Study on the resistance of rice against Sogatella furcifera (horvath). J South China Agric Univ,1989,2:150-154.
    102. Yepes LC, Mittak V, Pang SZ, et al. Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Rep,1995,14:694-698.
    103. Yin DM, Chen SM, Chen FD, et al. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot,2009,67, 87-93.
    104. Zhang SZ, Zhang F, Hua BZ. Enhancement of phenylalanine ammonia lyase, polyphenol oxidase, and peroxidase in cucumber seedlings by bemisia tabaci (Hemiptera:Aleyrodidae) infestation. China Agric Sci,2008,7:82-87.
    105. Zitoudi K, Margaritopoulos JT, Mamuris Z, et al. Genetic variation in Myzus persicae populations a ssociated with host-plant and life cycle category. Entomologia Experimentalis et Applicata,2001, 99:303-311.
    106.蔡青年,张青文,周明.小麦旗叶和穗部吲哚生物碱含量与抗麦长管蚜关系研究[J].植物保护,2002,28(2):11-13.
    107.蔡青年,张青文.小麦体内生化物质在抗蚜中的作用[J].昆虫知识,2003,40(25):391-395.
    108.常丽青,吴传芳,吕鸿周,等.红花石蒜球茎凝集素的纯化及部分性质[J].应用与环境生物学报,2005,11(2):164-167.
    109.李凤玲,徐培洲,张红宇,等.植物凝集素及其在抗虫植物基因工程中的应用[J].安徽农业科学,2006,34(3):430-432.
    110.陈巨莲,倪汉祥.麦长管蚜全纯人工饲料的研究[J].中国农业科学,2000,33(3):54-49.
    111.陈巨莲.麦类作物杭蚜性研究.中国农业科学院植保所.
    112.陈俊愉.中国花卉品种分类学[M].北京:中国林业出版社,2001,224-225.
    113.陈俊愉.中国农业百科全书观赏园艺卷[M].北京:农业出版社,1996,238-239.
    114.陈青,张银东.3种氧化酶与辣椒抗蚜性的相关性[J].热带作物学报,2004,25(3):42-46.
    115.崔新利,陈发棣,陈素梅.地被菊雨花勋章再生和遗传转化体系的建立[J].南京农业大学学报,2009,32(2):40-46.
    116.段灿星,王晓鸣.我国小麦抗麦长管蚜(Sitobion avenae)研究概况.植物遗传资源学报,2003, 4(2):175-178.
    117.高崇省,刘绍友.冬小麦品种中游离氨基酸种类及其与抗麦长管蚜的关系[J].西北农业学报,1998,7(1):23-26.
    118.高燕会,李润植,毛雪,等.植物凝集素的防卫功能及其研究进展[J].世界农业,2000,(2):3-36.
    119.高亦珂,赵勃,丁国勋,等.菊花茎叶外植体再生体系的研究[J].北京林业大学学报,2001,23(1):32-33.
    120.高莹,瞿礼嘉,陈章良.植物凝集素的分子生物学研究[J].生物技术通报,2000,5:18-22.
    121.龚学臣,季静,王罡,等.应用农杆菌介导法进行菊花的遗传转化[J].北方园艺,2005,(2):66-68.
    122.郭凤芝,冯会,姜翠翠,等.花卉香味基因工程研究进展[J].亚热带农业研究,2006,2(1):25-28.
    123.郭香墨,李根源,汪若海,等.陆地棉茸毛与抗棉蚜性关系的研究[J].华中农业大学学报,1992,11(1):36-40.
    124.韩伟.菊花品种再生体系和遗传转化的初步探索[D].华中农业大学硕士论文,2007.
    125.何富刚,刘俊,张广学,等.高粱抗高粱蚜的生化基础[J].昆虫学报,1991,34(1):38-41.
    126.洪波,仝征,李邱华,等.地被菊花'Fall Color'体细胞胚途径再生、遗传转化及转基因植株的抗寒性检测[J].中国农业科学,2006,39(7):1443-1450.
    127.洪波,张常青,李邱华,等.根癌农杆菌介导的转录因子DREBIA基因在地被菊花中的遗传转化[J].农业生物技术学报,2005,13(3):304-309.
    128.胡银岗.植物基因工程[M].西北农林科技大学出版社,2006.
    129.华南农大主编.农业昆虫学(上)第二版[M].北京:农业出版社,1994.
    130.姜伊娜,王彪,武天龙.蚜虫侵害对不同基因型大豆酶活性及次生代谢物含量的影响[J].大豆科学,2009,1(28):103-108.
    131.蒋细旺,包满珠,吴家和,等.农杆菌介导CrylAc基因转化菊花[J].园艺学报,2005,32(1):65-69.
    132.蒋细旺,包满珠.菊花转基因研究进展[J].华中农业大学学报,2003,22(6):618-623.
    133.蒋选利,李振岐,康振生.过氧化物酶与植物抗病性研究进展[J].西北农林科技大学学报,2001,6:124-129.
    134.康乐.植物对昆虫的化学防御[J].植物学通报,1995,12(4):22-27.
    135.李金梅,赵威军,张福耀,等.高粱抗蚜虫研究综述[J].杂粮作物,2006,26(5):363-365.
    136.李庆,叶华智.若干生化指标与山羊草对禾谷缢管蚜抗性的关系[J].中国农业科学,2003,36(9):1038-1043.
    137.李辛雷,陈发棣,王红,等.菊花外植体再生体系的研究[J].上海农业学报,2004,20(2):13-16.
    138.梁辉,朱银峰,朱祯,等.雪花莲凝集素基因转化小麦及转基因小麦抗蚜眭的研究[J].遗传学报,2004,31(2):189-194.
    139.梁峰,常团结.植物凝集素的研究进展[J].武汉大学学报(理学版),2002,4(2):232-238.
    140.林青萍,陈雄庭.菊花离体叶片快繁体系的建立[J].热带农业科学,2006,26(3):25-28.
    141.刘保川,陈巨莲.小麦中黄酮化合物对麦长管蚜生长发育的影响[J].植物保护学报,2003,30(1):8-12.
    142.刘长仲,兰金娜.苜蓿斑蚜对三个苜蓿品种幼苗氧化酶的影响[J].草地学报,2009,1:32-35.
    143.刘旭明,杨奇华.棉花抗蚜的生理生化机制及其与棉蚜种群数量消长关系的研究[J].植物保护学报,1993,20(1):25-29.
    144.刘裕强,江玲,孙立宏,等.褐飞虱刺吸诱导的水稻一些防御性酶活性的变化[J]..植物生理与分子生物学学报,2005,31(6):643-650.
    145.娄永根,程家安.植物的诱导抗虫性[J].昆虫学报,,1997,40(3):320-329.
    146.吕晋慧,孙明,孙磊,等.菊花基因工程研究进展[J].北方园艺,2007(1):41-43.
    147.吕晋慧,张启翔.根癌农杆菌介导的AP1基因转化菊花的研究[D].北京林业大学,2005,62-71.
    148.马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    149.潘科,黄炳球,侯学文.植物凝集素在病虫害防治中的研究进展[J].植物保护,2002,28(4):42-46.
    150.戚贤军.利用菊花花蕾诱发胚状体发生的快繁体系研究[J].浙江林业科技,2003,23(4):12-13.
    151.邵寒霜,李继红,邓学勤,等.拟南LFYcDNA的克隆及转化菊花的研究[J].植物学报,1999,41(3):268-271.
    152.孙多鑫,尚勋武,师桂英,等.四种酶与春小麦抗蚜性的相关性研究[J].甘肃农业大学学报,2006,5:45-49.
    153.孙海燕,罗兵,喻德跃.次生代谢抗虫基因工程研究进展[J].安徽农业科学,2005,3(8):1906-1907.
    154.唐岱,熊济华,王仕玉.切花菊育种问题探讨[J].云南农业大学学报,2001,16(1):46-49.
    155.王杰,胡惠露,张成林,等.菊花病虫害综合防治研究[J].应用生态学报,2002,13(4):444-448.
    156.王关林,方宏筠.植物基因工程原理与技术[M].2版.北京:科学出版社,2002.
    157.王关林,刘彦泓,郭绍华,等.雪花莲凝集素基因转化菊花及转基因植株的抗蚜性研究[J].遗传学报,2004,31(12):1434-1438.
    158.王美芳,原国辉,陈巨莲,等.我国冬麦区小麦品种抗蚜性鉴定[J].河南农业学报,2008,8:87-90.
    159.王探柱,张青文,杨奇华,等.植物抗虫性的化学基础[J].植物保护,1993,19(6):39-44.
    160.王侠礼.转基因技术在观赏植物育种中的应用[J].北方园艺,2005,(6):14-15.
    161.王逸群,荆玉祥.豆科植物凝集素及其对根瘤菌的识别作用[J].植物学通报,2000,17(2):127-132.
    162.王逸群,赵仁贵,王玉兰,等.豌豆凝集素基因转化单倍体烟草[J].吉林农业大学学报,2001,23(2):21-23.
    163.吴昌银,叶志斌,李汉霞,等.雪花莲外源凝集素基因转化番茄[J].植物学报,2000,42(7):719-723.
    164.吴廷娟,贺春贵,武德功,等.不同燕麦品种对蚜虫的抗性比较试验[J].Grassland and Turf,2007,122(3):38-40.
    165.吴月亮,张启翔.根癌农杆菌介导的PEAMT基因转化菊花的研究[D].北京林业大学,2006,23-32.
    166.武德功,贺春贵,吴廷娟,等.不同紫花苜蓿品种对蚜虫抗性的比较试验[J].Grassland and Turf,2007,123(4):54-58.
    167.夏云龙,杨奇华,萧红.冬小麦形态特征与抗麦长管蚜的关系研究[J].植物保护学报,1991,18(1):5-10.
    168.徐正浩,崔绍荣.植物次生代谢物质和害虫防治[J].植物保护,2004,30(4):8-11.
    169.薛玉柱.高粱抗蚜性生理基础的初步分析[J].作物品种资源,1982,2:32-35.
    170.杨秉耀,孔宪杨.菊花的微观形态结构与抗蚜虫作用的研究[J].华南农业大学学报,(增刊):1992,66-68.
    171.杨献光.碱裂解法提取质粒DNA的研究[J].生物技术通报,2006,6:24-26.
    172.杨致荣,毛雪,李润植.植物次生代谢基因工程研究进展[J].植物生理与分子生物学学报,2005,31(1):11-18.
    173.姚剑虹,孙小芬,唐克轩.Molecular cloning of lectin gene from lycoris radiate[J].复旦大学学报,2001,41:102-105.
    174.于敏,袁萍萍,章莹莹.植物凝集素部分生物学作用分析[J].安徽农业科学,2002,30(1):155-156.
    175.张春妮,仵均祥,戴武,等.甘蓝幼苗受桃蚜危害后叶片中部分酶活性的变化[J].西北植物学报,2005,25(8):1566-1569.
    176.张红宇,汪秀志,赵秀云.农杆菌介导的共转化体系的研究进展[J].农业生物技术科学,2004,20(2):26-28.
    177.张红宇,吴先军,唐克轩,等.半夏凝集素基因导入水稻及其表达的初步研究[J].遗传学报,2003,30(11):1013-1019.
    178.张金锋,薛庆中.稻飞虱胁迫对水稻植株内主要保护酶活性的影响[J].中国农业科学,2004,37(10):1487-1491.
    179.张军,杨庆凯.大豆接种SCN3后根部酚类化合物含量动态分析[J].中国油料作物学报,2001,4(11):44-47.
    180.张忠,叶恭银,胡萃.雪花莲凝集素抗虫作用研究进展[J].中国生物防治,2003,19(4):197-201.
    181.赵强,张廷婷,崔德才.植物来源抗虫基因的应用[J].生物技术通讯,2005,16(4):456-459.
    182.周明,谢以拴.春小麦品种对麦秆蝇抗性机制的研究[J].植物保护学报,1979,6(2):1-10.
    183.周明群.作物抗虫育种[M].北京:农业出版社,1992.
    184.周晓航,刘洪章.根癌农杆菌转基因的分子机制[J].吉林农业科学,2007,.32(1):19-25.
    185.周岩,田颖川,吴标,等.转雪花莲外源凝集素基因对桃蚜的抑制作用[J].生物工程学报,1998,14(1):13-19.
    186.周永刚,田颖川,莽克强.苋菜凝集素基因的克隆及在转基因烟草中抗蚜性研究[J].生物工程学报,2001,17(1):34-39.
    187.朱麟,古德祥.植物抗虫性概念的当代内涵[J].昆虫知识,1999,36(6):355-360.
    188.邹喻萍,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学出版社,2001.
    189.邹运鼎,孟庆雷,马飞,等.“8455"小麦植株化学成分与麦蚜(长管蚜、二义蚜)种群消长的关系[J].应用生态学报,1994,5(3):276-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700