拟薄水铝石复合溶胶自组装稀土荧光体的微结构与光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对光电子信息领域的几种球形稀土掺杂荧光体材料,发展了一种利用纳米拟薄水铝石胶粒特性的多尺度复合溶胶体系的雾化-灼烧制备荧光材料的技术路线。采用含纳米胶粒的拟薄水铝石胶体和二氧化硅纳米粉体作为铝源和硅源,配合硝酸锶、硝酸铕、硝酸镝等形成复合胶体,采用雾化—灼烧技术制备了Al_2O_3:Eu~(3+)、SrAl_2O_4:Eu~(2+),Dy~(3+)、Sr_2Al_2SiO_7:Eu~(3+)及Sr_2Al_2SiO_7:Eu~(2+)荧光材料。从原子结构、纳米、微米多尺度层次上,分析离子、纳米晶粒、纳米胶粒自组装分级结构球形荧光颗粒的形成机理。将雾化过程工艺参数关联荧光体微结构和光谱性能,以实现荧光颗粒粒径、形貌和发光性能的可调控。取得如下主要成果:
     1.解析了胶溶后的纳米拟薄水铝石胶粒的细微结构。XRD和场发射透射电镜分析结果显示,拟薄水铝石原料是由纳米AlOOH晶粒组成的多晶粉末。加入HNO_3作为胶溶剂,调节pH=2.0得到胶粒大小~30nm的稳定胶体。提出拟薄水铝石胶溶机理为:胶溶剂HNO_3与部分拟薄水铝石纳米晶粒表面发生化学反应,未反应的纳米晶粒作为胶核并带正电,胶核吸附溶剂中的NO_3~-离子形成双电层,增大胶粒间的空间位阻,从而获得稳定的拟薄水铝石胶体。
     2.研究并提出了溶液和拟薄水铝石胶体作为喷雾前驱体,获得亚微米球形干燥颗粒的形成机理和模型。研究发现溶液干燥结晶过程符合均相成核机理;拟薄水铝石胶体干燥过程中,胶粒作为晶种,胶体干燥过程符合非均相成核机理。拟薄水铝石纳米胶粒本身由纳米尺度AlOOH晶粒组成,纳米胶粒间再因范德华力、毛细管力等自发聚集,形成具有分级结构的球形拟薄水铝石干凝胶颗粒。
     3.解析了纳米拟薄水铝石胶粒与稀土铕离子之间形成的稀土复合胶体的粒子行为,考察得到凝胶化后形成的纳米/微米颗粒的分级结构规律。研究发现Eu~(3+)离子在拟薄水铝石胶粒表面的吸附为自组装过程。Eu~(3+)离子在静电引力作用下,自发地在拟薄水铝石胶核表面发生化学吸附形成正电性胶核。Eu~(3+)离子发射光谱特征研究表明Eu~(3+)离子在拟薄水铝石胶粒表面的吸附密度D(mol/m~2)决定于AlOOH与Eu~(3+)物质的量之比。正电性胶核吸附溶剂中的NO_3~-离子形成胶粒,再由胶粒自组装形成三维分级结构的AlOOH/Eu(NO_3)_3干凝胶颗粒。
     AlOOH/Eu(NO_3)_3干凝胶颗粒经高温灼烧获得球形三维梯次结构Al_2O_3:Eu~(3+)荧光颗粒。研究了激活剂Eu~(3+)离子对AlOOH高温相变的影响,XRD和热分析结果表明,在AlOOH中掺杂2%(摩尔比)Eu~(3+)离子使γ-Al_2O_3→θ-Al_2O_3相变温度从882℃升高到1054℃,θ-Al_2O_3→α-Al_2O_3相变温度从1224℃升高到1237℃。升高的原因是:一方面,晶格常数计算结果表明Eu~(3+)在γ-Al_2O_3和θ-Al_2O_3基质中部分取代Al~(3+)离子,阻碍了Al~(3+)离子扩散,使基质晶粒生长速度减小:另一方面由于θ-Al_2O_3→α-Al_2O_3相变时生成少量化合物EuAl_(12)O_(19),EuAl_(12)O_(19)在晶界间存在,阻碍相变过程的Al~(3+)离子扩散。
     对Al_2O_3:Eu~(3+)荧光体的发光性能做了分析。结果显示,γ-Al_2O_3和θ-Al_2O_3基质中Eu~(3+)离子~5D_0→~7F_2跃迁对应的发射峰位于617nm,与大晶粒Eu_2O_3中Eu~(3+)离子~5D_0→~7F_2跃迁发射(612nm)相比红移5nm。
     4.用拟薄水铝石复合溶胶喷雾-灼烧方法制备了不需研磨的SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉荧光颗粒。与固相法相比,喷雾干燥法具有低温烧成、形貌粒度可控的特点。添加少量H_3PO_4作为助熔剂,采用喷雾干燥工艺1200℃灼烧得到不需研磨的直径~5μm的球形SrAl_2O_4:Eu~(2+)_(0.02),Dy~(3+)_(0.04)长余辉荧光颗粒。该荧光体发射主峰位于516nm,陷阱深度为0.589eV。
     5.首次采用纳米拟薄水铝石胶粒、纳米氧化硅和稀土硝酸盐形成复合溶胶,制备并研究了铕离子掺杂的Sr_2Al_2SiO_7荧光体,对荧光体微结构及其光谱进行了解析。以Sr_2Al_2SiO_7作为荧光体基质目前没有文献报道。研究了基质Sr_2Al_2SiO_7的形成过程机理。提出了干凝胶颗粒中组分AlOOH、SiO_2和Sr(NO_3)_2间的反应机理为:灼烧过程首先发生AlOOH和Sr(NO_3)_2的分解反应,并生成SrAl_2O_4和Sr_2SiO_4,SrAl_2O_4与Sr_2SiO_4从1000℃开始相互反应生成Sr_2Al_2SiO_7,至1200℃完全反应得到Sr_2Al_2SiO_7纯相。
     6.研究了不同灼烧温度制备的Sr_2Al_2SiO_7:Eu~(3+)荧光体的发光性能和机理。Sr_2Al_2SiO_7:Eu~(3+)荧光体的578nm,593nm,613nm三个发射峰,分别来自Eu~(3+)离子从基态~5D_0到~7F_0,~7F_1,~7F_2的跃迁。提出了将~5D_0→~7F_2的相对发射强度与~5D_0→~7F_1的发射强度的比值k作为研究Sr_2Al_2SiO_7基质对称性的依据,从1000℃开始到1400℃随着灼烧温度的升高,k值增大,说明基质晶体对称性随灼烧温度的升高而增强。
     7.对Sr_2Al_2SiO_7:Eu~(2+)荧光体发光性能和发光机理进行了分析。XRD分析及晶体常数结果表明,Eu~(2+)离子取代Sr~(2+)离子进入基质Sr_2Al_2SiO_7的晶格,形成取代固溶体。其激发谱主要由峰值位于326nm附近的带构成,属于Eu~(2+)的4f→5d跃迁吸收带。发射光谱峰值波长位于~500nm,属于典型的Eu~(2+)离子4f~65d~1到4f~7组态间跃迁导致的宽带发射。
     研究了Mg~(2+)、Ca~(2+)、Ba~(2+)阳离子部分取代基质Sr_2Al_2SiO_7中的Sr~(2+)离子对Sr_2Al_2SiO_7基质微结构和Sr_2Al_2SiO_7:Eu~(2+)荧光体发光性能的影响。结果表明,由于Mg~(2+)、Ca~(2+)离子部分取代半径比它大的Sr~(2+)离子导致基质晶体场强度减弱,Eu~(2+)的5d能级劈裂减小,Eu~(2+)离子的最低4f~65d态移向高能,导致Eu~(2+)离子发射峰主峰分别蓝移至470nm和496nm。Ba~(2+)离子电负性和离子半径比Sr~(2+)离子大,取代Sr_2Al_2SiO_7中Sr~(2+)离子后,处在其周围的Eu~(2+)离子外层电子受Ba~(2+)离子影响,电子云膨胀;同时,掺入Ba~(2+)离子后Sr_2Al_2SiO_7晶场强度增强,晶场对Eu~(2+)离子5d能级的劈裂程度增大,发射峰红移至520hm。通过阳离子掺杂实现Sr_2Al_2SiO_7:Eu~(2+)荧光体发射光谱可调,对多基色配色实现白光发射具有重要的意义。
A two-step of Spraying and Sintering of Pseudoboehmite Composite Sol (SSPCS) technique was developed to fabricate several hierarchical sphere-like phosphors for optoeletronic field. Stable pseudoboehmite composite sol was obtained using pseudoboehmite sol as dispersant, with the addition of SiO_2, Sr(NO_3) _2, Eu(NO_3) _3 and Dy(NO_3) _3.The self-assembly mechanisms of ions, nanocrystals and colloidal nanoparticles consisted in the composite sol were analyzed on multi-scales of atom, nanometer and micrometer. Phosphors of Al_2O_3:Eu~(3+), SrAl_2O_4:Eu~(2+),Dy~(3+), Sr_2Al_2SiO_7:Eu~(3+) and Sr_2Al_2SiO_7:Eu~(2+) were prepared by the SSPCS technique. The granularity and morphology of the phosphors can be controlled by changing the composite sol concentration and the spraying parameters. The influences of microstructures on the photoluminescence characteristics of the phosphors were analyzed. The main results as following:
     1.The microstructures of pseudoboehmite colloidal particles were investigated. XRD and Field Emission Transmission Electron Microscope (FETEM) results show that pseudoboehmite powder is composed of AlOOH nanocrystals. Stable pseudoboehmite sol was obtained by adding HNO_3 as peptizing agent and adjusting pH=2.0.The peptizing mechanism was presented. HNO_3 react with AlOOH at the interfaces of AlOOH nanocrystals. The AlOOH nanocrystals were electropositive when pH=2.0 adjusted by HNO_3.Negative NO_3~-ions were then adsorbed on the AlOOH nanocrystal surface and formed electronic double layer. TEM result shows that the AlOOH colloidal particle size is~30nm.
     2.The crystallization mechanism for pseudoboehmite sol was different from that for nitrate solution during the spray-drying process. The crystallization of nitrate solution during spray-drying process is presumed fitting homogeneous nucleation mechanism. However, as for pseudoboehmite sol, colloidal AlOOH nanoparticles act as crystallization centres. The crystallization of pseudoboehmite sol agrees with a heterogeneous nucleation mechanism. Colloidal AlOOH nanoparticles agglomerated under van der waals and capillary forces and formed hierarchical sphere dry AlOOH gel particles in the spray-drying process.
     3.The interaction of Eu~(3+) ions and colloidal AlOOH nanoparticle was investigated. The self-assembly of Eu~(3+) ions on the surface of AlOOH nanocrystal was attributed to the chemical adsorption caused by electrostatic attraction. Electropositive colloidal nucleus AlOOH/Eu~(3+) were consequently formed. The photoluminescence characters of Eu in AlOOH/Eu(NO_3) _3 composite sol system show that the adsorption density of Eu~(3+) ions on colloidal AlOOH nucleus is determined by the mol ratio of Eu~(3+) to AlOOH. AlOOH/Eu(NO_3) _3 colloidal particles were composed of AlOOH/Eu~(3+) nucleus and NO_3~-electronic double layer. Three-dimensional hierarchical sphere dry AlOOH/Eu(NO_3) _3 gel particles were prepared by spray-drying technique, using AlOOH/Eu(NO_3) _3 composite sol as precursor.
     Hierarchical Al_2O_3:Eu~(3+) phosphor particles were obtained by sintering dry AlOOH/Eu(NO_3) _3 gel particle at a temperature range of 600~1000℃. The effect of dopant Eu~(3+) ion on the phase transformation of AlOOH was investigated. XRD and DSC results indicated that the phase transformation temperatures ofγ-Al_2O_3→θ-Al_2O_3 andθ-Al_2O_3→α-Al_2O_3 were increased from 882℃to 1054℃and 1224℃to 1237℃, respectively, by doping 2%(mol) Eu~(3+) ion. The calculated lattice constants results indicate that Eu~(3+) ions partial substitute Al~(3+) ions inγ-Al_2O_3 andθ-Al_2O_3 lattices. The crystal growth ofγ-Al_2O_3 andθ-Al_2O_3 phases is hindered by the Eu~(3+) ions. A newly formed compound EuAl_(12) O_(19) was detected by XRD. The compound EuAl_(12) O_(19) possibly resultes in the increase of theθ-Al_2O_3→α-Al_2O_3 phase transformation temperature.
     The photoluminescence spectra of Al_2O_3:Eu~(3+) phosphor was detected. The emission of 578nm, 588nm(593nm) and 616nm are attributed to the transition from ~5D_0 to ~7F_0, ~7F_1 and ~7F_2 in Eu~(3+) ions of Al_2O_3:Eu~(3+) phosphor, respectively. The emission of ~5D_0→~7F_2 transition lies at 617 nm, which is same to the emission of Eu~(3+) ion inα-Al_2O_3:Eu~(3+) nanoparticle and has a red shift of 5nm compared with the emission of Eu~(3+) ion in bulk Eu_2O_3.
     4.Spheric SrAl_2O_4:Eu~(2+)_(0.02) ,Dy~(3+)_(0.04) afterglow phosphor was prepared by the SSPCS technique, with addition of a small amount of H_3PO_4 as flux. The SrAl_2O_4:Eu~(2+)_(0.02) ,Dy~(3+)_(0.04) phosphor particles were unnecessary of further ball-grinding and with a mean particle size of~5μm. The spectra study indicated that the emission spectra of the SrAl_2O_4:Eu~(2+)_(0.02) ,Dy~(3+)_(0.04) phosphor was a broad band spectra peaking at 516 nm. The trap depth of the SrAl_2O_4:Eu~(2+)_(0.02) ,Dy~(3+)_(0.04) phosphor was calculated to be 0.589eV.
     5.Substrate Sr_2Al_2SiO_7 and phosphors Sr_2Al_2SiO_7:Eu~(3+) and Sr_2Al_2SiO_7: Eu~(2+) were prepared by the SSPCS technique. The reaction mechanism for synthesization of substrate Sr_2Al_2SiO_7 was investigated. The dry gel particles were consisted of AlOOH, SiO_2 and Sr(NO_3) _2.On heating, the components AlOOH and Sr(NO_3) _2 decomposed and reacted with each other. Two compounds SrAl_2O_4 and Sr_2SiO_4 were synthesized when the sintering temperature was below 1000℃. XRD results showed that pure Sr_2Al_2SiO_7 compound was composed when the sintering temperature was above 1200℃.
     6.The photoluminescence characteristics and mechanisms of the Sr_2Al_2SiO_7:Eu~(3+) phosphors obtained with different sintering temperatures were examined. The emission of 578nm, 593nm and 616nm are attributed to the transition from ~5D_0 to ~7F_0, ~7F_1 and ~7F_2 in Eu~(3+) ions of Sr_2Al_2SiO_7:Eu~(3+) phosphor, respectively. The ratio of intensity of 613nm peak to that of 578nm peak was defined as k. The value of k increased with the increasing of sintering temperature from 1000℃to 1400℃. It indicates that the crystal symmetry of substrate Sr_2Al_2SiO_7 enhances with the increasing of sintering temperature.
     7.The photoluminescence characteristic and mechanism of the Sr_2Al_2SiO_7:Eu~(2+) phosphor was detected. XRD result and the calculated lattice constant indicate that the Eu~(3+) ions partial substitute on Sr~(2+) sites in Sr_2Al_2SiO_7 lattice. The emission peak centered at 500nm observed in the Sr_2Al_2SiO_7: Eu~(2+) phosphor was considered arise from the transition of 4f~6 5d~1→4f~7 in Eu~(2+) cation.
     The substitution mechanisms of Mg~(2+) ,Ca~(2+) and Ba~(2+) ions for Sr~(2+) in Sr_2Al_2SiO_7 lattice were respectively discussed. The effects of the substitutions on the microstructures and the photoluminescence characteristics of Sr_2Al_2SiO_7:Eu~(2+)phosphors were researched. It indicates that the crystal field intensity of Sr_2Al_2SiO_7 decreases when the Sr~(2+) site is substituted with Mg~(2+) or Ca~(2+) ion. which size are smaller than that of Sr~(2+) ion. The split of 5d energy level of Eu~(2+) decreases and the emission spectra of peak Sr_2Al_2SiO_7:Eu~(2+) phosphor blue shifts to 470nm or 496nm when substitute Sr~(2+) with Mg~(2+) or Ca~(2+) ions。On the contrary, for larger ion, the substitution of Ba~(2+) for Sr~(2+) results in increasing of the crystal field intensity of Sr_2Al_2SiO_7.The split of 5d energy level of Eu~(2+) increases. The emission spectra of Sr_2Al_2SiO_7:Eu~(2+) phosphor shift to 520nm.
引文
[1] 杨儒,张广延,李敏,江南,超临界干燥制备纳米SiO_2粉体及其性质,硅酸盐学报 2005,33(3):287-292
    [2] 李光旻,稀土掺杂含氧酸盐荧光材料的制备及真空紫外—紫外光谱研究,[硕士学位论文],天津理工大学,2006
    [3] 张纳,白光二极管用钇铝石榴石荧光材料的制备与光谱调控,[硕士学位论文],天津理工大学,2006
    [4] R. Petrovic, S. Milonfic, V. Jokanovic, L. Kostic-Gvozdenovic, et.al, Influence of synthesis parameters on the structure of boehmite sol particles, Powder Technology, 2003, 133(1-3): 185-189
    [5] C. Scott Nordahl, Gary L. Messing, Thermal analysis of phase transformation kinetics in α-Al_2O_3 seeded boehmite and γ-Al_2O_3, Thermochimica Acta, 1998, 318: 187-199
    [6] C.-K. Loong, J.W.Richardson et. al., Structural phase transformations of rare-earth modified transition alumina to corundum, J. Alloys Compounds, 1997, 250: 356-359.
    [7] J. A. Lewis, Colloidal Processing of Ceramics, J. Am.Ceram. Soc. 2000, 83: 2341-59
    [8] S. Mukhopadhyay, S. Ghosh, et. al., Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultra low cement castable, Ceramics International, 2002, 28: 719-729.
    [9] Q. Y. Zhong, X. W.Chong, T. G. Xiao, L. Cun, Photoluminescent properties of boehmite whisker prepared by sol-gel process, Journal of Luminescence, 2004, 106: 153-157
    [10] 蒙延双,王达健,李岚,等.锶铝比对稀土掺杂铝酸锶物相及发光性能的影响,中国稀土学报,2005,23(3):277.
    [11] Zhang Na, Wang Da-jian, Li Lan et al. YAG: Ce phosphors for WLED via nano-pseudoboehmite sol-gel route, J Rare Earth, 2006, 24: 294-297
    [12] A. Corina Geiculescu, Thomas F. Strange, A microstructural investigation of low-temperature crystalline alumina films grown on aluminum, Thin Solid Films 2003, 426: 160-171.
    [13] S. Hirai , K. Shimakage , M. Sekiguchi , K. Wada, and A. Nukui, Zirconium Oxide Coating on Anodized Aluminum by the Sol-Gel Process Combined with Ultraviolet Irradiation at Ambient Temperature, J. Am. Ceram. Soc., 1999, 82: 2011
    [14] S.Bokhimi, J. Sanchez-Valente, and F. Pedraza. Crystallization of Sol-Gel Boehmite via Hydrothermal Annealing, Journal of Solid Chemistry, 2002, 166: 182-190
    [15] S.K. Milonjie. Colloid particles and advanced materials, Mater. Sci. Forum. 1996, 214: 197-204
    [16] J.-F. Hochepied, P. Nortier. Influence of precipitation conditions on the morphology and porosity of boehmite particles, Powder Technology. 2002, 128: 268-275
    [17] R.Petrovic, S.Milonjic, V.Jokanovic, et al. Influence of synthesis on the structure of boehmite sol particles, Powder Technology, 2003, 1: 5
    [18] K. Halvor, Intert electrodes in aluminum electrolysis cells, light metals: proc. of Sessions, TMS Annual Meeting Warrendale, Pennsylvani, 1999, 369-376
    [19] 史建公,几种氢氧化铝的物性、结构及其胶溶性初探,石化技术,1994,(2):113-116
    [20] 蒙延双,王达健,薄水铝石胶溶过程规律与结构分析,中国稀土学报,2004,22:373-377
    [21] A. N. Shipway, E. Katz, I.Willner, Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications, ChemPhysChem, 2000, 1: 18-52.
    [22] 葛琦,张俊英,杨春,TiO_2静电自组装薄膜在不同光源下的杀菌性能,稀有金属材料与工程,2005,34(10):1642-1645
    [23] 苏轶坤,汤皎宁,单分散钴纳米晶的制备及其二维自组装,现代化工2006,26(5):38-40
    [24] 黄中梅,官建国,甘治平,等,空心纳微粒子的模板法制备技术及应用,无机材料学报,2005,20(6):1281-1287
    [25] 杨晓玲,朱以华,朱孟钦,等,核-壳式聚苯乙烯/二氧化硅复合微球及空腔硅球的制备无机材料学报,2003,18(6):1293-1298
    [26] F. Caruso, M. Spasova, A. Susha, et al. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach, Chem. Mater., 2001, 13: 109-116
    [27] 杨晓玲,姚珂,朱以华,纳米结构的空腔二氧化硅微球的制备与缓释行为,无机材料学报,2005,20(6):1404-1409
    [28] F. Caruso, R A Caruso, M. Helmuth, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating, SCIENCE, 1998, 282: 1111-1114
    [29] R A Caruso, A Susha, F. Caruso, Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres, Chem. Mater., 2001, 13: 400-409
    [30] 刁鹏,梅岗,张琦,纳米粒子组装体系的研究进展,无机材料学报,2005,1:577-582
    [31] S. J. Lukasiewicz, Spray-Drying Ceramic Powders, J.Amer.Ceram.Sco., 1989, 72(4): 617-624
    [32] G. Paruthimal Kalaignan, Dae Jong Seo, Seung Bin Park, Characterization of Sr-alumina prepared by sol-gel and spray pyrolysis methods, Materials Chemistry and Physics, 2004, 85: 286-293
    [33] Hankwon Changa, I. Wuled Lenggoro, Takashi Ogi, Kikuo Okuyama, Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route, Materials Letters, 2005, 59: 1183-1187
    [34] Y.H.Zhou, J. Lin, Morphology control and luminescence properties of BaMgAl_(10)O_(17): Eu~(2+) phosphors prepared by spray pyrolysis, Journal of Solid State Chemistry, 2005, 178: 441-447
    [35] H.K. Junga, D.W. Lee, K. Y. Jung, J.H. Boo, Fabrication of dense BaMgAl_(10)O_(17): Eu~(2+) phosphor particlesby spray pyrolysis, Journal of Alloys and Compounds, 2005, 390: 189-193
    [36] K.Y. Jung, D.Y. Lee, Y.C. Kang, H.D. Park, Improved photoluminescence of BaMgAl_(10)O_(17) blue phosphor prepared by spray pyrolysis, Journal of Luminescence, 2003, 105: 127-133
    [37] Y. C. Kang, I. W. Lenggoro, S.B. Park, K. Okuyama, YAG: Ce phosphor particles prepared by ultrasonic spray pyrolysis, Materials Research Bulletin, 2000, 35: 789-798
    [38] Y.H. Zhou, J. Lin, M. Yu, S.M. Han, S.B. Wang, H.J. Zhang, Morphology control and luminescence properties of YAG: Eu phosphors prepared by spray pyrolysis, Materials Research Bulletin, 2003, 38: 1289-1299
    [39] Y.C. Kang, I.W. Lenggoro, S.B. Park, K. Okuyama, Photoluminescence characteristics of YAG: Tb phosphor particles with spherical morphology and non-aggregation, Journal of Physics and Chemistry of Solids, 1999, 60: 1855-1858
    [40] D. S. Jung, S. K. Hong, H. J. Lee, Y.C. Kang, Effect of boric acid flux on the characteristics of (CeTb)MgAl_(11)O_(19) phosphor particles prepared by spray pyrolysis, Journal of Alloys and Compounds, 2005, in press
    [41] K. Aono, M. Iwaki, Ion beam-induced luminescence of Eu-implanted Al_2O_3 and CaF_2, Nuclear Instruments and Methods in Physics Research B, 1998, 141: 518-522
    [42] A.Patra, R.Reisfeld, and H. Minti, Influence of aluminium oxide on intensities of Sm~(3+) and Pr~(3+) spectral transitions in sol-gel glasses. Mater. Lett., 1998, 37: 325-329
    [43] 葛萃,黄树辉,肖利,等,掺Eu~(3+)的Al_2O_3纳米粉末的制备及表征,吉林师范大学学报(自然科学版),2004,3:11-12
    [44] P.X.Zhang, C.Z. Wang, X. F. Zhou, A Novel Method to Produce Quantum Dots CHINESE JOURNAL OF L IGHT SCATTERING, 2005, 17(1): 7-9
    [45] P. Mohanty, S. Ram, Dissolution of Eu~(3+) cations in mesopores in amorphous Al_2O_3 and controlled reconstructive nucleation and growth of γ-Al_2O_3 nanoparticles, Journal of the European Ceramic Society, 2002, 22: 933-945
    [46] P. Mohanty, S. Ram. Enhanced photoemission in dispersed Eu_2O_3 nanoparticles in amorphous Al_2O_3, J. Mater. Chem., 2003, 13: 3021-3025
    [47] 曹进,拟薄水铝溶胶法制备稀土铝酸盐发光材料,[硕士学位论文],昆明理工大学,2003
    [48] 邸建华,水热法制备铝酸锶中的Eu~(2+)发光,发光学报,1995,4(1):29-32
    [49] 王东,王民权,碱土铝酸盐掺二价铕离子磷光体的研究、应用和发展.材料科学与工程.1998,16(4):40-43
    [50] C.P.Albert, K.Levine, M.R.Tomkus, Fluorescent properties of alkaline earthaluminates of the type MAl_2O_4 activated by divalent europium, J.Electrochem. Soc. 1968, 115(6): 642-644
    [51] Philips Research Reports. 1968, 23: 201-204
    [52] 张希艳,柏朝晖,等,SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉光致发光材料的固相合成法与特性,稀有金属材料与工程,2003,32(5):379-382
    [53] 宋庆梅,黄锦斐,吴茂钧,铝酸锶铕的合成与发光的研究,发光学报,1991,12(2):144-149
    [54] 松尺隆嗣,SrAl_2O_4:Eu~(2+)发光材料的研究报告,日本第248回萤光体学会讲演稿,1991,1:1-5
    [55] 唐明道,李长宽,高志武,等,SrAl_2O_4:Eu~(2+)的长余辉发光特性的研究,发光学报,1995,16(1):51-56
    [56] 宋庆梅,陈暨耀,吴中亚,掺镁的铝酸锶铕磷光体的发光特性,复旦学报(自然科学版)1995,34(1):103-106
    [57] E.Nakazawa, T.Mochida. Traps in SrAl_2O_4: Eu~(2+), Dy~(3+) phosphor with rare—earth ion doping. J.of Luminescence. 1997, 72-74: 236-237
    [58] T.Katsumata, T.Nabae, K.Sasajima, et al., Effects of composition on the long phosphorescent SrAl_2O_4: Eu~(2+), Dy~(3+) phosphor crystsls, J.of the Electrochem. Soc. 1997, 144(9): 243-245
    [59] T.Katsumata, T.Nabae, K.Sasajima, et al., Growth and characteristics of long persistent SrAl_2O_4 and CaAl_2O_4 based phosphor crystals by a floating zone technique, J.of Crystal Growth, 1998, 18(33): 361-365
    [60] T. Katsurmata, Y.Aoki, N.Takeuchi, et al. A new long phosphorescent phosphor with high brightness, SrAl_2O_4: Eu~(2+), Dy~(3+), J. Electrochem. Soc. 1996, 143(8): 2670-2673
    [61] K. Uheda, T. Maruyama, H. Takizawa, et al. Susthesis and long-period phosphorescence of ZnGa_2O_4:Mn~(2+).J.of Crystal Growth. 1997, 183(3): 361-365
    [62] W.Y. Jia, H.B. Yuan, L.Z. Lu, et al. Phosphorescent dynamics SrAl_2O_4:Eu~(2+), Dy~(3+) single crystal fibers. J. Lumin. 1998, 76-76-77: 424-428
    [63] K.Kato, I.Tsutai, T. Kamimura, et al. Thermoluminescence properties of SrAl_2O_4:Eu~(2+) sputtered films With long phosphorescence, Journal of Luminescence, 1999, 82: 213-220
    [64] 王丽辉,徐征,赵辉,热释发光在长余辉材料研究中的应用,北方交通大学学报,1998,22(5):41-41
    [65] 张炯,张军红,王佩玲,Dy-黄长石固溶体的氧化行为研究,无机材料学报,1999,14(3):449-455
    [66] 王佩玲,贾迎新,孙维萤,等,含N稀土-黄长石固溶体,无机材料学报,1996,11(1):148-152
    [67] A. J. Seeber, Y. B. Cheng, I. Harrowfield, Phase and microstructural evolution during the heat treatment of Sm-Ca-α-sialon ceramics Journal of the European Ceramic Society, 2002, 22 (9-10): 1609-1620
    [68] 李雅文,王佩玲,陈卫武,等,复合掺杂(Ca+Nd)α-sialon的研究,硅酸盐学报,2000,28(3):229-233
    [69] 孙维莹,张骋,复合稀土αβ—Sialon的力学性能和热稳定性特性,无机材料学报,1998,14(4):575-579
    [70] A. Maecki, R. Gajerski, S. Labug, et al. Kinetics and mechanism of crystallization of gehlenite glass pure and doped with Co~(2+), Eu~(3+), Cr~(3+) and Th~(4+), Journal of Non-Crystalline Solids, 1997, 212: 55-58
    [71] A. M. Lejus, A. Kahn-Harari, J. M. Benitez and B. Viana, Crystal growth, characterization and structure refinement of neodymium~(3+) doped gehlenite, a new laser material [Ca_2Al_2SiO_7], Materials Research Bulletin, 1994, 29(7): 725-734
    [72] A.M.Lejus, N.Pelletier-Allard, R.Pelletier, et al. Site selective spectroscopy of Nd ions in gehlenite(Ca_2Al_2SiO_7), a new laser material, Optical Materials 1996, 6: 129-137
    [73] D. Vivien, P. Georges, Crystal growth, optical spectroscopy and laser experiments on new Yb~(3+)-doped borates and silicates, Optical Materials, 2003, 22: 81-83
    [74] P. L. Boulanger, J.L. Doualan, S. Girard, et al. Excited-state absorption of Er~(3+) in the Ca_2Al_2SiO_7 laser crystal, Journal of Luminescence, 2000 (86): 15-21
    [75] B. Simondi-Teisseire, B. Viana, D. Vivien, A.M. Lejus, Yb~(3+) to Er~(3+) energy transfer and rate-equations formalism in the eye safe laser material Yb:Er:Ca_2Al_2SiO_7, Optical Materials 1996 (6): 267-274
    [76] N. Kodama, Y. Tanii, M. Yamaga, Optical properties of long-lasting phosphorescent crystals Ce~(3+)-doped Ca_2Al_2SiO_7 and CaYAl_3O_7, Journal of Luminescence, 2000, 87-89: 1076-1078
    [77] X.H. Chuai, H.J. Zhang, F.Sh. Li, K.Ch. Chou, The luminescence of Eu~(3+) ion in Ca_2Al_2SiO_7, Optical Materials, 2004, 25: 301-305
    [78] D.L. Cocke, E.D. Johnson, R.P. Merril, Catal. Rev.-Sci. Eng. 1984, 26: 163-166
    [79] J. H. de Boer and B. C. Lippens, Studies on pore systems in catalysts Ⅱ. The shapes of pores in aluminum oxide systems, Journal of Catalysis, 1964, 3(1): 38-43
    [80] B. C. Lippens and J. H. de Boer, Studies on pore systems in catalysts Ⅲ. Pore-size distribution curves in aluminum oxide systems, Journal of Catalysis, 1964, 3(1): 44-49
    [81] A. Corina Geiculescu, Thomas F. Strange, A microstructural investigation of low-temperature crystalline alumina films grown on aluminum, Thin Solid Films, 2003, 426: 160-171.
    [82] 张哲民,杨清河,聂红,等,NaAlO_2-Al_2(SO_4)_3法制备拟薄水铝石成胶机理的研究,石油化工,2003,7:18-21
    [83] 高建峰,徐春彦,王建中,等,用偏铝酸钠直接制取高纯拟薄水铝石,催化学报,2003,7:31-35
    [84] 潘成强,钱君律,伍艳辉,等,硝酸法制备拟薄水铝石中温度影响研究,炼油与化工,2001,4:21-23
    [85] 高建峰,徐春彦,王建中,等,用偏铝酸钠直接制取高纯拟薄水铝石,催化学报,2003,24,7:505-508
    [86] S. Music, D. Dragcevic, S.Popovic, Influence of sodium polyanethol sulphonate on the morphology of AlOOH particles obtained from the hydrolysis of a AlCl3 solution Materials Letters, 1995, 24: 59-64
    [87] T. Tsuchida, Hydrothermal synthesis of submicrometer crystals of boehmite, Journal of the European Ceramic Society, 2000, 20: 1759-1764
    [88] A. F. Popa, S. Rossignol, C. Kappenstein, Ordered structure and preferred orientation of boehmite films prepared by the sol-gel method, Journal of Non-Crystalline Solids, 2002, 306: 169-174
    [89] D. Panias, I. Paspaliaris, A. Amanatidis et al. Boehmite process-an alternative technology in alumina production, Light Metals, 2001, 5: 341-347
    [90] 孙成才,任先廷,拟薄水铝石生产的优化设计,轻金属,2005,8:18-20
    [91] 杨清河,李大东,庄福成,等,NaAlO_2-CO_2法制备拟薄水铝石过程中的转化机理,催化学报,1997,6:478-482
    [92] 杨清河,李大东,庄福成,NaAlO_2-CO_2法制备拟薄水铝石规律的研究,石油炼制与化工,1999,30(4):59-63
    [93] 《联合法生产氧化铝》编写组编.《联合法生产氧化铝基础知识》,北京:冶金工业出版社,1975:133
    [94] 任俊,邹志清,沈健,ND426对超细CaCO_3悬浮液的分散性能,中国粉体技术,2000,6:13-17
    [95] T.L. Hong, H.T. Liu, Electron microscopic studies on pore structure of alumina Appl. Catal. A. 1997, 158: 257-271
    [96] 张海明,叶岗,李光辉,等,薄水铝石与拟薄水铝石差异的研究,石油学报,1999,15(2):29-32
    [97] A. Corina Geiculescu, Thomas F. Strange, A microstructural investigation of low-temperature crystalline alumina films grown on aluminum, Thin Solid Films, 2003, 426: 160-171.
    [98] 罗玉长.拟薄水铝石结构的演化,轻金属,2001,2:10-14
    [99] http://www.m188.com/newsinfo/2006418/2006418-10114941.html
    [100] B E.Yoldas, Ultrastructure processing of advanced ceramics [M]. New York. Wiely, 1988, 333.
    [101] M R.Fitzsimo, E.Burkal, etal. Physical Review Letters. 1988, 61 (19): 2237
    [102] M.J. Giselmann, M.A.Anderson, Effect of ionic strength on boehmite hydrogel formation, Am. Ceram. Sc. 1989, 72: 980-985
    [103] A. Corina Geiculescu, Thomas F. Strange, A microstructural investigation of low-temperature crystalline alumina films grown on aluminum, Thin Solid Films, 2003, 426: 160-171
    [104] 卢伟光,田辉平,拟薄水铝石溶胶法制备改性氧化铝的研究,燃料化学学报,2001,29:188-191
    [105] 陈宗琪,等译,胶体体化学实验,山东大学出版社,济南,1987
    [106] 袁建君,刘智恩,方琪等.CaO-SiO_2系统凝胶过程及其机理,华东理工大学学报,1996,22(3):316-320
    [107] 郭玉忠,黄瑞安,孙加林.SnO_2系溶胶-凝胶转变的流变学研究,无机材料学报,2001,16(3):249-255
    [108] 熊飞,拟薄水铝石/二氧化锡纳米微米复合材料的胶态加工技术,[硕士学位论文],昆明理工大学,2004
    [109] 胡萍,赵令湖,殷秀兰,Eu~(3+)水合离子在纳米二氧化硅表面的吸附与结构,矿物学报,2005,25(3):263-267
    [110] X.W. Zhu, D.L. Jiang, S.H. Tan, Z.Q. Zhang, Dispersion properties of alumina powders in silica sol, Journal of the European Ceramic Society, 2001, 21: 2879-2885.
    [111] 任俊,沈健,卢寿慈,颗粒分散科学与技术,化学工业出版社,北京,2005
    [112] K. Vishista, F.D. Gnanam, Effect of strontia on the densification and mechanical properties of sol-gel alumina, Ceramics International, 2006, 32(8): 917-922
    [113] 小口寿彦,粉体工程会志(日),1987,24(12):816-821
    [114] S. Ananthakumar, Vijay Raja, K.G.K. Warrier, Effect of nanoparticulate boehmite sol as a dispersant for slurry compaction of alumina ceramics, Materials Letters, 2000, 43: 174-179
    [115] T. E.Petro., M. Sayer, and S. A.Hesp, Modification of ceramic dispersion using zirconaium hydrogel. Colloids Surf. A., 1993, 78: 235-243
    [116] Q.Yang, and T.Troczynskl, Dispersion of alumina and silicon carbide powders in alumina sol. J. Am. Ceram. Soc., 1999, 82(7): 1928-1930.
    [117] J.A.Sekhar, V. de Nora, J. Liu, X. Wang, TiB_2/Colliodal Alumina Carbon Cathode Coatings in Hall-Heroult and Drained Cells, Light Metals 1998, 4: 605-613.
    [118] 卢寿慈,粉体加工技术,北京:中国轻工业出版社,1998
    [119] 陆佳琳,张宝华,李德芳,SiO_2纳米涂料的分散性研究进展,上海化工,2004,12:33-35
    [120] 苏学军,蔡彭骥,表面活性剂对合成纳米SiO_2粉末的影响,天津化工,2005,19(3):29-30
    [121] 杨儒,张广延,李敏,超临界干燥制备纳米SiO_2粉体及其性质,硅酸盐学报,2005,33(3):281-286
    [122] 贾晓林,钟香崇,聚丙烯酸铵对纳米SiO_2悬浮液性能的影响,非金属矿,2004,27(5):1-3
    [123] 刘付胜聪,肖汉宁,李玉平纳米SiO_2表面吸附聚丙烯酰胺及其液相分散稳定性,硅酸盐学报,2004,32(7):816-821
    [124] 吴敏,程秀萍,葛明桥,纳米SiO_2的分散研究,纺织学报,2006,27(4):80-82
    [125] 王相田,刘伟,刘兵海,胶态超细二氧化硅水性分散系的制备工艺及其流变行为,华东理工大学学报,1998,24(3):373-376
    [126] 刘广文,喷雾干燥实用技术大全,中国轻工业出版社,北京,2001,p215
    [127] 张洪涛,李友明,胡健,介绍一种简单易行的测定表面张力的仪器,纸和造纸,2001,3:66-67
    [128] T.Toivo, J.Mark, H.Smith, Aerosol Processing of Materials, Printed in the United States of America, p398
    [129] 王喜忠,于才渊,周才君,编著,喷雾干燥,化学工业出版社,北京,2003
    [130] 赵新宇,张煜,古宏晨,等.喷雾热解制备稀土超细粉末(Ⅰ)氧化钇粒子形态与形成机理,高等学校化学学报,1998,4:507-510
    [131] 赵新宇,郑柏存,李春忠,等,喷雾热解合成ZnO超细粒子工艺及机理研究,无机材料学报,1996,11(4):611-616
    [132] 丁详金,张继周,李静键,挤出成型用喷雾造粒氧化铝粉料,无机材料学报,2001,16(6):1094-1097
    [133] 赵旦谱,吴丹,陈恳,毛细力驱动自组装定位模型,清华大学学报(自然科学版),2005,45(11):1480-1483
    [134] 朱建华,石锦霞,李恒,何平笙,模板法组装微米级微球,物理化学学报,2006,22(3):350-354
    [135] J. Xie, H.Deng, Z.Q. Xu, Photonic Crystals Growth From ZnO Colloidal Spheres, Journal of Sichuan University (Natural Science Edition), 2005, 42(2): 183-186
    [136] 张蝶青,万颖,李和兴,喷雾干燥辅助表面活性剂自组装制备新型SiO_2介孔材料,化学学报,2006,64(9):894-898
    [137] R.Lee Penn, J. Banfield. Morphology development and crystal growth in nanocrystalline aggregate under hydrothermal condition: Insight from titania, Geochemica Acta. 1999, 10(60): 1549-1557
    [138] Y.C. Chen, X. Ai, C.Z. Huang, Preparation of alpha alumina coating on carbide tools. Materials Science and Engineering B, 2000, 77: 221-228.
    [139] L.D. Hart, Alumina Chemical Science and Technology Handbook, Esther Lense, associate Editor, Westerville Ohio: The American Ceramic society Inc. 1990.
    [140] 鲁彬,武克忠,等,薄水铝石制备实验的改进,河北科技大学学报,2000,21(2):37-39.
    [141] Y.G. Wang, P.M. Bronsveld, J.T.M. DeHosson, B. Djuricic, D. McGarry, S. Pickering, Ordering of Octahedral Vacancies in Transition Aluminas, J. Am. Ceram. Soc. 1998, 81 (6): 1655-1660
    [142] P.Mohanty and S. Ram, Enhanced photoemission in dispersed Eu_2O_3 nanoparticles in amorphous Al_2O_3, J. Mater. Chem., 2003, 13: 3021-3025
    [143] R.Reisfeld, C. K.Jorgensen, In Structure and Bonding, Springer Verlag, 1992, 77: 207.
    [144] A. Patra, R.Reisfeld, and H.Minti, Influence of aluminium oxide on intensities of Sm~(3+) and Pr~(3+) spectral transitions in solgel glasses. Mater. Lett., 1998, 37:325-329
    [145] J.L. McArdle, G.L. Messing, Transformation and microstructure control in boehmite-derived Alumina by ferric Oxide seeding, Adv. Ceram. Mater. 1988,3(4):387-392.
    [146] S. Jagota, R. Raj, Model for the crystallization and sintering of unseeded and seeded boehmite gels, J. Mater. Sci. 1992, 27(8):2551-2557.
    [147] M. Kumagai, G.L. Messing, Enhanced densification of boehmite sol-gels by a-Alumina seeding, J. Am. Ceram. Soc, 1984, 67 (11):230-231.
    [148] R.A. Shelleman, G.L. Messing, M. Kumagai, Alpha Alumina transformation in seeded boehmite gels, J. Non-Cryst. Sol. 1986, 82(1):277-285.
    [149] Y. Suwa, S. Komarneni, R. Roy, Solid-state epitaxy demonstrated by thermal reactions of structurally diphasic xerogels: the system Al_2O_3, J. Mater. Sci. Lett. 1986,5(1) :21-24.
    [150] W.A. Yarbrough, R. Roy, Microstructural evolution in sintering of AlOOH gels, J. Mater. Res. 1987,2(4) :494-515.
    [151] J.L. McArdle, G.L. Messing, Transformation and microstructure control in boehmite-derived Alumina by ferric Oxide seeding, Adv. Ceram. Mater. 1988,3(4):387-392
    [152] L. Pach, R. Roy, S. Komarneni, Nucleation of alpha alumina in boehmite gel, J. Mater. Res. 1990,5(2):278-285.
    [153] E. Prouzet, D. Fargeot, J.F. Baumard, Sintering of boehmitederived transition Alumina seeded with corundum, J. Mater. Sci. Lett. 1990,9(7): 779-781.
    [154] D.S. Tsai, C.-C. Hsieh, Controlled gelation and sintering of monolithic gels prepared from γ-Alumina fume powder, J. Am. Ceram. Soc. 1991,74(4): 830-836.
    [155] G. Urretavizcaya, J.M. Porto Lopez, Thermal transformation of sol gel Alumina into α-phase. effect of α-Al_2O_3 seeding, Mater. Res. Bull. 1992,27(4):375-385.
    [156] L.A. Xue, I.-W. Chen, Influence of additives on the γ-to-α transformation of alumina, Mater. Res. Bull. 1992,27(4):443-445.
    [157] Z. HrabeA, O.M. Spaldon, L. Pach, J. KozaAnkovaA, Thermal transformations of boehmite gel in controlled furnace atmospheres, Mater. Res. Bull. 1992, 27(4): 397-404.
    [158] G.L. Messing, M. Kumagai, Low-temperature sintering of aalumina-seeded boehmite gels, Am. Ceram. Soc. Bull. 1994, 73(10): 88-91
    [159] K.V. Suryanarayana, R.K. Panda, N. Prabhu, B.T. Rao, Effect of simultaneous additions of niobia and magnesia on the sintering and microstructure of seeded boehmite, Ceram. Inter. 1995, 21(3): 173-179.
    [160] C.S. Nordahl, G.L. Messing, Transformation and densification of nanocrystalline γ-Al_2O_3 during sinter forging, J. Am. Ceram. Soc. 1996, 79(12): 3149-3154.
    [161] S.J. Wu, L.C. De Jonghe, M.N. Rahaman, Sintering of nanophase γ-Al_2O_3 powder, J. Am. Ceram. Soc. 1996, 79(8): 2207-2211.
    [162] 王敬先,刘勇,何阿弟,不同制备方法镧改性对γ-Al_2O_3的高温热稳定作用研究,复旦学报(自然科学版),2000,39(4):450-454
    [163] 刘勇,陈晓银,氧化铝热稳定性的研究进展,化学通报,2001,2:65-70
    [164] B. Ersoy, V. Gunay, Effects of La_2O_3 addition on the thermal stability of g-Al_2O_3 gels, Ceramics International, 2004, 30: 163-170
    [165] 刘勇,陈晓银,杨竹仙,BaO改性Al_2O_3的高温热稳定性,复旦学报(自然科学版),2000,39(4)374-379
    [166] 刘勇,陈晓银,牛国兴,锶改性对γ-Al_2O_3的高温热稳定作用,催化学报,2001,21(2):121-124
    [167] 刘东艳,樊彦贞,张园力碱土金属修饰Al_2O_3的表面热稳定性,物理化学学报,2001,17(11):1036-1039
    [168] 宋振亚,吴玉程,杨晔,等α-Al_2O_3微粉的制备及其TiO_2掺杂改性,硅酸盐学报,2004,32(8):920-924
    [169] 吴玉程,宋振亚,杨晔,氧化铝α相变及其相变控制的研究,稀有金属,2004,28(6):1043-1048
    [170] 廖树帜,徐仲榆,张邦强,等,氧化镁和氧化钇掺杂对纳米氧化铝粉末的影响,湖南教育学院学报,1998,16(5):154
    [171] 吴玉程,杨晔,李勇,等.氧化铝胶体的添加对氧化铝γ→α相变的影响,物理化学学报,2005,21(1):7-83
    [172] J. S. Church, N. W. Cant, D. L.Trimm, Stabilisation of aluminas by rare earth and alkaline earth ions, Appl. Catal. A, 1993, 101: 105-116
    [173] 刘成林,钟菊花,张兆奎.光谱学与光谱分析,2003,23(1):154.
    [174] W.Szuszkiewicz, B.Keller, Application of lanthanide (Eu,Nd) spectroscopy as a structural probe of diluted double phosphates. Journal of Alloys and Compounds, 2002, 340: 297-306
    [175] L. Macalik , M. Maczka , J. Hanuza , et al. Structure and properties of the KNbW_2O_9 hexagonal bronze doped with Eu~(3+) ions as an optically active probe. Journal of Alloys and Compounds, 2004, 380: 248-254
    [176] N. Lakshminarasimhan , U.V.Varadaraju, Eu~(3+) luminescence - A structural probe in BiCa_4(PO_4)_3O, an apatite related phosphate, Journal of Solid State Chemistry, 2004,177: 3536-3544
    [177] T.J. Hsieh, R. Revay , D. Brower , et al. Microstructure and characterization of electron-trapping stimulable phosphor SrS:(Eu,Sm) thin film on glass, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995,13: 2732-2738
    [178] 刘兵,杨频,韩高义,铕离子探针研究Al_2O_3的相变过程,高等学校化学学报,1997,18:21-23
    
    [179] Y. Zhang , H. X. Zhang , Y. X. Xu , et al. Europium doped nanocrystalline titanium dioxide: Preparation, phase transformation and photocatalytic properties . Journal of Materials Chemistry, 2003, 13: 2261-2265
    [180] C.H.Yan , L.D.Sun, C.S. Liao, et al. Eu~(3+) ion as fluorescent probe for detecting the surface effect in nanocrystals. Applied Physics Letters, 2003,82: 3511-3513
    [181] F.Thevenet, G.Panczer, P.Jollivet, Determination of the environment of lanthanide ions in a simplified non-active nuclear glass and its weathering gel products - Europium as a structural luminescent probe, Journal of Non-Crystalline Solids, 2005, 351: 673-677
    [182] N. Oilier, GPanczer, C.Bernard, Europium as a luminescent probe of an aluminoborosilicate nuclear glass and its weathering gels, Journal of Luminescence, 2001, 94&95: 197-201
    [183] L. A. Rocha, L. R. Avila , B. L. Caetano, Europium incorporated into titanium oxide by the sol-gel method. Materials Research, 2005, 8: 361-364
    [184] A. Gedanken, R. Reisfeld, L. Sominski, Z. Zhong, Y. Koltypin, G. Panczer, M. Gaft and H. Minti, Time-dependence of luminescence of nanoparticles of Eu_O_3 and Tb_2O_3 deposited on and doped in alumina, Appl. Phys. Lett., 2000, 77,945
    [185] S. Mochizuki, Y. Suzuki, T. Nakanishi and K. Ishi, Valence-change-and defect-induced white luminescence of Eu_2O_3, Physica B, 2001, 308-310, 1046.
    [186] 张希艳,卢利平,王晓春,固相反应法制备SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉发光陶瓷及性能表征,兵工学报,2004,25,2:193-196
    [187] 周传仓,卢忠远,戴亚堂,共沉淀法制备超细长余辉发光材料铝酸锶铕镝的研究,稀有金属,2005,29,1:20-24
    [188] 赵淑金,林元华,张中太,等,凝胶法制备稀土掺杂的超细SrAl_2O_4基发光材料及其性能研究,硅酸盐学报,2002,30(6):771-774
    [189] 李东平,缪春燕,水热法合成SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉材料,江西化工,2005,1:95-97
    [190] 周传仓,卢忠远,戴亚堂,燃烧法合成SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉发光材料的研究,稀有金属快报,2004,23(11):29-31
    [191] 任新光,孟继武,电弧法SrAl_2O_4:Eu2+长余辉发光陶瓷的制备及其光谱分析,光谱学与光谱分析,2000,120(13):268-269
    [192] J. Geng, Z. J. Wu, Materials Synthesis and Prossing, 2002, 10(5): 245-248
    [193] T. Katsumata, S. Toyomane, A.Tonegawa, et al. Characterization of trap levels in long-duration phosphor crystals, J. Crystal Growth, 2002, 237-239: 361-366
    [194] A. Douy, M. Capron, Crystallisation of spray-dried amorphous precursors in the SrO-Al_2O_3 system: a DSC study, Journal of the European Ceramic Society, 2003, 23: 2075-2081
    [195] 赵淑金,林元华,张中太,等,凝胶法制备稀土掺杂的超细SrAl_2O_4基发光材料及其性能研究,硅酸盐学报,2002,30(6):771-774
    [196] 肖志国主编,蓄光型发光材料及其制品,北京:化学工业出版社,2002
    [197] 张勤勇,蒋洪川,张永强,H_3BO_3添加量对SrAl_2O_4:Eu~(2+),Dy~(3+)蓄光性能的影响,四川师范大学学报(自然科学版),2005,28(3):344-346
    [198] 王列松,林君,周永慧,喷雾热解法制备YBO_3:Eu球形发光粉,高等学校化学学报,2004,25(1):11-15
    [199] K.H. Kim, J.K. Park, C.H. Kim, H.D. Park, H. Chang, S.Y. Choi, Synthesis of SrTiO_3:Pr,Al by ultrasonic spray pyrolysis, Ceramics International, 2002, 28: 29-36
    [200] N. Abanti, T.R.N. Kutty, Role of B_2O_3 on the phase stability and long phosphorescence of SrAl_2O_4:Eu,Dy. Journal of Alloys and Compounds, 2003, 354: 221~231
    [201] 于晶杰,肖志国,宁桂玲,(NH_4)_2HPO_4的掺杂对SrAl_2O_4长余辉发光粉的促进作用,中国稀土学报,2005,23:34-37
    [202] 张希艳,柏朝晖,关欣,SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉光致发光材料的固相反应法合成与特性,稀有金属材料与工程,2003,32(5):379-382
    [203] P. T. Diallo, K.Jeanlouis, P.Boutinaud, et al, Improvement of the optical performances of Pr~(3+) in CaTiO_3, J. Alloys Comp., 2001, 323-324: 218-224
    [204] S.Okamoto, H.Yamamoto, Characteristic enhancement of emission from SrTiO_3:Pr~(3+) by addition of group-Ⅲb ions, Appl. Phys. Lett., 2001, 78: 655.
    [205] S. Okamoto, H.Yamamoto, Emission from BaTiO_3:Pr~(3+) controlled by ionic radius of added trivalent ion, J. Appl. Phys., 2002, 91: 5492
    [206] S.Y.ZHANG, X.Z.BI, Rare-Earth Spectrum Theory, Changchun: Jilin Science and Technology Press, 1991, 191
    [207] 刘晃清,秦伟平,张继森,ZrO_2中Eu~(3+)的发光特性,光谱学与光谱分析,2005,25(1):19-22
    [208] 姜坽,常程康,毛大立,长余辉发光材料的研究进展,无机材料学报,2004,19(2):268-274
    [209] 袁莹,施惠生,影响铝酸锶铕荧光粉光强因素及其余辉的研究,同济大学学报,1998,26(2):185.
    [210] 张太平,离子的电负性的计算及应用,高等函授学报(自然科学版),2003,16(5):30-32
    [211] 大连理工大学无机化学教研室编,无机化学,第四版,北京,2006,p233
    [212] http://class.ibucm.com/fxhx/jxck/right1_9.htm#63
    [213] 洪樟连,张朋越,王民权,Ca_(1-x)Zn_xTiO_3∶Pr~(3+)的固溶特性及其发光性能,中国稀土学报,2005,23(6):689-694
    [214] 徐剑,张新民,张剑辉,MGa_2S_4∶Eu~(2+)(M=Ca、Sr、Ba)和EuGa_2S_4系列荧光粉的合成和发光性能研究,中山大学学报(自然科学版),2004,43(3):49-51
    [215] 苏勉曾,固体化学导论,北京大学出版社,1986
    [216] 胡运生,叶红齐,庄卫东,Sr/Ca比变化对红色荧光粉Ca_(1-x)Sr_xS∶Eu~(2+)的影响,中国稀土学报,2004,22(6):854-858
    [217] 贺香红,余锡宾,周醇蕾,等,碱金属离子对SrCl∶Eu~(2+)发光性能的影响,上海师范大学学报(自然科学版),2003,32(4):52-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700