软刻蚀方法制备细胞模板及内皮/平滑肌细胞的协同培养
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料表面内膜功能及完整性的恢复是解决心血管系统植入装置血栓与栓塞并发症、提高远期的管腔通畅率的最佳方法之一。借鉴仿生表面工程的设计理念,本文采用微转移模塑方法在NaOH活化的钛(TiOH)表面成功制备出了透明质酸(HA)微图形,采用扫描电子显微镜(SEM)、傅里叶红外变换光谱分析(FTIR)、接触角测量仪、表面轮廓仪和电子能谱仪(EDX)对制备HA微图形及其稳定性进行了表征,进而研究了HA的抗细胞粘附功能,并利用酶联免疫吸附实验(Elisa)和细胞粘附实验研究了透明质酸酶(HAa)对HA的酶解作用,以及纤维连接蛋白(FN)和Ⅳ型胶原蛋白(CollagenⅣ)关闭HA的抗蛋白、抗细胞粘附功能。在此基础上,作为细胞模板用于研究对血小板、内皮细胞、平滑肌细胞粘附的影响,以及在细胞模板上血小板/内皮细胞、内皮/平滑肌细胞联合培养的研究。
     SEM、FTIR和接触角测量结果表明:碱活化后钛(Ti)表面形貌和粗糙度发生改变,出现-OH伸缩振动峰,其亲水程度明显增加;SEM和表面轮廓仪检测结果表明:采用浇铸法制备出沟、脊分明、表面平整的PDMS弹性印章;SEM和EDX检测结果表明:采用软刻蚀(微转移模塑)的方法在TiOH表面获得了轮廓清晰的HA条纹微图形,但HA在脊上呈不均匀的分布;XPS结果表明,涂覆HA的TiOH样品经过磷酸缓冲液(PBS)浸泡24h后仍能够稳定吸附在TiOH样品表面,HA微图形样品经过PBS浸泡后图形结构仍清晰可见。采用三种方法关闭HA抗蛋白、细胞粘附的功能,细胞粘附实验表明,采用HAa酶解、CollagenⅣ和FN组装的方法都可以有效地关闭HA的阻抗细胞粘附功能。CCK-8结果表明这三种处理方法对平滑肌细胞的增殖能力的影响不大。采用CollagenⅣ组装方法时内皮细胞粘附率要高于其它两种方法。
     单种细胞的培养结果表明,HA微图形可以有效地将血小板、内皮、平滑肌胞三种细胞限制在微图形样品表面的粘附区域。当图形脊/沟尺寸为20μm/30μm,与细胞大小相当时,可以有效地引导内皮细胞、平滑肌细胞细胞按照图形的方向伸长,呈有序的细胞阵列分布;HA微图形对内皮细胞的接触引导行为的影响非常显著,与平板样品相比, HA微图形表面培养的内皮细胞形态指数更接近体内生理条件下的内皮细胞的形态指数。在HA微图形表面可以得到内皮细胞/血小板和内皮/平滑肌细胞有序分布的协同培养体系。两种细胞的协同培养结果表明,血小板图案并不能影响内皮细胞粘附的形态,而图案化的平滑肌细胞的更细长形态,可以调控内皮细胞的长轴取向。但长时间的协同培养会引起平滑肌细胞跨过内皮细胞呈交错、多层生长的结构。
     以上研究结果表明,HAa酶解、CollagenⅣ和FN组装可以有效地关闭HA阻抗蛋白、细胞粘附的功能。细胞模板可以很好地调控细胞粘附的区域和细胞的铺展形态,利用该细胞模板获得了短期的内皮/平滑肌细胞联合培养体系。
The recovery of intimal function and integrity on biomaterials surface is one of the best ways to prohibit the thrombosis and embolism complications of cardiovascular implanted devices and improve long-term lumen patency. In this thesis, Microtransfer Molding was used to fabricate the hyaluronic acid (HA) micropattern (Cells template) on the activated titanium (TiOH) surface, which was based on the design concept of biomimetic surface engineering. The HA micropatterns were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measur-ement, surface profiler and energy dispersive X-ray spectroscopy (EDX). Furthermore, the stability and anti-adhesion function of HA were investigated. The zymohy- drolysis of hyaluronidase, collagen and fibronectin (FN) self-assembly were used to switch the anti-adhesion function of HA which was evaluated enzyme-linked immunosorbent assay (Elisa) and cell adhesion experiments. The adhesion behaviors of platelet, endothelial cells and smooth muscle cells on the cells template were studied, respectively, and the co-culture of endothelial cells /platelet and endothelial cells/ smooth muscle cells on the cells template were also investigated.
     The results of SEM FTIR and contact angle measurement showed the changes of morphology, increases of roughness and hydrophilicity and detection of ophilic groups on the Ti surface after treatement of NaOH solution. Surface profiler and SEM results showed that polydimethyl-siloxane (PDMS) stamps with high fidelity were prepared. SEM and EDX results demonstrated that HA micropattems with HA and TiOH alternating stripes had been prepared accurately on the surface of TiOH. However, thickness of HA stripe was not uniform. XPS results demonstrated that HA micropattems were still distinct and HA adsorbed stably on the surface of TiOH after washing by phosphate buffer (PBS).
     The results of cells adhesion showed that the anti-adhesion function of HA can be effectively switched by enzymatic action, collagen and FN self-assembly. The three treatments displayed weak effect on the smooth muscle cells (SMCs) proliferation, which was proven by the results of CCK-8. The self-assembly of collagen used to the change the anti-adhesion function of HA could obviously enhance the adhesion of ECs compared with other two switch methods
     The results of single cell culture showed that the adhesion of platelet, endothelial cells (ECs) and SMCs were restricted by HA micropatterns. Furthermore, when the size of HA/TiOH alternating stripe was 20μm/30μm, which was comparable to the size of ECs, ECs and SMCs were elongated along the stripes. In addition, the shape index of ECs cultured on patterned surface was more similar to that of ECs grown in vivo compared with ECs on flat surfaces. The co-culture of two kinds of cells, such as ECs/platelet and ECs/ SMCs, showed that co-culture system with ordered cell distribution could be obtained on the surface of HA/TiOH alternating stripes. The pattern of platelets (which adhered on TiOH alternating stripes) did not affect the morphology of endothelial cells. However, the long axis of ECs could be regulated through SMCs alignment. But SMCs could stride over the ECs and would form staggered multi-layers structure during a long time co-colture period.
     Our results indicates the anti-adhesion function of HA will be effectively changed by enzymatic action, Collagen and FN self-assembly. The cell templates can be used to regulate cell adhesion and spreading on the patterns, and construct a short-term co-culture system of ECs/SMCs.
引文
[1]Lawisa L, Tolhurst L A, Stratford P W. Analysis of a phosphorycholine-basd polymer coating on a coronary stent pre- and post- implantation. Biomaterials,2002,23:1697-1706.
    [2]Toshihiko S, Hisataka Y, Hiroaki S. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devicea and in vitro endothelialization on hybrid vascular tissue. Biomaterials,2003,24:2295.
    [3]刘录山,王贵学,杨永宗.心血管移植物体内内皮化研究进展.南华大学学报(医学版).2002,30(4):387-390.
    [4]Carter A J, Aggarwal M, Kopia G A Kopia,Fermin Tio, Philip S Tsao, Ron kolata, Alan C Yeung, Gerald Llanos,John Dooley, Robert Falotico. Long-term effect of polymer-based, slow-release, sirolimus-eluting stents in a porcine coronary model, Cardiovasc Res, 2004,63:617-624.
    [5]李晖.心室辅助装置的内皮化.国外医学生物医学工程分册.2003,26(4):169-172.
    [6]陈双红,姜宗来,张炎.内皮细胞和平滑肌细胞联合种植研究.国外医学生物医学工程分册.1999(22):78-83.
    [7]赵宏伟,王贵学,戴传云.血管内支架和支架内皮化.生物技术通讯.2005,16(6):684-686.
    [8]贝建中,屈雪,王身国.生物材料与细胞的相互作用.北京生物医学工程.2005,24(2):64-70
    [9]Salem A. K., Stevens R., Pearson R. G., Davies M. C., Tendler S. J. B., Roberts C. J., Williams P. M., Shakesheff K. M.. Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. Journal of Biomedical Materials Resesrch.2002,61:212-217.
    [10]Christopher S.Chen, Milan Mrksich, SuiHuang, George M. Whitesides, and Donald E. Ingber. Micropatterned Surfaces for Control of Cell Shape, Position, and Function. Biotechnology.Progress.1998,14:356-363.
    [11]Didier Falconnet, Gabor Csucs, H. Michelle Grandin, Marcus Textor. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials.2006.27:3044-3063.
    [12]Rosengart T K, Lee L Y., Patel S R., Kligfield P D., Okin P M., Hackett N R., Isom O.W., Crystal R G. Six-Month Assessment of a Phase I Trial of Angiogenic Gene Therapy for the Treatment of Coronary Artery Disease Using Direct Intramyocardial Administration of an Adenovirus Vector Expressing the VEGF121 cDNA. Annals of surgery.1999,230:466-470.
    [13]Junji Fukuda, Ali Khademhosseini, Judy Yeh, George Eng, Jianjun Cheng, Omid C. Farokhzad, Robert Langer, Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components, Biomaterials 27 (2006) 1479-1486.
    [14]姜宗来,陈双红,张炎,张传森,李玉泉,丛兴忠,与平滑肌细胞联合培养的内皮细胞形态学和生长增殖,解剖学报,2000(31):274-276.
    [15]李玉泉,姜宗来,张炎,丛兴忠,陈双红,张传森,杨向群.与血管平滑肌细胞联合培养的内皮细胞外基质构筑及含量的变化.第二军医大学学报.2000(21):1011-1013.
    [16]李玉泉,姜宗来,张炎,丛兴忠,张传森,杨向群.切应力作用下联合培养的血管平滑肌细胞对内皮细胞分泌t-PA和PAI-1的影响.解剖学报.2000(31)增刊:93-96.
    [17]Sepieh Heydarkhan-Hagvall, Gisela Helenius, Bengt R. Johansson, Li J. Y., Erney Mattsson, Bo Risberg. Co-culture of Endothelial Cells and Smooth Muscle Cells Affects Gene Expression of Angiogenic Factors. Journal of Cellular Biochemistry.2003(89):1250-1259.
    [18]郭铁芳,杨大平,韩雪峰,王冬艳,郝晨光,马辉.联合培养的内皮细胞对平滑肌细胞增殖和形态的影响,哈尔滨医科大学学报,2005(39):303-307.
    [19]Yan-Hua Wang, Zhi-Qiang Yan, Bao-Rong Shen, Lu Zhang, Ping Zhang, Zong-Lai Jiang. Vascular smooth muscle cells promote endothelial cell adhesion via microtubule dynamics and activation of paxillin and the extracellular signal-regulated kinase (ERK) pathway in a co-culture system. European Journal of Cell Biology.2009 (88):701-709.
    [20]Van Buul-Wortelboer M F, Brinkman H J, Dingemans K P, de Groot P G,van Aken W G, van Mourik J A. Reconstitution of the vascular wall in vitro. A novel model to study interactions between endothelial and smooth muscle cells. Experimental Cell Research. 1986;162(1):151-158.
    [21]Ziegler T, Alexander R W, Nerem R M. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effectson vascular biology. Annal of Biomedical Engineering.1995,23(3):216-225.
    [22]Hsi-Chin Wu, Tzu-Wei Wang, Pei-Leun Kang, Yang-Hwei Tsuang, Jui-Sheng Sun, Feng-Huei Lin. Cocultured endothelial and smooth muscle cells on a collagen membrane in the development of a small- -diameter vascular graft. Biomaterials.2007(28):1358-1392.
    [23]Niwa K, Kado T, Sakai J, Karino T. The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an ECSMC coculture. Annals of Biomedical Engineering.2004.32(4):537-543.
    [24]Wada Y, Sugiyama A, Kohro T, Kobayashi M, Takeya M, Naito M, Kodama T. In vitro model of atherosclerosisusing coculture of arterial wall cells and macrophage. Yonsei Medical Journal.2000,41(6):740-755.
    [25]Hirschi K K, Rohovsky S A, D'Amore P A. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. Journal of Cell Biology.1998; 141 (3):805-814.
    [26]Powell R J, Bhargava J, Basson M D, Sumpio B E. Coculture conditions alter endothelial modulation of TGF-beta 1 activation and smooth muscle growth morphology. Am J Physiol Heart and Circulation Physiology.1998,274(2):642-649.
    [27]Laender M D., Pang Z Y, Wallance C S., Niklason L E., Truskey G A.. Asystem for the direct co-culture of endothelium on smooth muscle cells. Biomaterials.2005(26):4642-4653.
    [28]于学军,何座云,王晓燕,高凌云,牟娇,杨生平,董琼兰.血管内皮-平滑肌细胞双层联合培养模型的改进.第三军医大学学报.2004,26(6):554-556.
    [29]Brant E. Isakson and Brian R. Duling. Heterocellular Contact at the Myoendothelial Junction Influences Gap Junction Organization. Circulation Research.2005;97(1):44-51.
    [30]Van Kempen M J, Jongsma H J. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochemical and Cell Biology. 1999;112(6):479-486.53.
    [31]Discher D E, Janmey P, Wang Y-1. Tissue cells feel and respond to the stiffness of their substrate. Science.2005,310(5751):1139-1143.
    [32]George A Truskey. Endothelial vascular smooth muscle cell coculture assay for high throughput screening assays to identify antiangiogenic and other therapeutic molecules. International Journal of High Throughput Screening.2010 (1):171-181.
    [33]Wallace C S, Strike S A, Truskey G A. Smooth muscle cell rigidity and extracellular matrix organization influenceendothelial cell spread-ing and adhesion formation in coculture. American Journal of Physiology - -Cell Physiology.2007,293(3):1978-1986.58.
    [34]Bhatia S.N., Yarmush M.L., Toner M.,Controlling cell interactions by micropatterning in co-cultures:Hepatocytes and 3T3 fibroblasts. Journal of Biomedical Materials Research.1997, 34(2):189-199.
    [35]Y.Tsuda, A. Kikuchi, M. Yamato, G. Chen, T.Okano, Heterotypic cell interactins on a dually patterned surface, Biochemical and Biophysical Research Communications.2006.348(3):937-944
    [36]Ali Khademhosseini, Kahp Y.Suh, Jen M.Yang et al. Layer-by-layer deposition of hyaluronic acid and poly-1-lysine for patterned cell co-cultures. Biomaterials.2004,25:3583-3592.
    [37]Younan Xia, Whitesides GM. Softlithography.Angewandte Chemie International Edition. 1998,37(5):550-575.
    [38]王奕.软刻蚀技术.宿州教育学院学报.2006,9(5):108-111.
    [39]夏骏,陈翔,高峰,彭志海,新型PDMS弹性印章的制备方法及其在纳米生物芯片中的应用.中国现代医学杂志.2010,2(5):659-662.
    [40]郑小林,张瑞强,杨军,金庆辉,许蓉,赵建龙.PDMS表面修饰方法的研究进展,材料导报:综述篇.2009,23(8):5-8.
    [41]Kumar A,Biebuyck H.A,whitesides G.M. Patterning Self-Assembled Monolayers -Applications in Materials Science. Langmuir.1994,10:1498-1511.
    [42]石锦霞,软刻蚀技术在高分子科学中的应用,中国科学技术大学博士学位论文2008:4.
    [43]Yi He Y, Hower J, Chen S. F., Bernards M. T., Chang Y, Jiang S Y. Molecular Simulation Studies of Protein Interactions with Zwitterionic Phosphorylcholine Self-Assembled Monolayers in the Presence of Water.2008,24(18):10358-10364
    [44]Chen S F, Zhang J, Li L Y, et al. J. Am. Chem. Soc,2005,127(41):14473 14478
    [45]Larsson C. F., Nylander T., Jannasch P., Wesslen B.. Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces:effects on protein adsorption.. Biomaterials.1996,17(22): 2199-2207.
    [46]O'Connor, S.M.; Patuto, S.J. Polym Prepr.1997,38(1),559
    [47]Bohner, M.; Ring, T. A. et al. Biomat. Sci., Polym. Ed.,2002,13(6),733.
    [48]Jackson, J.K.; Springate, C.M.K. et al. Biomaterials,2000,21,1483.
    [49]Jung J, Na K, Shin B, Kim O, Lee J H, Yun K, Hyun J H. A cell-repellent sulfonated PEG comb-like polymer for highly resolved cell micropatterns. Journal of Biomaterials Science, Polymer Eidition.2008,19(2):161-173.
    [50]潘红梅.透明质酸的研究现状综述.四川食品与发酵.20003(1):5-9.
    [51]于学丽,王传栋,李保陆,曹成波.透明质酸的改性及其应用.生物医学工程研究.2005,24(1):61-66.
    [52]刘海峰,常津,陈亦平,姚康德.透明质酸的浓度对成纤维细胞粘附和增殖的影响.高分子通报.2006(6):68-74.
    [53]Kaph Y. S., Ali Khademhosseini, Jen Ming Yang, George Eng, and Robert Langer. Soft Lithographic Patterning of Hy aluronic Acid on Hydrophilic Substrates Using Molding and Pringting. Advanced Materials.2004.16(7):584-588.
    [54]Johan G. Alauzuna, Stuart Young, Renita D'Souzaa, Lina Liub, Michael A. Brooka, Heather D. Sheardown. Biocompatible, hyaluronic acid modified silicone elastomers. Biomaterials.2010 (31):3471-3478.
    [55]刘文文,陈振玲,蒋兴宇.二维平面细胞微图案化技术及其生物学应用.分析化学.2009,37(7):943-949.
    [56]Kim E, Xia Y N, Whitesides G. M. Polymer Microstructures Formed By Moulding In Capillaries. Nature.1995 (376):581-584.
    [57]Xia Y N, MrksichM, Kim E, Whitesides G M. Microcontact Printing of Octadecylsiloxane on the Surface of Silicon Dioxide and Its Application in Micro fabrication. Journal of the American. Chemical. Society.1995,117(37):9576-95770.
    [58]谢佳.软刻蚀方法制备壳聚糖/牛血清白蛋白复合图形及其相关性质研究.西南交通大学硕士学位论文.2010
    [59]Paul K.E., Prentiss M., Whitesides G.M..Patterning. Spherical Surfaces at the Two-Hundred-Nanometer Scale Using Soft Lithography. Advanced Functional Materials.2003, 13(4):259-263.
    [60]Rhee S W, Taylor A M., Tu C H., Cribbs D H., Cotman C W., Jeon N L.. Patterned cell culture inside microfluidic devices. Lab on a Chip.2005(5):102-107.
    [61]Suh K Y, Seong J, Khademhosseini A, Laibinis P E, Langer. A simple soft lithographic route to fabrication of poly (ethylene glycol) microstructures for protein and cell patterning. Biomaterials.2004(25):557-563.
    [62]李永刚,张平,吴一辉,宣明.聚二甲基硅氧烷表面亲水性的研究.分析化学研究简报.2006,34(4):508-510.
    [63]陈诚.利用自组装技术在钛表面定向固定CD34抗体及其内皮化诱导研究.西南交通大学硕士论文.2009:25.
    [64]丁晓峰,陈沛智,管蓉.接触角测量技术的应用.分析实验室.2008(27):72-75.
    [65]任慧兰.材料表面微图形化得制备及其生物相容性研究.西南交通大学硕士论文.2008:19.
    [66]Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry Research.1936(28):988-994.
    [67]Kahp Y.S., Yang J M, Khademhosseini A. Berry D., Tran T N., Park H S., Langer R.. Charaterization of Chemisorbed Hyaluronic Acid Directly Immobilized on Solid Substrates. Biomedical Materials Research Part B.2005,72B:292-298.
    [68]王力平.医用钛表面活性化的研究.四川大学硕士论文.2004.
    [69]吴应龙,梁剑秋,刘族志.纯钛金属种植体表面活性化的处理方法.中国组织工程研究与临床康复.2008,12(14):2693-2696.
    [70]李兵,邓力,吴大怡,杨小东,刘果生,李华.纯钛金属表面显微形态对骨细胞生长的影响.中国口腔种植学杂志.1999,4(3):99-127.
    [71]李德华,刘宝林.医用钛表面的微观改造.国外医学生物医学工程分册.1997,20(1):24-27.
    [72]何巧红,陈双.纳流控芯片的微加工技术及其应用.化学进展.2008,20(12):2061-2066.
    [73]Xiong L. The effct of micromachind substrata with biomaterial coatings on cells behaviours. The Master Degree Thesis of Hong Kong University.2001:8
    [74]凌沛学主编张天民主审.《透明质酸》.北京:中国轻工业出版社.
    [75]Wang T W, Spector M. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomaterialia.2009,5(7)2371-2384.
    [76]刘海峰,常津,陈亦平,姚康德.透明质酸的浓度对成纤维细胞粘附和增殖的影响.高分子通报.2006(6):68-74.
    [77]金艳,凌沛学,张天民.透明质酸衍生物研究进展.中国生化药物杂志.2008,29(6):427-429.
    [78]刘文文,陈振玲,蒋兴宇.二维平面细胞微图案化技术及其生物学应用.分析化学.2009,37(7):943-949.
    [79]覃彩凤,王淼,陈晓峰.透明质酸的降解方法及工艺条件研究.食品科技.2007,4:32-35.
    [80]GuicaiLi, Ping Yang, YuzhenLiao, NanHuang. Tailoring of the Titanium Surface by Immobilization of Heparin/Fibronectin Complexes for Improving Blood Compatibility and Endothelialization:Anin Vitro Study. Biomacromolecules.2011,12 (4):1155-1168.
    [81]Keri B. Vartanian, Sean J. Kirkpatrick, Stephen R. Hanson et al. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. [J] Biochemical and Biophysical Research Communications.2008(371):787-792.
    [82]李琴山,冯赞杰,刘洋,徐海燕,钱民章.一种改进的人脐静脉内皮细胞的培养方法.第四军医大学学报.2007,28(3):276-278.
    [83]田仁来.Ti-O薄膜表面内皮细胞化研究.西南交通大学硕士论文.2004.
    [84]涂秋芬.以脱细胞犬动脉为基质的新型组织工程血管支架的制备和体外再细胞化研究.四川大学博士论文.2007:43-44.
    [85]Verheye S, Markou C P.,. Salame M Y, Wan B, King III S B., Robinson K A., Chronos N A.F., Hanson S R.. Reduced Thrombus Formation by Hyaluronic Acid Coating of Endovascular Devices. Arteriosclerosis, Thrombosis, Vascular Biology.2000, 20:1168-1172.
    [86]刘海峰,常津,陈亦平,等.透明质酸的浓度对成纤维细胞粘附和增殖的影响.高分子通报,2006(6):68-74.
    [87]王书红,马豫峰,蔡继业.原子力显微镜对透明质酸分形结构的研究.高分子材料科学与工程.2007,23(3):211-213.
    [88]薛小青.纯钛表面细胞外基质制备及其生物相容性研究.西南交通大学硕士学位论文.2010:33.
    [89]Alessandra Cucina, Valeria Borrelli, BrutoRandone, Pierpaolo Coluccia, Paolo Sapienza, Antonio Cavallaro, FACS. Vascular Endothelial Growth Fsctor Increases the Migration and Proliferation of Smooth Muscule Cells through the Mediation of Growth Fsctors Released by Endothelial Cells, Journal of Surgical Research2003,109:16-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700