基于超分子相互作用自组装有机/无机纳米复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机纳米复合材料不但可以克服单纯无机颗粒不容易加工和有机高分子的强度比较低、稳定性差等缺点,而且,在两者的协同作用下,能够得到比无机颗粒和有机高分子更优异的性能。而超分子自组装技术的应用和发展为其制备提供了新的思路。本论文通过超分子相互作用自组装得到了几种新型的有机/无机复合纳米材料,并对它们的性质进行详细地研究,为其在不同领域的潜在应用提供了依据。
     在第二章中,我们提出一个新的方法:首先,以载有银氨离子的SiO_2微球作为载体来制备聚吡咯复合材料。吡咯单体的氧化聚合反应和银氨离子的还原反应将在SiO_2微球表面同时发生,并且反应后迅速形成树莓状的小球。在整个反应过程中没有使用稳定剂,大大提高了聚吡咯的纯度和导电率;其次,通过以硼氢化钠作为还原剂对亚甲基蓝进行还原的实验,我们研究了所得到的树莓状聚吡咯复合材料的催化性能。与传统的金属纳米粒子催化剂相比,由于作为基体的SiO_2微球的尺寸比较大,通过离心作用很容易把此树莓状复合材料与反应液进行分离从而实现重复使用。
     在第三章中,我们设计了一个合成路径,制备了内部装饰氧化铕纳米粒子的SiO_2纳米空心球,建立了一种合成多功能的交联有机/无机杂化核并成功的将其转化为超小纳米粒子/二氧化硅复合空心微球的比较简便的方法。首先,我们成功合成了溴乙酸铕(EUBA),然后将溴乙酸铕(EUBA)与3-氨丙基三乙氧基硅烷(APTES)在水中混合后,通过两次自发反应得到了交联的有机无机杂化核,在适当的反应条件下将其转化为Eu_2O_3@H-SiO_2纳米微球,氧化铕为(fcc)晶体结构,并证实了压力对氧化铕纳米粒子的晶体结构有非常大的影响。室温条件下,Eu_2O_3@H-SiO_2纳米空心微球呈现顺磁性,具有典型的顺磁材料磁滞曲线。我们对制备的Eu_2O_3@H-SiO_2纳米空心微球进行了荧光光谱测试并得到了其显微镜照片,该复合物的荧光为红色、发光寿命为0.116 ms。
Organic/inorganic nanocomposites not only overcome some shortcomings that inorganic particles are not easy to be processed and organic polymers always have low strength and poor stability, but also get some better performance after the synergistic effect. The self-assembly technology of supramolecular provides a new way for the preparation of nano-materials. In this paper, we get some new types of Organic/inorganic nanocomposites by the self-assembly technology of supramolecular, and we study their nature in great detail. It provide the basis for their potential application in different fields.
     In chapter 2, we report a novel way to prepare PPy composites by using silica spheres loaded with [Ag(NH_3)_2]~+ ions as the supporter. Oxidation polymerization of pyrrole monomer and reduction of [Ag(NH_3)_2]~+ ions took place on the surface of silica spheres simultaneously and raspberry-like composites were formed in one step. No stabilizers were used in the whole process, which significantly improved the quality of the composites. The catalytic property of raspberry-like composites was investigated by reducing the methylene blue (MB) dye with sodium borohydride (NaBH4) as the reducing agent. With traditional metal nanoparticle catalyst compared, the raspberry-like composites could be easily removed from the reaction solution by centrifugation due to the large size of silica sphere supporters and then can be reused.
     In chapter 3, we report a promising strategy for the facile synthesis of ultra small nanoparticles functionalized hollow silica nanosphere by using a functional cross-linked organic/inorganic hybrid core, which can be obtained simply through successive spontaneous reactions in water. We take Eu2O3 NPs decorated H-SiO2 (denoted as Eu_2O_3@H-SiO_2) nanospheres as an example to demonstrate this concept. First we successfully synthesized EUBA, When europium bromoacetate (EUBA) and (3-aminopropyl) triethoxysilane (APTES) were mixed in water, two successive spontaneous reactions would occur and formed the cross-linked hybrid cores. Under the right conditions, the cross-linked hybrid cores can be translated into Eu_2O_3@H-SiO_2 nanospheres. It can be perfectly indexed to the face-centered cube (fcc) structure of Eu2O3 phase. We confirmed that high pressure within hollow spheres, which is resulted from thermal decomposition of the hybrid cores, is essential for the formation of fcc structured Eu2O3 NPs. At room temperature, Eu_2O_3@H-SiO_2 nanospheres show paramagnetic property with a typical hysteresis curve for paramagnetic material. The fluorescence spectroscopy and fluorescence microscopic photographs of Eu2O3@H-SiO2 nanospheres confirmed that it is red and the lifetime is 0.116 ms.
引文
[1]陈景先.21世纪的新材料——纳米材料[J].世界有色金属,1999,1:33.
    [2]张梅,陈焕春,杨绪杰.纳米材料的研究现状及展望[J].导弹与航天运载技术,2000,(3):11-16.
    [3] Ow. H., Larson D. R., Srivastava M., Baird B. A. and Webb W. W., Wiesner U., 2005, 5(1):113.
    [4]. Han L., Wu W., Kirk F. L., Luo J., Maye M. M., Kariuki N. N., Lin Y., Wang C. and Zhong C., Langmuir.2004, 20:6019.
    [5] Du J., Chen Y., Macromolecules, 2004, 37:5710.
    [6] Fan X., Xia C. and Advincula R. C., Langmuir, 2003, 19: 4381.
    [7]陈艾.纳米科技与纳米材料:新世纪的跨学科研究热点[J].电子科技报,1998,12:19-25
    [8]翟华嶂,李建保,黄勇.纳米材料和纳米科技的进展、应用及产业化现状[J].材料工程,2001,3:43-48.
    [9] Gryanov V. G.., Prog Mater Sci., 1993, 37(4):289
    [10] Li D.X., Mater Lett., 1993, 18:29
    [11] Gleiter H., Prog.Mater.Sci., 1989, 33:223
    [12] Haubold T., J Lesscomm Metals., 1988, 145:557
    [13] Sehaefer H. E., Phys Rev., 1988, B38:9545
    [14] Rupp J. and Birringer R., Phys Rev., 1987, B36:7888
    [15] Mutsehele T., ScriPta Metall., 1987, 21:135
    [16] Epperson J. and Siegel R., Mater. Res.Soe. Symp. Proe., 1989, 132:15
    [17] Melendres C. A., J. Mater Res., 1989, 4:1246
    [18] Thomas G. J., Scripta Metallet. Mater., 1990, 24:106
    [19] Fitzsimmon M. R., Phys Rev., 1991, B44:2452
    [20] Eastman J. A. and Thom Pson L. J., Nanostruetured Mater., 1992, l:50
    [21] Wunderlich W., Scripta Metallet Mater., 1990, 24:403
    [22] Ishida Y., Physiea C., 1991, 190(l-2):67
    [23] Li D. X., Ping D. H., and Ye H. Q., PH-IL.Mag.Lett., 1993
    [24] Wang K. Y., Shenb T. D., Quanb M. X., J.Mater. Sci.Lett., 1993, 12:1818
    [25] Lei S., Sun L. and Wang Z., Nanostruetured Mater., 1993, 2;653
    [26] Petch N. J., J. Iron Steellnst., 1953, 174:25
    [27] Palumbo G., Erb V. and Aust K. T., ScrMetall. Mater., 1990, 24:2347
    [28] Fougere G. E., Weertman J. R. and SiegeI R. W., Nanostruetured Mater., 1993,3:379
    [29] Lu K. and Sui M. L., Scr .Metall. Mater., 1993, 28:165
    [30] Cahu R. W., Nature, 1988, 332:112
    [31] Karch J., Birringer R. and Gleiter H., Nature, 1987, 330:556
    [32] Hahu H. and Averback R., J.Am Cera Soc., 1991, 74(11):2918
    [33] Uchic M. and Averback R., Scr. Metall.Mater., 1992, 26(5):791
    [34] Mayo M., Siegel R.,Liao Y. and Nix W. J., Mater Res., 1992, 7(4):973
    [35] Berkowttz A. E., Mitchell J. R. and Cakey M. J., Phys.Rev.lett., 1992, 68:3745
    [36] Nimtz G.rt., J Crystal Growth., 1988, 86:66
    [37] Birringer R., Herr U. and Gleiter H., Suppl.Trans.Jpn.Inst.MET., 1986, 27:43
    [38]杨剑.纳米材料综述[J].材料导报,1997,11:6-11
    [39] Pechenik A., Piermarini G. J. and Danforth S. C., J.Am.Ceram.Soc., 1992, 75:3283 [40 Brus L., Nature, 1991, 353:301
    [41] Nogami M. and Abe Y., Appl Phys Lett., 1994, 65:2678
    [42]翟庆洲,裘式纶,肖丰收.纳米材料研究进展——纳米材料结构与化学性质[J].化学研究与应用,1998,10(3):8—17.
    [43]陈改荣.纳米材料的特性及进展[J].平原大学学报,2000,17(4):41—43.
    [44] Hahn H., Int Conf on diffusion in Metals and Alloys. Balatonfured. ungary ,1988
    [45] Chadwick A.V., Sens Actuaturs, 1994, B18:99
    [46] Ekimov A. I., Science, 1992, 256:1425
    [47]鲁圣国,韩玉,张良莹.硅酸盐学报,1994,22(1):71
    [48]石士考.纳米材料的特性及其应用[J].大学化学,2001,16(2):39—42.
    [49] Herron N., J.Am.Chem.Soc., 1989, 111:530
    [50]阎明朗,李淑祥.物理,1994;23(6):335
    [51] Ahuja R. and Fraser H. L., JOM., 1994, 46(10):35
    [52] Kim J., Kim S. S., Kim K. H., Jin Y. H., Hong S. M., Hwang S. S., Cho B. G., Shin D. Y. and Im S. S., Polymer, 2004, 45:3527.
    [53] Kojima Y., Usuki A., Kawasumi M., Okada A., Fukushima Y., Kurauchi T. and Kamigaito O., J. Mater. Res., 1993, 8:1185.
    [54] Zhao H. and Shipp D. A., Chem. Mater. 2003, 15:2693.
    [55] Wolf K. L., Z. Phy Chem. Ab., 1937, B36:17
    [56]张来新,杨琼.超分子化学研究的新进展[J].应用化工, 2010 , 39(11):1758-1760
    [57] Brunsveld L., Folmer B. J. B. and Meijer E. W., M R S Bull., 2000, 4: 49 45
    [58] Brunsveld L., Folmer B. J. B. and Meijer E. W., Chem.Rev., 2001, 101: 40-71
    [59]李苪.分子自组装技术[J].印染,2008,14:23
    [60]李恒,石锦霞,何平笙.亚观尺度的自组装[J].化学通报,2005,2:100-105
    [61]戚冬伟.超分子.自组装及其在纳米材料中的应用[J].宿州教育学院学报,2010,13(1):140-142
    [62]庄小东,刘莹,蔡良珍.自组装有机纳米功能材料[J].化学进展,2007,19(11):1653-1654.
    [63]夏琳,邱桂学.化学科学的研究新领域——超分子化学[J].化学推进剂与高分子材料,2007,5(1):33-37.
    [64]张中强,涂华民,葛旭升.超分子化学的研究和进展[J].河北师范大学学报,2006,30(4):453-457.
    [65] Crooks R .M., Zhao M. Q., Sun L., Chechik V.and Yeung L. K., Acc. Chem. Res., 2001, 34:181.
    [66] Roucoux X., Schulz J. and Patin H., Chem. Rev., 2002, 102:3757.
    [67] Peng X. H., Pan Q. M. and. Rempel G. L, Chem. Soc. Rev., 2008, 37:1619.
    [68] Lee J., Park J. C. and Song H., Adv. Mater., 2008, 20:1523.
    [69] Medasani B., Park Y. H. and Vasiliev I., Phys. Rev. B., 2007, 75:235436.
    [70] Boutros M., Denicourt-Nowicki A., Roucoux A., Gengembre L., Beaunier P., Gédéon A. and Launay F., Chem. Commun., 2008, 2920.
    [71] Graeser M., Pippel E., Greiner A. and Wendorff J. H., Macromolecules, 2007, 40:6032.
    [72] Wen F., Zhang W. Q., Wei G. W., Wang Y., Zhang J. Z., Zhang M. C.and Shi L. Q., Chem. Mater., 2008, 20:2144.
    [73] Selvan S. T., Spatz J. P., Klok H. A. and Moller M., Adv. Mater., 1998, 10:132.
    [74] Yang X. M. and Lu Y., Mater. Lett., 2005, 59:2484
    [75] Fujii S., Aichi A., Akamatsu K., Nawafune H. and Nakamura Y., J. Mater. Chem., 2007, 17 :3777.
    [76] Costa C. A. R., Leite C. A. P. and Galembeck F., J. Phys. Chem. B., 2003, 107:4747.
    [77] Kobayashi Y., Salgueirio-Maceira V. and Liz-Maren L. M., Chem. Mater., 2001, 13:1630.
    [78] Chen Z. M., Chen, X., Zheng L. L., Gang T., Cui T. Y., Zhang K. and. Yang B, J. Colloid Interface Sci., 2005, 285:146.
    [79] Jing S. Y., Xing S. X., Yu L.X. and. Zhao C, Mater. Lett., 2007, 61: 4528.
    [80] Dallas P., Niarchos D., Vrbanic D., Boukos N., Pejovnik S., Trapalis C. and Petridis D., Polymer., 2007, 48:2007.
    [81] Mohan M. Y., Premkumar T., Lee K. and. Geckeler K. E, Macromol. Rapid Commun., 2006, 27:1346.、
    [82] Feng X. M., Sun Z. Z., Hou W. H. and Zhu J. J., Nanotechnology, 2007, 18 :195603.
    [83] Li X., Wan M. X., Wei Y., Shen J.Y. and Chen Z. J., J. Phys. Chem. B., 2006, 110:14623.
    [84] Yao T. J., Lin Q., Zhang K., Zhao D. F.,. Lv H, Zhang J. H. and Yang B., J. Colloid Interface Sci., 2007, 51:5434.
    [85] Epron F., Henry F. and Sagnes O., Makromol. Chem. Macromol. Symp., 1990, 35/36:527.
    [86] Thompson M. L. and Kateley L. J., J. Chem. Educ., 1999, 76:95.
    [87] Ertl. G., Knozinger. H. and Weitkamp. J., Handbook of Heterogeneous Catalysis.Weinheim:VCH, 1997
    [88] Thomas J. M. and Thomas W. J., Principles and Practice of Heterogeneous Catalysis.Weinheim:VCH, 1997
    [89]包信和.纳米限域体系的催化特性.中国科学(B):化学,2009,39(10):1125-1133
    [90] Calvert P., Rough guide to nanoworld[J]. Nature,1996,383 (26):300-301
    [91]张立德,纳米材料[M].北京:化学工业出版社,2000
    [92]林元华,纳米技术人类的又一次产业革命[J].国外科技动态,2000,1:11
    [93] Calvert P. Nature, 1996,383 (26):300-301·
    [94] Iijima S. Nature, 1991, 354:56-58
    [95]盖国胜,超微粉体技术[M].北京:化学工业出版社,2004
    [96] Xia Y., Yang P., Sun Y. AdMater., 2003,15:353-389·
    [97]李晓丽.纳米催化领域的新材料与新技术[J].稀土,2009,30(5):90-94
    [98] Nilsson A, Pettersson L. G. M. and Norskov J. K., Chemical Bonding at Surfaces and Interfaces.Amsterdam:Elsevier, 2008
    [99]井立强,侯海鸽,等.Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性[J].催化学报,2002,23(4):336-340.
    [100] Han M. H, Lin H. F, Yuan Y. H., Chemical Engineering Journal, 2003, 94(3):171-260.
    [101] Jiang Z. J., Liu C. Y and Sun L. W., J. Phys. Chem. B., 2005, 109:1730.
    [102] Lou X. W., Archer L. A. and Yang Z., Adv. Mater., 2008, 20:3987.
    [103] Liu J., Yang Q., Zhang L., Yang H., Gao J. and Li C., Chem. Mater., 2008, 20:4268.
    [104] Du J., Chen Y., Zhang Y., Han C. C., Fischer K. and Schmidt M., J. Am.Chem. Soc., 2003, 125:14710.
    [105] Du L., Liao S., Khatib H. A., Stoddart J. F. and Zink J. I., J. Am. Chem. Soc., 2009, 131, 15136.
    [106] Zhu Y., Shi J., Shen W., Dong X., Feng J., Ruan M. and Y. Li, Angew, Chem. Int. Ed., 2005, 44:5083.
    [107] Kamata K., Lu Y. and Xia Y., J. Am. Chem. Soc., 2003, 125:2384
    [108] Tan L., Chen D., Liu H. and Tang F., Adv. Mater., 2010, 22:4885.
    [109] Yeo K. M., Shin J. and Lee I. S., Chem. Commun., 2010, 46:64.
    [110] Zhang Q., Ge J., Goebl J., Hu Y., Lu Z. and Yin Y., Nano Res., 2009, 2:583.
    [111] Si R., Zhang Y. W., You L. P. andYan C. H., Angew. Chem. Int. Ed., 2005, 44:3256.
    [112] Chen Z., Cui Z. M., Niu F., Jiang L. and Song W. G., Chem. Commun., 2010, 46:6524.
    [113] Lou X. W., Yuan C., Rhoades E., Zhang Q. and Archer L. A., Adv. Funct. Mater., 2006, 16:1679.
    [114] Yamada Y., Mizutani M., Nakamura T. and Yano K., Chem. Mater., 2010, 22:1695.
    [115] Choi W. S., Koo H. Y. and Kim D. Y., Langmuir, 2008, 24:4633.
    [116] Li L., Shi J. L., Zhang L. X., Xiong L. M. and Yan J. N., Adv. Mater., 2004, 16:1079.
    [117] Guari Y., Thieuleux C., Mehdi A., ReyéC., Corriu R. J. P., Gallardo S. G., Philippot K., Chaudret B.and Dutartre R., Chem. Commun., 2001, 1374.
    [118] Cui T., Cui F., Zhang J., Wang J., Huang J., LüC., Chen Z. and Yang B., J. Am. Chem. Soc., 2006, 128:6298.
    [119] Cui T., Zhang J., Wang J., Cui F., Chen W., Xu F., Wang Z., Zhang K. and Yang B., Adv. Funct. Mater., 2005, 15:481.
    [120] Bae S. S., Lim D. K., Park J. I., Lee W. R., Cheon J. and Kim. S., J. Phys. Chem. B., 2004, 108:2575.
    [121] Khanal A., Inoue Y., Yada M. and Nakashima K., J. Am. Chem. Soc., 2007, 129:1534.
    [122] Hüsing N., Schubert U., Mezei R., Fratzl P., Riegel B., Kiefer W., Kohler D. and Mader W., Chem. Mater., 1999, 11:451.
    [123] Iler R. K., The Chemistry of Silica; Wiley: New York, 1979.
    [124] Bogush G. H., Tracy M. A and Zukoski IV C. F., J. NonCryst. Solids, 1988, 104:95.
    [125] Zhu J., Tang J., Zhao L., Zhou X., Wang Y. and Yu C., Small, 2010, 6:276.
    [126] Maxim N., Overweg A., Kooyman P. J., Wolput J. H. M. C., Hanssen R. W. J.M., Santen R. A. van and. Abbenhuis H. C. L, J. Phys. Chem. B. 2002, 106:2203.
    [127] Zhang G., Yu Y., Chen X., Han Y., Di Y., Yang B., Xiao F. and Shen J., J. Colloid Interface Sci., 2003, 263:467.
    [128] Moore D. A. and Perguson I. F., J. Am. Ceram. Soc., 1982, 65:414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700