钛表面肝素和纤维连接蛋白微图形的构建及其对血小板和内皮细胞行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对心血管人工植入材料而言,内膜增生和血栓的形成是其植入后面临的主要问题。通过表面改性技术促进内皮细胞粘附的同时减少血小板的粘附能有效提高材料的生物相容性,其中表面图形化技术正成为研究热点。
     本文采用软刻蚀技术中的微转移模塑技术在预处理的钛(Ti)表面构建仿生生物大分子微图形。钛的预处理包括NaOH碱活化和3-氨丙基三乙氧基硅烷(APTE)偶联处理,通过扫描电子显微镜(SEM)、接触角测量仪、傅里叶红外变换光谱分析(FTIR)和氨基定量的方法对预处理的钛表面进行理化表征。聚二甲基硅氧烷(PDMS)印章由浇铸法制备,运用其压印具有阻抗蛋白和细胞粘附的单甲氧基聚乙二醇琥珀酰亚胺碳酸酯(mPEG-SC),而后组装具有抗凝作用的肝素(Hep)和促进内皮细胞粘附的纤维连接蛋白(Fn)混合物(Hep-Fn),构成iPEG-SC/Hep-Fn微图形。通过SEM、接触角测量仪、FTIR、Hep及Fn的染色对制备的Hep-Fn微图形进行表征。在此基础上进行体外血小板粘附实验和内皮细胞培养实验,研究图形对血小板及内皮细胞行为的影响。
     SEM、接触角、FTIR、光镜及荧光显微镜结果显示:碱活化后的钛表面变粗糙,亲水性加强,表面出现羟基的吸收峰;硅烷偶联后的钛表面粗糙度进一步加大,疏水性增大,FTIR检测有CH2的吸收峰,氨基在表面的密度约为51nmol/cm2。图形化的样品表面能看到清晰的条纹图形,FTIR出现mPEG-SC、Hep和Fn的特征吸收峰。Hep和Fn的染色进一步证实mPEG-SC的生物惰性,Hep和Fn只分布在没有mPEG-SC的图形区域。
     血小板粘附实验表明:平板Ti和Hep-Fn表面血小板布满整个表面,血小板伸出伪足,没有团聚。由于肝素的抗凝作用,Hep-Fn表面血小板粘附数量少于Ti。nPEG-SC平板表面几乎没有血小板粘附;图形样品表面血小板选择性分布在Hep-Fn条纹区域,与平板的Hep-Fn相比能进一步减少血小板粘附数量。不同尺寸的图形样品Hep-Fn的有效面积不同致使血小板的粘附数量有所不同。激活的血小板在数量和分布上和粘附有着同样的趋势,图形化样品表面激活的血小板数量比平板的Ti和Hep-Fn样品少。APTT结果显示平板和图形的Hep-Fn没有明显延长APTT时间,但也没有加剧凝血时间,具有—定抗凝作用。
     内皮细胞粘附结果显示:平板的Hep-Fn表面与钛相比,能促进内皮细胞的粘附、铺展、增殖;mPEG-SC表面几乎没有内皮细胞粘附。图形化表面内皮细胞都沿着Hep-Fn图形方向分布,不同尺寸的图形对内皮细胞的取向角、长宽比、形态指数等均有不同影响:大于细胞尺寸的图形使细胞呈2个或多个并行排列,有利于细胞铺展和增殖;与细胞尺寸相近的图形能够使细胞成单细胞阵列分布,拉长并产生引导作用。
     以上结果表明:具有生物功能的mPEG-SC/Hep-Fn微图形能调节血小板和内皮细胞分布的同时,降低血小板粘附并调节内皮细胞粘附、生长和增殖,有效提高了钛金属的生物相容性。
For cardiovascular implants, neointimal hyperplasia and thrombus are the major problems in their application. Promoting endothelial cell adhesion or reducing platelet adhesion through surface modification technology can effectively improve the biocompatibility of the materials, and surface patterning technology has becoming popular.
     In this paper, microtransfer molding technology (μTM), one method of soft lithography was used on titanium (Ti) surface after pretreatment to fabricate bionic biological molecules micropatterns. The pre-modified of Ti surface including NaOH alkali activation and3-aminopropyl triethoxysilane (APTE) treatment, and its surface characteristics observed by scanning electron microscopy (SEM), contact angle measurement, infrared spectrum analysis (FTIR) and amino quantitative method. Polydimethylsiloxane (PDMS) was prepared by the casting method, and then used it to imprint a-Methoxy-poly(ethylene glycol)-ω-succinimidyl carbonate (mPEG-SC) on the pre-modified Ti surface, which could resist proteins and cells ahhesion. After that the mixture of heparin and fibronectin, which have the properties of anticoagulation and promotion of endothelial cell adhesion, respectively, was assembled to fabricate the micropattern of mPEG-SC/Hep-Fn. SEM, contact angle measurement, FTIR, Hep and Fn staining method were used to examine the surface morphology and chemical composition of the mPEG-SC/Hep-Fn micropattem. On this basis, platelet adhesion and endothelial cell culture experiments in vitro were carried out to study the effect of mPEG-SC/Hep-Fn micropattem on the behavior of platelets and endothelial cells.
     SEM, contact angle, FTIR, light microscopy and fluorescence microscopy results showed that: on alkali activated titanium surface, the roughness and surface hydrophilic were increased,-OH absorption peak was detected. On silane coupling Ti surface, the roughness was further increased, hydrophobicity was increased, CH2absorption peak was detected and the amino density of NH2was about51nmol/cn2. Clear stripes could be observed on the micropattem sample surface. FTIR showed the absorption peaks of mPEG-SC, Hep and Fn. And the Hep and Fn staining further confirmed the biological inertness of mPEG-SC, Hep and Fn was only distributed in the regions not coated with mPEG-SC.
     Platelet adhesion experiments showed that:on Ti and Hep-Fn surface, platelets covered the entire surface with extended pseudopods, but did not aggregation. As the anticoagulant effect of heparin, the numbers of platelets adherent on Hep-Fn surface was less than Ti. On mPEG-SC surface, there was almost no platelet adhesion; on micropaterned sample surface, platelet selective distributed on Hep-Fn stripe region, further reduce platelet adhesion amount compared to nonpatterned Hep-Fn surface. Different number of platelet adhesion due to different sizes of Hep-Fn on micropatterned sample. The amount and distribution of activated platelets were similar with the results of total platelet adhesion. APTT results showed that both nonpatterned and micropatterned Hep-Fn did not significant prolongation of APTT time, but they also did not aggravate clotting time, which may had anticoagulant effect.
     EC adhesion results showed that: nonpatterned Hep-Fn surface could promote EC adhesion, spreading and proliferation compared to titanium. The mPEG-SC surface almost had no endothelial cell adhesion. ECs distributed along with the Hep-Fn direction on the patterned sample surfaces. The different sizes of micropatterns had different effects on the orientation angle, ratio of length to width as well as shape index of EC:there could be two or more ECs parallel arranged on the micropatterns with greater size than EC, which could increase cell spreading and proliferation; and there could only be a single cell distribution on the micropatterns with similar size to EC, which could elongate and has guiding function to EC.
     The above results suggest that:the biological functions of mPEG-SC/Hep-Fn micropattern could regulate the distribution of platelet and endothelial cell, at the same time reduce platelet adhesion and regulate the adhesion, growth and proliferation of EC. And this may effectively improve the biocompatibility of Ti.
引文
[1]颜汉卿,徐国风.生物医学材料学.天津:天津科技翻译出版公司.1993.
    [2]Goodman S B, Barrena E G, Takagi M, Konttinen Y T. Biocompatibility of total joint replacements:A review. J Biomed Mater Res A. 2009,90(2):603-618.
    [3]雷丽娟.肝素微图形的制备及对细胞行为的影响.西南交通大学硕士学位论文.2011.
    [4]Li G C, Yang P, Qin W, Maitz M F, Zhou S, Huang N. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials.2011,32(21):4691-4703.
    [5]俞耀庭.生物医用材料.天津大学出版社,2000:224.
    [6]Dalby M J, Childs S, Richle M O, Johnstone H J H, Affrossman S. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials.2003,24(6):927-935
    [7]Liao H H, Anderson A S, Sutherland D, Petronis S, Kascemo B, Thomsen P. Response of rat osteoblast-like cells to microstructured model surfaces in vitro Biomaterials.2003, 24(4):649-654
    [8]Zhu X L, Chen J, Scheideler L, Reichl R, Geis-Grestorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials.2004,25(18): 4087-4103
    [9]Sun J G, Tang J, Ding J D. Cell orientation on a stripe-micropatterned surface. Chinese Sci Bull.2009,54(18):3154-3159.
    [10]Shen J Y, Chan-Park M B, Feng Z Q, Chan V, Feng Z W. UV-embossed microchannel in biocompatible polymeric film:application to control of cell shape and orientation of muscle cells. J Biomed Mater Res Part B Appl Biomater. 2006,77(2):423-430.
    [11]杨苹,周红芳等.非晶碳膜的表面润湿性对生物相容性的影响.功能材料.2004年增刊,35:2477-2478.
    [12]Spijker H T, Bos R, Busscher H J, van Kooten T, van Oeveren W. Platelet adhesion and activation on a shielded plasma gradient prepared on polyethylene. Biomateials.2002,23(3): 757-766.
    [13 Altankov G, Groth T, Krasteva N, Albrecht W, Paul D, Morphological evidence for a different fibronectin receptor organization and function during fibrolast adhesion on hydrophilic and hydrophobic glass sudstrata. Journal of biomaterials science-polymer edition. 1997,8(9):721-740.
    [14]van der Valk P, van Pelt A W, Busscher H J, de Jong H P, Wildevuur C R, Arends J. Interaction of fibroblasts and polymer surfaces:relationship between surface free energy and fibroblast spreading. J Biomed Mater Res.1983,17(5):807-817.
    [15]孙建国.PEG水凝胶的金微图案化修饰及其表面细胞勃附行为的研究,2009.
    [16]Chung T W, Liu D Z, Wang S Y, Wang S S. Enhancment of the groth of human endothelial cells by surface roughness at nanometer scale, Biomaterials,2003,24 (25): 4644-4661.
    [17]Lange R, Luthen F, Beck U, Rychly J, Baumann A, Nebe B. Cell-extracellular matrix interaction and physico- chemical characteristics of titanil:surfaces depend on the roughness of the material. Biomol Eng. 2002,19(2-6):255-261.
    [18]Goransson A, Jansson E, Tengvall P, Wennerberg A. Bone formation after 4 weeks around blood-plasma-modified titanium implants with varying surface topographies:An in vivo study. Biomaterials.2003,24 (2):197-205.
    [19]文学军,王小祥,薛森.金属生物材料的微粗糙表面及其生物学效应(Ⅰ)-金属生物材料微粗糙表面.生物医学工程学杂志.1997,14(1):77-80
    [20]Sbarbati Delguerra R, Cascono M G, Ricci D, Martinoia S, Parodi M T, Ahluwalia A, Mourik J A, Grattarola M. Optimization of the interaction between ethylenevinyl alcohol copolymers and human endothelial cells. J Mater Sci Mater Med. 1996,7(1):8-12.
    [21]文学军,薛森.金属生物材料的微粗糙表面及其生物学效应(Ⅱ)-金属生物材料微粗糙表面的生物学效应.生物医学工程学杂志.1997,14(2):164-169.
    [22]郑楠.几种无机材料表面微沟槽的制备及其生物相容性研究.西南交通大学硕士学位论文.2009.
    [23]Richter E, Fuhr G, Muller T, Shirley S, Rogaschewski S, Reimer K, Dell C. Growth of anchorage-dependent mammalian cells on microstructures and microperforated silicon membranes. J Mater Sci.1996,7(2):85-97.
    [24]Curtis A, Wilkinson C, Topographical control of cells, Biomaterials.1997,18(24): 1573-1583.
    [25]Weiss P. Experiments on cell and axon orientation in vitro:The role of colloidal exudates in tissue organization, J Exp Zool.1945,100(3):353-386.
    [26]Dunn G A, Brown A F. Alignment of fibroblasts on grooved surfaces deseribed by a simple geometric transformation.J Cell Sci 1986,83:313-340.
    [27]Magnani A, Priamo A, Pasqui D, Barbucci R. Cell behavior on chemically microstructured surfaces. Mater Sci Eng C.2003,23(3):315-328. vivo. Biomaterials.2005,26(14):1793-1801.
    [28]Yim E K F, Pang S W, Leong K W. Synthetic nanostructures inducing differeniiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res.2007, 313(9): 1820-1829.
    [29]Kim H I, Kim S S. Plasma treatment of polypropylene and polysulfone suppotts for thin film composite reverse osmosis membrane. J Membrane Sci.2006,286(1-2):193-201.
    [30]Kim J T, Park J K Lee D C. Surface modification of polyimide film by ion implantation. Polym Int. 2002,51(10):1063-1065.
    [31]Chen X Y, Zhang X F, Zhu Y, Zhang JZ, Hu P. Surface modification of polyhydroxyalkanoates by ion implantation, Characterization and cytomopatibility improvement. Polym J.2003,35(2):148-154.
    [32]何婷婷.等离子体聚丙烯酸薄膜表面纤维连接蛋白的固定及其内皮细胞粘附行为.西南交通大学硕士学位论文.2011.
    [33]陈俊英.Ti基生物材料表面促内皮/抗凝双功能修饰层的构建与化学生物学评价.学术动态(成都).2009,1:12-16.
    [34]Crawford G A, Chawla N, Das K, Bose S, Bandyopadhyay A. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater. 2007,3(3):359-367.
    [35]Kodama A, Bauer S, Komatsu A, Asoh H, Ono S, Schmuki P. Bioactivation of titanium surface using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater. 2009,5(6):2322-2330.
    [36]韩雪,陶晓杰,李述军等.新型钛合金阳极氧化后对成骨细胞增殖、分化的影响.实用口腔医学杂志.2006,22(2):252-254.
    [37]Decher G. Fuzzy nonoassemblies:Toward layered polymeric multicomoposites. Science. 1997,277(5330):1232-1237.
    [38]Tang Z Y, Wang Y, Podsiadlo P, Kotov N A. Biomedical applications of layer-by layer assembly: From biomimetics to tissue enginrrring. Adv Mater. 2006, 18(24):3203-3224.
    [39]Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli H J. Surface modification of poly(vinylidenefluoride) to impove the osteoblast adhesion. Biomaterials. 2003,24(21):3633-3670.
    [40]Cui Y L, Qi A D, Liu W G, Wang X H, Wang H, Ma D M, Yao K D. Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials.2003,24(21):3859-3868.
    [41]蒋小松,陈俊英,黄楠.APTE修饰钛氧膜并固定Ⅰ型胶原对其凝血性能的影响,功能材料,2008,5(39):841-844.
    [42]Brynda E, Houska M, Jirouskova M, Dyr J E. Albumin and heprin multilayer coating for blood-contacting medical devices. J Biomed Mater Res.2000, 51(2):249-257.
    [43]Houska M, Brynda E. Interactions of proteins with polyelectrolytes at solid/liquid interfaces:Sequential adsorption of albumin and heparin. J Colloid Interf Sci.1997,188(2): 242-250.
    [44]陈佳龙,李全利,陈俊英等.钛表面层层组装胶原与肝素改善血液相容性的研究.功能材料.2007增刊,38卷:1865-1867.
    [45]Zhu Y B, Gao C Y, He T, Liu X Y, Shen J C. Layer-by-layer assembly to modify poly(L-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. Biomacromolecules.2003,4(2):446-452.
    [46]Zhu Y B, Gao C Y, Liu X Y, Shen J C. Endothelial cell functions in vitro cultured on poly(L-lactic acid) membranes modified with different methods. J Biomed Mater Res A. 2004,69(3):436-443.
    [47]陈诚.利用自组装技术在钛表面定向固定CD34抗体及其内皮化诱导研究,西南交通大学硕士学位论文.2009.
    [48]樊珊.钛氧薄膜材料表面层粘连蛋白与纤连蛋白联合固定以及内皮化研究.西南交通大学硕士学位论文.2008.
    [49]信思树,普朝光,杨明珠,杨培志.一种新型的正胶剥离技术及其应用.红外技术.2006,2(6):105-107.
    [50]赵小梅,陈四海,付小湖等.化学镀镍在3232非制冷焦平面互联中的应用.红外技术.2005,27(4):303-306.
    [51]Brittain S, Paul K E, Zhao X M, Whitesides G M. Soft lithography and microfabrication. Phys World. 1998,11:31-36.
    [52]Xia Y N, Whitesides G M. Soft lithography. Annu Rev Mater Sci.1998,28:153-184.
    [53]王奕.软刻蚀技术.宿州教育学院学报.2006,9(5):108-111.
    [54]夏骏,陈翔,高峰,彭志海.新型PDMS弹性印章的制备方法及其在纳米生物芯片中的应用.中国现代医学杂志.2010,2(5):659-662.
    [55]Yi H Y, Hower J, Chen S F, Bernards M T, Chang Y, Jiang S Y. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. 2008,24(18):10358-10364.
    [56]Chen S F, Zheng J, Li LY, Jiang SY. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J Am Chem Soc. 2005,127 (41): 14473-14478.
    [57]Jung J, Na K, Shin B, Kim O, Lee J H, Yun K, Hyun J H. A cell-repellent sulfonated PEG comb-like polymer for highly resolved cell micropatters. J Biomat Sci-Polym E.2008, 19(2): 161-173.
    [58]Larsson C F, Nylander T, Jannasch P, Wesslen B. Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: effects on protein adsorption. Biomaterials. 1996,17(22): 2199-2207.
    [59]O'Connor S M, Gehrke S H, Patuto S, Retzinger G. The adsorption and functionality of fibrinogen on hydrophobic surfaces bodified with PEO/PPO/PEO block copolymers. Polym Prepr. 1997,38(1):559-560.
    [60]Bohner M, Ring T A, Rapoport N, Caldwell K D. Fibrinogen adsorption by PS latex particles coated with various amounts of a PEO/PPO/PEO triblock copolymer. J Biomat Sci Polym Ed. 2002, 13(6): 733-746.
    [61]Jackson J K, Springate C M K, William L H, Helen M B. Neutrophil activation by plasma opsonized polymeric microspheres: inhibitory elect of Pluronic F127. Biomaterials. 2000,21(14): 1483-1491.
    [62]Khademhosseini A, Suh K Y, Yang J M, Eng G, Yeh J, Levenberg S, Langer R.Layer-by-Iayer deposition of hyaluronic acid and poly-I-lysine for patterned cell co-cultures. Biomaterials.2004,25(17): 3583-3592.
    [63]孙建国.PEG水凝胶的金微图案化修饰及其表面细胞粘附行为的研究.复旦大学博士学位论文.2009.
    [64]Lee J H, Lee H B, Andrade J D. Blood compatibility of Polyethylene oxide surfaces. Prog Polym Sci. 1995,20(6): 1043-1079.
    [65]Xia Y N, Whitesides G M. Soft lithography. Angewandte Chemie International Edition. 1998,37(5): 550-575.
    [66]Geissler M, Xia Y N. Patterning: principles and some new developments. Adv Mater. 2004, 16(15): 1249-1269.
    [67]Xia Y, Rogers J A, Paul K E, et al. Unconventional methods for fabricating and patterning nanostructures. Chem Rev. 1999,99(7): 1823-1848.
    [68]Kim E, Xia Y N, Whitesides GM. Polymer microstructures formed by moulding in capillaries. Nature.1995,376(17): 581-584.
    [69]潘力佳,何平笙.纳米器件制备的新方法:微接触印刷术.化学通报.2000,(12):12-17.
    [70]廖玉珍.软刻蚀方法制备细胞模板及内皮-平滑肌细胞的协同培养.西南交通大学硕士学位论文.2011.
    [71]Zhao X M, Xia Y N, Whitesides G M. Fabrication of Three-Dimensional Microstructures:Microtransfer Molding. Adv Mater. 1996,8(10):837-840.
    [72]石锦霞.软刻蚀技术在高分子科学中的应用.中国科学技术大学博士学位论文.2008.
    [73]Hyun J, Chikoti A. Micropatterning biological molecules on a polymer surface using elastomerie mierowells. J Am Chem SOc. 2001,123(28):6943-6944.
    [74]赵小力,董申,于海涛.软印刷技术.显微、测量、微细技工设备与技术.2006,155-63.
    [75]Paul K E, Prentiss M, Whitesides G M. Patterning. Spherical Surfaces at the Two-Hundred-Nanometer Scale Using Soft Lithography. Adv Funct Mater. 2003,13(4): 259-263.
    [76]McBeath R, Pirone D M, Nelson C M, Bhadriraju K, Chen C S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell.2004, 6(4): 483-495.
    [77]Lin C C, Co C C, Ho C C. Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide). Biomaterials.2005,26(17):3655-3662.
    [78]Thakar R G, Cheng Q, Patel S, Chu J, Nasir M, Liepmann D, Komvopoulos K, Li S. Cell-Shape Regulation of Smooth Muscle Cell Proliferation. Biophys J.2009, 96(8): 3423-3432.
    [79]Anderson D E, Hinds M T. Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng. 2011,39(9):2329-2345.
    [80]Liu W W, Chen Z L, Jiang X Y. Methods for Cell Micropatterning on Two-Dimensional Surfaces and Their Applications in Biology. Chin J Anal Chem.2009, 37(7):943-949.
    [81]Jing L, Rao M P, MacDonald N C, Khang D, Webster T J. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater. 2008,4(1):192-201.
    [82]Feinberg A W, Wilkerson W R, Seegert C A, Gibson A L, Hoipkemeier-Wilson L Brennan A B. Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment. J Biomed Mater Res A. 2008,86(2):522-534.
    [83]Palmaz J C, Benson A, Sprague E A. Influence of Surface Topography on Endothelialization of Intravascular Metallic Material. J Vase Intervent Radiol.1999, 10(4): 439-444.
    [84]Jing F J, Huang N, Wang L, Fu R K Y, Leng Y X,. Chen J Y, Liu X Y, Chu P K. Behavior of human umbilical vein endothelial cells on micro-patterned amorphous hydrogenated carbon films produced by plasma immersion ion implantation & deposition and plasma etching. Diam Relat Mater. 2007,16(3):550-557.
    [85]Chen C S, Mrksich M, Huang S, Whitesides G M, Ingber D E. Geometric control of cell life and death. Science.1997,276(5317):1425-1428.
    [86]Huang N F, Patlolla B, Abilez O, Sharma H, Rajadas J, Beygui R E, Zarins C K, Cooke J P. A matrix micropatterning platform for cell localization and stem cell fate determination. Acta Biomater. 2010, 6(12):4614-4621.
    [87]Lin X, Helmke B P. Micropatterned structural control suppresses mechanotaxis of endothelial cells. Biophys J.2008,95(6):3066-3078.
    [88]Koh L B, Rodriguez I, Venkatraman S S. The effect of topography of polymer surfaces on platelet adhesion. Biomaterials.2010,31(7):1533-1545.
    [89]Kumar A, Abbott N A, Kim E. Biebuyck H A, Whitesides G M. Patterned self-assembled monolayers and meso-scale phenomena. Ace Chem Res.1995,28(5): 219-226.
    [90]Bain C D, Whitesides G M. Modeling organic surfaces with self-assembled monolayers. Adv Mat Angew Chem.1989, 101(4):522-528.
    [91]Dubois L H, Nuzzo R G. Synthesis, Structure, and properties of model organic surfaces Annu Rev Phys Chem.1992,43(1):437-463.
    [92]Hyun J, Ma H W, Zhang Z P, Beebe T P, Chilkoti A. Universal Route to Cell Micropatterning Using an Amphiphilic Comb Polymer. Adv. Mater. 2003,15(7-8):576-579.
    [93]李世普,生物医用材料导论,武汉工业大学出版社,2000,8.
    [94]李永刚、张平,吴一辉、宣明.聚二甲基硅氧烷表面亲水性的研究.分析化学研究简报.2006,34(4):508-510.
    [95]Li G C, Yang P, Liao Y Z, Huang N, Tailoring of the Titanium Surface by Immobilization of Heparin/Fibronectin Complexes for Improving Blood Compatibility and Endothelialization:An in Vitro Study. Biomacromolecules.2011 12(4):1155-1168.
    [96]周超.Fn在硅烷化无机材料表面固定及定量表征方法的研究.西南交通大学硕士学位论文.2011.
    [97]Simon A, Bouhacina T C, Porte M C, et al. Study of Two Grafting Methods for Obtaining a 3-Aminopropyltriethoxysilane Monolayer on Silica Surface. J Colloid Interf Sci. 2002,251(2):278-283.
    [98]Suri C R, Mishra G C. Activating piezoelectric crystal surface by silanization for microgravimetric immunobiosensor application. Biosens Bioelectron. 1996,11(12): 1199-1205.
    [99]Chen H, Wang L, Zhang Y X, Li D, McClung W G, Brook M, Sheardown H. Fibrinolytic poly(dimethyl siloxane) surfaces. Macromol Biosci.2008,8(9):863-870.
    [100]Hannachi I E, Maeda M, Yamato M, Okano T. Portable microcontact printing device for cell culture. Biomaterials.2010,31(34):8974-8979.
    [101]Kanno M, Kawakami H, Nagaoka S, et al. Biocompatibility of fluorinated polyimide. J Biomed Mater Res,2002,60(1):53-60.
    [102]Zhang L, Lv P, Huang Z Y, Lin S P, Chen D H, Pan S R, Chen M, Blood compatibility of La2O3 doped diamond-like carbon films. Diamond Rela Mater. 2008,17(11): 1922-1926.
    [103]Erdtmann M, Keller R, Baumann H. Photochemical immobilization of heparin, dermatan sulphate, dextran sulphate and endothelial cell surface heparan sulphate onto cellulose membranes for the preparation of athrombogenic and antithrombogenic polymers. Biomaterials.1994,15(13): 1043-1048.
    [104]Krupinski K, Basic-Micic M, Lindhoff E, Breddin H K. Inhibition of coagulation and platelet adhesion to extracellular matrix by unfractionated heparin and a low molecular weight heparin. Blut. 1990,61(5):289-294.
    [105]Wu K K. Platelet activation mechanisms and markers in arterial thrombosis. J Intern Med. 1996,239(1):17-34.
    [106]McEver R P, Martin N M. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J Biol Chem.1984, 259 (15):9799-9804.
    [107]李伯刚,那娟娟,尹光福,殷杰,郑昌琼.生物碳素材料表面血小板黏附的实验研究生物医学工程学杂志.2004,21(1):12-15.
    [108]Ko T M, Lin J C, Cooper S L. Surface characterization and platelect adhesion studies of plasma-sulphonated polyethylene. Biomaterials.1993,14(9):657-664
    [109]Potts J R, Campbell I D, Structure and function of fibronectin modules. Matrix Biol. 1996,15(5):313-320.
    [110]Cho J Y, Mosher D F. Enhancement of thrombogenesis by plasma fibronectin cross-linked to fibrin and assembled in platelet thrombi. Blood.2006,107(9):3555-3563.
    [111]田仁来.Ti-0薄膜表面内皮细胞化研究.西南交通大学硕士论文.2004.
    [112]Giraux J L, MatouS, Bros A, Tapon-Bretaudiere J, Letourneur D, Fischer AM. Modulation of human endothelial cell proliferation and migration by fucoidan and heparin. Eur J Cell Biol.1998,77(4):352-359.
    [113]Yang Z L, Wang J, Luo R F, et al. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials.2010,31(8):2072-2083.
    [114]Chen C S, Mrksich M, Huang S, Whitesides G M, Ingber D E. Micropatterned surfaces for control of cell shape, position, and function. Biotech Prog.1998,14(3): 356-1363.
    [115]Keri B V, Sean J K, Stephen R H. Monica T H. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem Bioph Res Co.2008, 371(4):787-792.
    [116]Andersson A S, Olsson P, Lidberg U, Sutherland D. The effects of continuous and discontinuous groove edges on cell shape andalignment. Exp Cell Res.2003,288(1): 177-188.
    [117]Phillips D R, Charo I F, Scarborough R M. GPIIb-Ⅲa:the responsive integrin. Cell. 1991,65(3):359-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700