透明质酸相关微纳结构的制备/表征及其对细胞/细菌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管植入材料必须具有良好的血液相容性,材料表面内皮化是提高材料血液相容性的理想方法。本文中,利用毛细力刻蚀法在碱活化钛表面制备透明质酸(HA)微图形,采用扫描电子显微镜(SEM),光镜,傅里叶红外变换光谱分析(FTIR)、接触角测量仪、表面轮廓仪对样品性进行了表征。光镜和表面轮廓仪检测结果表明:采用浇铸法可以制备出沟、脊分明、表面平整的PDMS弹性印章;SEM、FTIR和接触角测量结果表明:碱活化后钛表面形貌和粗糙度发生改变,出现-OH伸缩振动峰,其亲水性明显提高;光镜和轮廓仪检测结果表明:采用软刻蚀(微转移模塑)的方法在碱活化钛表面获得了轮廓清晰的透明质酸条纹状微图形。在透明质酸微图形表面进行平滑肌细胞和内皮细胞的共培养,使内皮细胞的形态和分布类似体内血管内皮细胞。
     生物材料相关感染是临床使用生物材料时伴随的一个严重问题。至今已有多种抗菌生物材料被用来防治植入物引起的感染。纳米银是一种安全、高效的新型抗菌剂。将纳米银应用于植入物中使其自身具有抗菌的功能。以透明质酸为分散剂,通过紫外光还原硝酸银制备纳米银颗粒。用紫外-可见光分光光度计(UV-Vis)、扫描电子显微镜、X射线光谱仪(EDX)、动态激光光散射粒度仪(DLS)、Zeta电位仪及细菌试验和细胞培养实验表征纳米银的形貌和性质。结果表明,所制备的纳米银呈球形,平均粒径为170nm,对大肠杆菌有抑菌作用,对细胞的作用有待进一步研究。
Implanting cardiovascular materials must be provided with favorable hemocompatibility. Endothelialization on the surface of the implanting materials is always one of the ideal method to improve the hemocompatibility. In this thesis, capillary force lithography is used to fabricate the hyaluronic acid (HA) micropattern on the activated titanium (Ti-OH) surface. The HA micropatterns were characterized by scanning electron microscope(SEM), light microscopy, fourier transform infrared spectroscopy(FTIR), contact angle measurement, surface profiler. Surface profiler and light microscopy results showed that polydimethyl-siloxane (PDMS) stamp with high fidelity. The results of SEM, FTIR and contact angle measurement showed that the morphology of Ti surface activated by NaOH solution were changed, its roughness and hydrophilicity increased and ophilic groups was detected on the surface. Light microscopy and surface profiler results demonstrated that HA micropatterns had been prepared accurately on the surface of Ti-OH. Co-culture of human umbilical vein endothelial cells with human umbilical artery smooth muscle cells on the HA micropattern. The morphology and distribution of the co-culture Ecs is more similar to that in vivo.
     Biomaterial centered infections remain the major and often irreducible complication in the clinical use of biomaterials. To date, many kinds of antibacterial biomaterials have been studied for the prevention or treatment of bacterial infection on implanted devices. The nano-silver is a safe, highly effective new antimicrobial agents. Nano-silver is applied to the hunman implants to make sure that the implanted devices themselves possess antimicrobial function. HA was used as the stabilizing agents and the templates to prepare metal nanoparticles by photo-reduction of silver nitrate. The properties of the silver nanoparticles were investigated by UV-Vis spectroscopy, scanning electron microscope(SEM), Energy Dispersive X-Ray Spectroscopy (EDX), dynamic light scattering (DLS), Zeta potential instrument, antim icrobial activity test and cell culture experiments. Results show that the obtained silver nanoparticles are spherical and the average diameter is about170nm. Furthermore, the silver nanoparticles exhibit antibacter ialproperties against Escherichi a coli. However, the cytotoxieity of silver nanoparticles is to be studied further more.
引文
[1]Meyer K, Palmer J W. The polysaccharide of the vitreous humor. J Biol Chen.1934, 107: 629-634.
    [2]Laurent T C, Hellsing K, Gelotte B. Crosslinked gels of hyaluronic acid. Acta Chem Scand. 1964,18:274-275.
    [3]Jin Shu Mao, Hai Feng Liu, Yu Ji Yin, Kang De Yao. The properties of chitosan-gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials. 2003,24(9):1621-1629.
    [4]于学丽,王传栋,李保陆,曹成波.透明质酸的改性及其应用.生物医学工程研究.2005,24(1):61-66.
    [5]Scott J E, Cummings C, Brass A, et al. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Biochem.1991,274:699-705.
    [6]Schmut O, Ansari A N, Faulborn J. Degradation of hyaluronate by the concerted action of ozone and sunlight. Ophthalmic Res.1994,26:340-343.
    [7]Weiss C. Viscoseparation and viscoprotection as therapeutic modalities in the musculoskeletal system. The chemistry, biology and medical applications of hyaluronan and its derivatives. Portland Press.1998,255-266.
    [8]Burdick J A, Chung C, Jia X Q, et al. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005,6:386-91.
    [9]胡帼颖,顾汉卿.透明质酸交联、酯化衍生物的制备及医学应用进展.透析与人工器官.2003,14(3):30-46.
    [10]Laurent T C. The Chemistry, biology and medical applications of hyaluronan and its derivatives. Portland Press. 1998,33-37.
    [11]Laurent U B G, Laurent T C. On the origin of hyaluronate in blood. Biochem int.1981,2: 195-199.
    [12]Flessner M F. The role of extracellular matrix in transperitoncal transport of water and solutes. Petit Dial Int. 2001,21(3):24-29.
    [13]Balazs E A, Laurent T C, Jeanloz R W. Nomenclature of hyaluronic acid. Biochem J. 1986,235:903.
    [14]Patterson R L, Peterson D A, Doenhart F, et al. Rubella and rheumatoid arthritis: hyaluronic acid and susceptibility of cultured rheumatoid aynovial cells to viruses. Proc Soc Exp Biol Med.1975,149:594-598.
    [15]Brekke J H, Bivens K A, Patrick C W, Schmit C E. Photocrosslinked hyaluronic acid hydrogels:natural, biodegradable tissue engeineering scaffords. Biotechnol Bioeng. 2003,82: 578-589.
    [16]凌沛学.透明质酸.轻工业出版社,2007,59.
    [17]Chen W Y J, Abatangelo G. Functions of hyaluronan in wound repair. Wound repair Rengen.1999,7:79-89.
    [18]刘海峰,常津,陈亦平,姚康德.透明质酸的浓度对成纤维细胞粘附和增殖的影响.高分子通报.2006,6:68-72.
    [19]Folger R, Weiss L, Glaver D, et al. Translational movements of macrophages through media of different viscosites. J Cell Sci.1978,31:245-257.
    [20]Forrester J V, Wilkinson P C. Inhibition of leukocyte locomotion by hyaluronic acid. J Cell Sci. 1981,48:315-331.
    [21]Darzynkiewicz Z, Balazs F A. Effect of connective tissue intercellular matrix on lymphocyte stimulation. Suppression of lymphocyte stimulation by hyaluronic acid. Exp cell Res.1971,66:113-125.
    [22]凌沛学.透明质酸.轻工业出版社,2007,78-80.
    [23]黄得清.血管组织工程的研究及应用进展.生物医学工程学杂志.2002,19(4):688-691.
    [24]Powell R J. Hydowski J, Frank O, et al. Endothelial cell effect on smooth muscle cell collagen synthesis. J Surg Res.1996,66:115-118.
    [25]冷希岗,宋丽萍,王彭延.人工血管表面内皮细胞种植研究的进展.国外医学:生物医学工程分册.1999,22(4):204-208.
    [26]姜宗来,陈双红,张炎,张传森等.与平滑肌细胞联合培养的内皮细胞的形态学和生长增殖.解剖学报.2000,31(3):274-276.
    [27]Fukuda J, Khademhosseini A, Yeh J, Eng G, et al. Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials. 2006,27: 1479-1486.
    [28]廖玉珍.软刻蚀方法制备细胞模板及内皮细胞/平滑肌细胞的协同培养.西南交通大学硕士学位论文.2010.
    [29]Harrison R G. The cultivation of tissues in extraneous media as a methed of morphogenetic study. Anat Rec, 1912,6:181-193
    [30]Weiss P. Experiments on cell and axon orientation in vitro:the role of colloidal exudates in tissue organization. J Exp Zoo.1945,100:353-386.
    [31]Ohara P T, Buck R C. Contact guidance in vitro. Exp cell Res, 1979, 121:235-249.
    [32]Singhvi R, Stephanopoulos G, Wang D I C. Review:effects of substratum morphology on cell physiology. Biotech Bioeng, 1994, 43: 764-771
    [33]Curtis A, Wilkinson C, Toppgraphical control of cells. Biomaterials.1997,18(24): 1573-1583.
    [34]Magnani A, Priamo A, Pasqui D, Barbucci R, Cell behabior on chemically microstructure surface. Mater Sci Eng. 2003,23(3):315-328.
    [35]郑小林,张瑞强,杨军,金庆辉等PDMS表面修饰方法的研究进展.材料导报:综述篇.2009,23(8):5-8.
    [36]Kumar A,Biebuyck H.A,whitesides G.M. Patterning Self-Assembled Monolayers -Applications in Materials Science. Langmuir. 1994,10:1498-1511.
    [37]Bernard A, Renault J P, Michel B, Bosshard H R, et al. Microcontact printing of proteins. Adv Mater. 2000,12:1067-1070.
    [38]石锦霞,软刻蚀技术在高分子科学中的应用,中国科学技术大学博士学位论文2008:4.
    [39]Paul K E, Prentiss M, Whitesides G M, Patterning Spherical Surfaces at the Two-Hundred-Nanometer Scale Using soft Lithography. Advanced Functional Materials. 2003,13(4):259-163.
    [40]Suh K Y, Seong J, Khademhosseini A, Laibinis P E, Langer. A simple soft lithographic route to fabrication of poly (ethylene glycol) microstructures for protein and cell patterning. Biomaterials.2004(25):557-563.
    [41]Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms:acommon cause of persistent infection. Science. 1999,284(5418):1318-1322.
    [42]Benedetti P, Pellizzer G, Furlan F, et al. Staphylococcus caprae meningitis following intraspinal device infection. J Med Microbiol.2008,57(7):904-906.
    [43]黄云超,张尔,石应康.兔体内细菌对人工心脏瓣膜的黏附及清除研究.生物医学工程与临床,2004,8(2):61-64.
    [44]Elek D, Conen T A. The virulence of staphylococcus pyogens for man:study of the problems of wound infection. Br J Exp Pathol.1957,38:573-577.
    [45]代小英,许欣,陈昭斌等.纳米抗菌剂的概况.现代预防医学.2008,35(13):2513-2515
    [46]刘福存Ag/HA纳米复合涂层对生物膜形成的影响及其作用机制.第二军医大学博士学位论文.2007.
    [47]Chaloupka K, Malam Y, Seifalian A. Nanosilver as a new generation of nanoproduct in biomedical application. Trends in Biotechnology-Cell.2010,28(11):580-588
    [48]王大全.无机抗菌新材料与技术.化学工业出版社.2006:49
    [49]汤京龙,奚廷斐.纳米银生物安全性研究.生物医学工程学杂志.2008,25(4):958-961.
    [50]Hazem E S, Mansour E M, Amany K. Hydrogels as Template Nanoreactors for Silver Nanoparticles Formation and Their Antimicrobial Activities. Macromolecular Research. 2011,19(11):1157-1165.
    [51]Morones J R, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005,16:2346-2353.
    [52]Lok C N, et al. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem.2007,12:527-534.
    [53]谢小保,李文茹,曾海燕.纳米银对大肠杆菌的抗菌作用及其机制.材料工程.2008,10:106-109.
    [54]余文娟.纳米银细胞毒性研究.华东师范大学硕士论文.2009.
    [55]Alt V, Bechert T, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bine cement. Biomaterials. 2004, 25(18): 4383-4391
    [56]Chen W, Liu Y, Courtney H S, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials.2006,27(32): 5512-5517.
    [57]Shibata Y, Miyazaki T. Antibacterial titanium plate anodized by discharging in NaCl solution exhibits cell compatibility. Int congr Ser.2005,1284:284-289.
    [58]林乃明,曲均志,潘福勤等.用细菌粘附法比较TC4钛合金及其表面改性后的抗菌能力.外医学:理化检验-物理分册.2007,43(3):134-137.
    [59]蒋稼欢.生物医学微系统技术及应用.化学工业出版社.2006:81,375.
    [60]曾泉.纯钛种植材料表面构建生物活性过渡层的研究.四川大学博士学位论文.2005.
    [61]Bennet J M, Dancy J H. Stylus profiling instrument for measuring statistical properties of smooth optical surfaces. Appl Opt.1981,20(10): 1785,1802.
    [62]Song J F, Vorburger T V. Stylus profiling at high resolution and low face. Appl Opt. 1991,30:4250.
    [63]Stedman M, Lindsey K. Limits of surface measurement by stylus instruments. Proc SPIE. 1988, 1009: 5661.
    [64]Whitefield R J. Nocontact optical profilometer. Appl Opt.1975,14(10):2480-2485.
    [65]周明宝,林大键,郭履容等.微结构表面形貌测量.光学精密工程.1999,7(3):7-13.
    [66]Cochran D L, Schenk, Lussi A, et al. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface:a histometric study in the canine mandible. J Biomed Mater Res.1998,40(1):1-11.
    [67]Stanford C M. Surface modifications of implants, Oral Maxillofacial Surg Clin N Am. 2002,14:39-51.
    [68]冯波,翁杰,屈树新等.医用钛表面生物活性化研究.功能材料信息学术文集.2005,2(4):23-27.
    [69]Gentile F, Tirinato L, Battista E, Causa F, et al. Cell preferentially grow on rough substrates. Biomaterials.2010,31(28):7205-7212.
    [70]段超,陈鑫,邱志兵,许欢.大鼠胸主动脉血管平滑肌细胞的原代培养和鉴定.临床肺科杂志.2010,15(4):468-470.
    [71]Hao H, Ropraz P, Verin V, et al. Heterogeneity of smooth muscle cell populations cultures from pig coronary artery. Arterioscler Thromb Vasc Biol. 2002,22(7):1093-1099.
    [72]Booyse F M, Sedlak B J, Rafelson M E. Culture of arterial endothelial cells. Characterization and growth of bovine aortic cells. Thromb Diath Haemorrh.1975.34:825.
    [73]孙继虎,汪洋,于彦铮等.血管内皮细胞的体外培养基形态学观察.解剖学杂志.1996,19(3):261-263.
    [74]Olutoye O O, Barone B J, Yager D R, et al. Hyaluronic Acid Inhibits Fetal Platelet Function:Impliccations in Scarless Healing. Journal of Pediatric Surgery. 1997,32(7): 1037-1040.
    [75]Kim J, Park Y. Tae G, Kyu B L, Chang M H, et al. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. Journal of Biomedical Materials Research-Part A. 2009, 88(4):967-975.
    [76]Mark F F, Fillinger M D, Sampson C N. Co-culture of ECs and SMCs in bilater and conditioned media models. J Surg Res.1997,67(2):169-178.
    [77]王燕华.生理切应力对与血管平滑肌细胞联合培养的内皮细胞迁移的影响及其细胞骨架机制.上海交通大学博士学位论文.2009.
    [78]Raveendran P, Fu J, Wallen S L. Completely "green" synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003,125(10):13940-13941.
    [79]Huang H Z, Yuan Q, Yang X R. Preparation and characterization of metal-chitosan nanocomposites. Collid Surf B.2004, 39: 31-37.
    [80]Chen H, Gao F, He R, Gui D X. Chemiluminescence of luminol catalyzed by silver nanoparticles. Journal of Colloid and Interface Science.2007,315:158-163.
    [81]Huang H H, Ni X P, Mui J, et al. Gold-labeled block copolymer micells reveal gold aggregates multiple subcellular sites. Langmuir. 2007,23(9):4830-4836.
    [82]Huang L, Zhai M L, Long D W, Peng J, et al. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J Nanopart.2008,10:1193-1202.
    [83]吴源.纳米银的生物效应及毒性作用机制.中国科技大学博士学位论文.2010.
    [84]王慧云,崔亚男,张春燕.影响胶体粒子Zeta电位的因素.中国医药导报.2010,7(20):28-30.
    [85]Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles Langmuir. 1996,12:788-782.
    [86]Shi X M, Yang Z X, Nguyen T A, et al. An electrochemical and microstructure characterization of steel-mortar admixed with corrosion inhibitors. Science China Press. 2010, 40(4):436.
    [87]柳鑫华,韩婕,孙彩云,王庆辉.用XPS及EDX能谱研究钨酸盐复合缓蚀剂在天然海水中的缓蚀机理.表面技术.2011,40(3):52-56.
    [88]徐晶,白绘宁,林海芳,李慧珺等.光致还原制备透明质酸-纳米银复合物.功能高分子学报.2011,24(3):238-242.
    [89]Bhui D K, Bar H, Sarkar P, Sahoo G P, er al. Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution. Journal of Molecular Liquids.2009,145: 33-37.
    [90]Aswathy B, Avadhani G S, Sumithra I S, Suji S, Sony G. Microwave assisted synthesis and UV-Vis spectroscopic studies of silver nanoparticles synthesized using vanillin as a reducing agent. Journal of Molecular Liquids.2011,159:165-169.
    [91]王向晖.纳米银的细胞毒性研究.华东师范大学硕士学位论文.2009.
    [92]Rai M, Yadaw A, Gade A. Silver nano particles as a new generation of antimicrobials. Biotechnology Advances.2009,27:76-83.
    [93]王俊起,王友斌,薛金容.纺织品抗菌功能测试方法研究.中国卫生工程学.2003,2(3):129-132.
    [94]史芹.不同浓度的纳米银对血管内皮及平滑肌细胞增殖性能的影响研究.华东师范大学硕士学位论文.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700