铁路沿线风信号智能预测算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强风是危及铁路运输安全的主要气象灾害之一。
     我国有多条横跨恶劣强风区域的铁路线路,包括青藏、兰新等。强风线路沿线风速引发的气动横向力和气动升力是造成列车吹翻事故的根本原因。开展铁路沿线关键区域强风风速实时预测研究,是铁路运营部门在恶劣强风环境下防范事故、进行科学决策和安全行车指挥调度的有效手段,也是研建高水平强风预警指挥系统的核心关键技术之一。
     为获得不同步长的高精度铁路沿线风速短期预报值,本文引入小波分析、遗传算法、神经网络和自适应卡尔曼滤波等现代智能优化理论,结合时间序列分析理论,开展高精度风速预测智能优化研究。经过多年研究,提出了铁路沿线非平稳风速信号智能预测新算法:
     (1)对实测非平稳风速信号建立时间序列模型,完成超前多步预测计算。针对所建模型存在的精度不高问题,引入滚动修正优化改进思路,提出了滚动时间序列分析法。并将该方法与小波分析法混合建模,提出了小波分析-滚动时间序列分析法(Wavelet Rolling Time Series Method,简称WRTSM)。预测实例表明:WTSM明显提高了时间序列分析法的预测精度,改善了模型预测延时现象。WTSM兼具小波分析法信号细分与时间序列分析法建模简单的综合算法性能,获得了高精度的大步长预测结果。该研究成果已刊登于国际SCI刊物《Renewable Energy》。
     (2)对实测非平稳风速信号建立BP (Back Propagation)神经网络模型,完成超前多步预测计算。针对BP预测网络初始权值确定的随意性与主观性,以及网络学习时间过长、预测精度不高等不足,引入遗传算法和时间序列分析理论的潘迪特-吴贤明建模方案,提出了遗传-神经网络优化模型和神经网络结构时间序列确定方法。并将该优化方法与小波分析法混合建模,提出了小波分析-遗传算法-神经网络法(Wavelet Genetic BP Method,简称WGBM)。预测实例表明:WGBM明显改善了上述神经网络的不足,兼有小波分析法信号细分、遗传算法信号全局搜索和神经网络法信号非线性映射等能力,获得了高精度小步长预测结果。该研究成果将刊登于国际SCI刊物《Information Science》。
     (3)为了获得非平稳风速信号超前单步超高精度预测,运用小波分析法和自适应卡尔曼滤波法混合建模,提出了小波分析-卡尔曼滤波法(Wavelet-Kalman Method,简称WKM)。预测实例表明:WKM吸收了小波分析法信号细分和自适应卡尔曼滤波法实时追踪的综合算法特征,获得了超前单步超高精度预测结果,该研究成果已刊登于《中国电机工程学报》和《中南大学学报(英文版)》。
     (4)为进一步考核优化算法性能,本文将其推广应用于我国典型强风高海拔铁路-青藏铁路工程。通过对沿线唐古拉山、风火山、五道梁等重点监控区域风速信号进行建模与预测,结果表明所提出的几种风速预测优化改进算法是正确和可行的。此外,由于非平稳随机信号预测机理相似,所提出的算法同样可以推广到风电场风速、机器人路径、机械振动等领域,具有学术与工程双重意义。
Strong-wind is one of major meteorological disasters which affect the safety of railway transportation.
     China has several railways which pass the strong-wind environment. The aerodynamic transverse forces and lift forces caused by strong-wind are the original reason for train derailment under strong-wind condition. Doing research on real-time forecasting for wind speed from certain important zones along railway is not only an effective way to avoid accidents and provide scientific guidance for railway departments, but also is the key technology to establish a strong-wind warning system.
     To attain the high-precision different steps ahead wind speed predictions along railways, several intelligent optimization theories including wavelet analysis, genetic algorithms, neural networks and kalman filtering are introduced in this study, and optimizations are done. After years of research, the method of identification and prediction algorithms for unsteady wind speed signal has been presented, which include the main contents as follows.
     (1) Some time series models have been established for the real non-stationary wind speed signals to get the multi-step ahead predictions. Aimed at the un-satisfactory prediction accuracy of those time series models, a new optimization method named rolling time series method (RTSM for short) has been proposed based on modifying the calculation process of time series method (TSM for short). In addition, another optimization method named wavelet-rolling time series method (WTSM for short) has also been presented based on RTSM and wavelet analysis method (WAM for short). From the prediction cases, it can be found that: WTSM significantly improved the wind speed prediction accuracy of traditional time series models, and solve the prediction-delay phenomenon of time series models. WTSM both has the excellent algorithm performances from WAM and TSM. The detailed study is published in the international journal "Renewable Energy".
     (2) Some neural networks models have been buloit for the real non-stationary wind speed signals to get the multi-step ahead predictions. But the traditional BP neural networks has some dis-advantages, such as it is difficult to determine initial weights and thresholds, network training process is too long and prediction accuracy is not high enough. Aimed at those issues, genetic algorithm and Pandit-Wu modeling algorithm of time series method is introduced, and genetic-neural networks method (GNM for short) and neural networks structure determination method (NNSDM for short) has been proposed. In addition, a new optimization method named wavelet-genetic-BP method (WGBM for short) has been presented based on GNM and WAM. From the prediction cases, it can be found that:WGBM has all the excellent algorithm performances from WAM, GNM and BP, which can be used in the conditions of prediction for multi-center signals. The detailed study will be published in the international journal "Information Science ".
     (3) In order to obtain super-high precision single-step ahead forecasting for non-stationary wind speed series, a new prediction method named wavelet-kalman method (WKM for short) has been proposed based on WAM and kalman filtering method (KFM for short). From the prediction cases, it can be found that:WTSM has both the excellent algorithm performances from WAM and KFM, which can attain the ultra-precision single-step ahead forecasting results. The detailed study is published in "Journal of Chinese Society for Electrical Engineering" and "Journal of Central South University of Technology (English Edition)".
     To further check the performance, the proposed algorithms have been applied to Chinese typical high-altitude strong-wind railway-the Qinghai-Tibet Railway. In this study, modeling and forecasting work for wind speed series from the key regions has been done. And the results show that the optimization algorithms are correct and feasible. In addition, the prediction mechanisms of non-stationary random signals are similar, so those new proposed algorithms can be extended to forecasting fields, such as wind speed from wind farms, robot path tracking, mechanical vibration signal processing, etc. In a word, this study is both academic and practical.
引文
[1]田红旗.列车空气动力学.北京:中国铁道出版社,2007.1-11
    [2]田红旗.中国列车空气动力学研究进展.交通运输工程学报,2006,6(1):1-9
    [3]田红旗.风环境下的列车空气阻力特性研究.中国铁道科学,2008,29(5):108-112
    [4]田红旗,苗秀娟,高广军.强横风环境下棚车侧壁外形气动性能.交通运输工程学报,2006,6(3):5-8
    [5]田红旗,高广军.270km·h~(-1)高速列车气动力性能研究.中国铁道科学,2003,24(2):14-18
    [6]田红旗.客运列车耐冲击吸能车体设计方法.交通运输工程学报,2001,1(1):110-114
    [7]高广军,田红旗,姚松.耐冲击吸能车体.交通运输工程学报,2003,3(3):50-53
    [8]田红旗.轨道车辆结构分析理论.长沙:中南大学出版社,2009.1-11
    [9]高广军,田红旗.列车多体耦合撞击分析.中国铁道科学,2005,26(4):93-97
    [10]姚松,田红旗.车辆吸能部件的薄壁结构碰撞研究.中国铁道科学,2001,22(2):50-60
    [11]Liu Hui, Tian Hong-qi, Li Yan-fei. Short-term forecasting optimization algorithms for wind speed along Qinghai-Tibet railway based on different intelligent modeling theories. Journal of Central South University of Technology (English Edition).2009,16(4):690~696
    [12]刘辉,潘迪夫,李燕飞.基于列车运行安全的青藏铁路大风预测优化模型与算法.武汉理工大学学报(交通科学与工程版),2008,32(6):986-989
    [13]潘迪夫,刘辉,梁海啸,李燕飞.青藏铁路格拉段沿线风速短时预测方法研究.中国铁道科学,2008,29(5):128-133
    [14]许平,田红旗,姚曙光.流线型列车头部外形设计方法.中国铁道科学,2007,27(1):76-80
    [15]许平,田红旗,姚曙光.流线型列车头部设计制造一体化方法.交通运输工程学报,2007,7(1):6-11
    [16]田红旗,周丹,许平.列车空气动力性能与流线型头部外形.中国铁道科学,2006,27(3):47-55
    [17]韩锟,田红旗.客运专线隧道空气动力学实车测试技术的研究与应用.中南大学学报(自然科学版),2007,38(2):326-332
    [18]刘堂红,田红旗.不同外形列车过隧道实车试验的比较分析.中国铁道科学,2008,29(1):51-55
    [19]刘堂红,田红旗,金学松.隧道空气动力学实车试验研究.空气动力学学报,2008,32(6):42-46
    [20]刘堂红,田红旗.列车交会篷布气动力分析.交通运输工程学报,2008,8(2):4-8
    [21]张健.铁路防风栅抗风性能风洞试验研究与分析.铁道科学与工程学报,2007,4(1):13-17
    [22]彭艳平,杨磊.浅谈新疆风电场水土保持措施配置——以新疆华电小草湖风电场二场一期工程为例.新疆环境保护,2009,31(2):30-33
    [23]姜香梅.新疆风电技术发展现状及展望.新疆农机化,2002,17(1):51-52
    [24]陈慧玲.青海风电资源开发利用初探.青海科技,1998,4(4):17-19
    [25]周丹,田红旗,鲁寨军.强侧风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较.铁道学报,2007,29(5):32-36
    [26]周丹,田红旗,杨明智,鲁寨军.强侧风下客车在不同路况运行的气动性能比较.中南大学学报(自然科学版),2008,39(3):554-559
    [27]熊小慧,梁习锋,高广军,刘堂红.兰州-新疆线强侧风作用下车辆的气动特性.中南大学学报(自然科学版),2006,37(6):1183-1188
    [28]高广军,田红旗,姚松,等.兰新线强横风对车辆倾覆稳定性的影响.铁道学报,2004,26(4):36-40
    [29]梁习锋,熊小慧.4种车型横向气动性能分析与比较. 中南大学学报(自然科学版),2006,37(3):608-612.
    [30]Cherkashin UM, Zakharov SM, Semechkin AE. An overview of rolling stock and track monitoring systems and guidelines to provide safety of heavy and long train operation in the Russian Railways. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2009,2:199~208
    [31]Grnbak J, Madsen TK, Schwefel HP. Safe wireless communication solution for Driver Machine Interface for train control systems.3rd International Conference on Systems,2008.208~213
    [32]Kim JS, Lee SJ, Shin KB. Manufacturing and structural safety evaluation of a composite train carbody. Composite Structures,2007,78(4):468~476
    [33]Luo Xiu. Study on methodology for running safety assessment of trains in seismic design of railway structures. Soil Dynamics and Earthquake Engineering, 2005,25(2):79~91
    [34]Sekita R. Structured system safety training course-To train the highly educated system safety engineer. European Space Agency(Special Publication),2005.583~ 587
    [35]Blakstad HC, Hovden Jan, Rosness R. Reverse invention:An inductive bottom-up strategy for safety rule development. A case study of safety rule modifications in the Norwegian railway system. Safety Science,2010,48(3):382~ 394
    [36]Toshiaki I, Toshishige F, Katsuji T. New train regulation method based on wind direction and velocity of natural wind against strong winds. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12-15):1601~1610
    [37]Andersson E, Haggstrom J, Sima M, etc. Assessment of train-overturning risk due to strong cross-winds. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2004,218(3):213~223
    [38]Minoru S, Katsuji T, Tatsuo M. Aerodynamic characteristics of train/vehicles under cross winds. Journal of Wind Engineering and Industrial Aerodynamics,2003, 91 (1-2):209-218
    [39]Cooper RK. The effect of cross-winds on trans. ASCE Journal of Fluids Engineering,1981,103(1):170~178
    [40]Baker C, Cheli F, Ore llano A, etc. Cross-wind effects on road and rail vehicles. Vehicle System Dynamics,2009,47(8):983~1022
    [41]Chen SR, Chang CC, Cai CS. Study on stability improvement of suspension bridge with high-sided vehicles under wind using tuned-liquid-damper. Journal of Vibration and Control,2008,14(5):711~730
    [42]Solazzo E, Cai Xiao-ming, Vardoulakis S. Modelling wind flow and vehicle-induced turbulence in urban streets. Atmospheric Environment,2008,42 (20):4918-4931
    [43]Kwon SD, Lee JS, Moon JW, etc. Dynamic interaction analysis of urban transit maglev vehicle and guide way suspension bridge subjected to gusty wind. Engineering Structures,2008,30(12):3445~3456
    [44]白虎志,李栋梁,董安祥,等.青藏铁路沿线的大风特征及风压研究.冰川冻土,2005,27(1):111-116
    [45]白虎志,董安祥,李栋梁,等.青藏高原及青藏铁路沿线大风沙尘日数时空特征.高原气象,2005,24(3):311-315
    [46]魏玉光,杨浩,韩学雷.青藏铁路大风天气运输组织方法.中国铁道科学,2006,27(5):114-117
    [47]刘世海,冯玲正,许兆义.青藏铁路格拉段高立式沙障防风固沙效果研究.铁道学报,2010,32(1):133-136
    [48]保广裕,钱有海,裴少阳,等.青藏铁路青海境内沿线春季大降水的天气气候特征及预报方法研究.青海科技,2009,16(5):32-36
    [49]葛盛昌,尹永顺.新疆铁路风区列车安全运行标准现场试验研究.铁道技术监督,2006,34(4):9-11
    [50]葛盛昌,蒋富强.兰新铁路强风地区风沙成因及挡风墙防风效果分析.铁道工程学报,2009,25(5):1-4
    [51]贾国裕.兰新铁路大风灾害及其对策.路基工程,2008,26(2):195-197
    [52]葛盛昌,周林森.兰新铁路沙害成因及防治对策.铁路运输与经济,2007,29(1):33-34
    [53]郑家庆.陇海兰新铁路沿线自然灾害规划探讨.临沂师范学院学报,2000,22(6):52-54
    [54]李丙文,王智军.兰新铁路沙泉子段风沙危害特点及防治.干旱区研究,1998,15(4):47-53
    [55]李银芳,周兴佳,潘伯荣,霍萍,张登绪.兰新铁路哈密地区的沙害.中国沙漠,1986,6(4):56-62
    [56]石锐华,李伟.高速铁路的灾害防护设计.铁道工程学报,2008,24(6):6-19
    [57]Hppmann U, Koenig S, Tielkes T, etc. A short-term strong wind prediction model for railway application:design and verification. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(10):1127~1134
    [58]Tielkes Th, Matschke G, Schulte-Werning B, ect. A short term wind warning system to counteract the effects of cross winds wind on high speed trains. PSAM5—Probabilistic Safety Assessment and Management. Tokyo:Universal Academy Press,2000.2047~2052
    [59]Kobayashi N, Shimamura M. Study of a Strong Wind Warning Ststem. JR EAST Technical Review,2002.61~65
    [60]Shimamura M. Study on strong wind predicting technique for safety management of train operation. Japanese Railway Engineering,1995,134(9):15~18
    [61]叶文军,刘红光,薛浩.铁路沿线灾害性天气监测、预测、预警系统.新疆气象,2001,24(6):25-27
    [62]薛洁.新疆铁路大风监测系统.新疆气象,2002,25(5):32-34
    [63]张永军.铁路大风监测系统的数据库管理.新疆气象,2001,24(5):33-34
    [64]姜强.新疆铁路大风监测系统的雷电防护.新疆气象,2006,29(6):39- 40
    [65]钱征宇.西北地区铁路大风灾害及其防治对策.中国铁路,2009,47(3):1-14.
    [66]潘红.铁路大风监测预警预报系统自动气象站建成并验收.沙漠与绿洲气象,2009,3(5):10-13
    [67]刘辉.青藏铁路运行安全保障系统大风预测优化算法及推广应用研究:[硕士学位论文].长沙:中南大学,2008
    [68]张庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法.计算机学报,2005,28(11):1898-1906
    [69]赵越,玄哲,张海龙,等.基于预测控制的移动机器人路径规划仿真系统设计.大庆石油学院学报,2008,32(4):122-124
    [70]韩光信,陈虹,马苗苗,等.约束非完整移动机器人轨迹跟踪的非线性预测控制.吉林大学学报(工学版),2009,39(1):177-181
    [71]武星,楼佩煌,杨雷.基于视野状态分析的机器人路径跟踪智能预测控制.机器人,2009,31(4):357-364
    [72]陈丹,席宁,王越超,等.全方位移动机器人的运动预测控制.电机与控制学报,2007,11(1):79-87
    [73]Meier H, Laurischkat R, Bertsch C, etc. Prediction of path deviation in robot based incremental sheet metal forming by means of an integrated finite element-Multi body system model. Key Engineering Materials,2009,410-411(3):365~372
    [74]Kanjanawanishkul K, Zell A. Path following for an omnidirectional mobile robot based on model predictive control. Proceedings-IEEE International Conference on Robotics and Automation,2009.3341~3346
    [75]Kanjanawanishkul K, Zell A. Distributed model predictive control for coordinated path following control of omnidirectional mobile robots. Conference Proceedings-IEEE International Conference on Systems, Man and Cybernetics,2008. 3120~3125
    [76]Rodic A, Katic D. Trajectory prediction and path planning of intelligent autonomous biped robots-Learning and decision making through perception and spatial reasoning.9th Symposium on Neural Network Applications in Electrical Engineering,2008.193~197
    [77]Tipsuwan Y. Neural Network Middleware for Model Predictive Path Tracking of Networked Mobile Robot over IP Network. IECON Proceedings(Industrial Electronics Conference),2003.1419~1424
    [78]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究.中国电机工程学报,2005,25(11):1-5
    [79]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风 速预测优化模型.电网技术,2008,28(26):87-91
    [80]杜颖,卢继平,李青,等.基于最小二乘支持向量机的风电场短期风速预测.电网技术,2008,32(15):62-66
    [81]张彦宁,康龙云,周世琼,等.小波分析应用于风力发电预测控制系统中的风速预测.太阳能学报,2008,29(5):520-524
    [82]李文良,卫志农,孙国强.基于改进空间相关法和径向基神经网络的风电场短期风速分时预测模型.电力自动化设备,2009,29(6):89-92
    [83]Ma L, Luan SY, Jiang CW, Liu HL, Zhang Y. A review on the forecasting of wind speed and generated power. Renewable and Sustainable Energy Reviews, 2009,13(4):915~920
    [84]Landberg L. Short-term prediction of local wind conditions. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(3-4):235~245
    [85]El-Fouly THM, El-Saadany EF, ASalama MM. One day ahead prediction of wind speed using annual trends. Proceedings of the Power Engineering Society General Meeting. Piscataway:Inst. of Elec. and Elec. Eng. Computer Society, 2006.1-7
    [86]Aguera A, Ramiro JG, Melgar J, etc. Categorization of minimum error forecasting zones using a geostatistic wind speed model.2009 International Conference on Clean Electrical Power,2009.258~263
    [87]Barthelmie RJ. Evaluation of empirical and statistical methods for predicting offshore wind speeds. Wind Engineering,1997,21(2):103~112
    [88]朱大奇,易健雄,袁芳.基于小波灰色预测理论的旋转机械故障预测分析仪.仪器仪表学报,2008,29(6):1176-1181
    [89]王红军,张建民,徐小力.基于支持向量机的机械系统状态组合预测模型研究.振动工程学报,2006,19(2):242-245
    [90]黎明,何玉林,金鑫.基于神经网络的风力机结构耦合振动预测模型.系统仿真学报,2009,21(2):413-426
    [91]王建玲,缪思恩.合成BP网络在汽轮发电机组振动预测中的应用.汽轮机技术,2006,48(1):49-51
    [92]尹志宇.基于L-M神经网络的道路交通噪声预测研究.中国环境监测,2009,24(4):84-87
    [93]KHANDELWAL M, KANKAR PK, HARSHA SP. Evaluation and prediction of blast induced ground vibration using support vector machine. Mining Science and Technology (China),2010,20(1):64~70
    [94]Bakhshandeh Amnieh H, Mozdianfard MR, Siamaki A. Predicting of blasting vibrations in Sarcheshmeh copper mine by neural network. Safety Science,2010, 48(3):319~325
    [95]Soleimanimehr H, Nategh MJ, Amini S. Prediction of machining force and surface roughness in ultrasonic vibration-assisted turning using neural networks. Advanced Materials Research,2009,83(12):326-334
    [96]Kryter KD. Acoustical model and theory for predicting effects of environmental noise on people. Journal of the Acoustical Society of America,2009,125(6):3707-3721
    [97]Basner M. Validity of aircraft noise induced awakening predictions. Noise Control Engineering Journal,2009,57(5):524-535
    [98]谷赫.时间序列的数据挖掘在证券预测分析中的应用.现代情报,2008,29(9):215-216
    [99]丁雪梅,李英梅,伦立军.基于神经网络的证券预测技术研究.哈尔滨师范大学学报(自然科学版),2003,19(4):57--60
    [100]宋蓥潮,韩宝平.基于径向基神经网络的徐州区域经济预测模型.内蒙古煤炭经济,2010,27(1):18-20
    [101]董艳,贺兴时.基于BP神经网络的西安市宏观经济预测.价值工程,2009,28(11):88-90
    [102]刘婧,陈峰云.基于正交尺度网络的宏观经济预测研究.统计与决策,2009,24(21):23-24
    [103]Toksari M. Predicting the natural gas demand based on economic indicators: Case of Turkey. Energy Sources, Part A:Recovery, Utilization and Environmental Effects,2010,32(6):559-566
    [103]Ozyildirim A, Schaitkin B, Zarnowitz V. Business cycles in the euro area defined with coincident economic indicators and predicted with leading economic indicators. Journal of Forecasting,2010,29(1-2):6-8
    [104]李红启,刘凯.基于Rough Set理论的铁路货运量预测.铁道学报,2004,26(3):1-7
    [105]李红启,刘凯.基于分形理论的铁路货运量分析.铁道学报,2003,25(3):19-23
    [106]张诚,周湘峰.基于灰色预测-马尔可夫链-定性分析的铁路货运量预测.铁道学报,2007,29(5):15-21
    [107]段晓晨,余建星,张建龙.基于CS、WLC、BPNN理论预测铁路工程造价的方法.铁道学报,2006,28(6):117-122
    [108]赵闯,刘凯,李电生.基于广义回归神经网络的货运量预测.铁道学报,2004,26(1):12-15
    [109]Tsai TH. A temporal case retrieval model to predict railway passenger arrivals. Expert Systems with Applications,2009,36(5):8876~8882
    [110]Tomioka T, Takigami T, Aida KI. Modal analysis of railway vehicle carbody by using linear prediction model. Transactions of the Japan Society of Mechanical Engineers,2009,75(753):1295-1303
    [111]Tsai TH. Case based reasoning models to predict final sales:A test of railway passenger arrivals. Proceedings of the 2008 International Conference on Data Mining. Bogart:CSREA Press,2008.243-248
    [112]Gupta S, Hussein MFM, Degrande G, etc. A comparison of two numerical models for the prediction of vibrations from underground railway traffic. Soil Dynamics and Earthquake Engineering,2007,27(7):608~624
    [113]Puharic M, Adamovic Z. Research of high speed trains the subsonic wind tunnel (Ispitivanja brzih vlakova u podzvucnom zracnom tunelu). Strojarstvo,2008,50(3): 151~160
    [114]Leeder Ross, Hutny W, Price J. Train transportation coal losses-A wind tunnel study. Iron and Steel Technology Conference Proceedings. Warrendale:Association for Iron and Steel Technology,2007.129~138
    [115]Cennamo F, Fusco F, Inverno M, ect. A remotely controlled measurement system for education and training of experiments in wind tunnel. IEEE Instrumentation and Measurement Technology Conference. Como:Institute of Electrical and Electronics Engineers Inc,2004.991~995
    [116]Ferreira AD, Vaz PA. Wind tunnel study of coal dust release from train wagons. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(7-8): 565-577
    [117]Kwon HB, Park YW, Lee DH. Wind tunnel experiments on Korean high-speed trains using various ground simulation techniques. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(13):1179~1195
    [118]Ido A, Kondo Y, Matsumura T. Wind tunnel tests to reduce aerodynamic drag of trains by smoothing the under-floor construction. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan),2001,42(2):94~97
    [119]Sakuma Y, Ido A. Wind tunnel experiments on reducing separated flow region around front ends of vehicles on meter-gauge railway lines. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan),2009,50(1):20~25
    [120]Selvi Rajan S, Santhoshkumar M, Lakshmanan N, ect. CFD analysis and wind tunnel experiment on a typical launch vehicle model. Journal of Science and Engineering,2009,12(3):223~229
    [121]Ishizuka T, Kohama Y, Kato T. Experimental investigations on the ground effect characteristics of the U-shaped and V-shaped wing designs for the Aero-Train. Transactions of the Japan Society of Mechanical Engineers,2006, 72(5):1228~1235
    [122]Kamal E, Koutb M, Sobaih AA. An intelligent maximum power extraction algorithm for hybrid wind-diesel-storage system. International Journal of Electrical Power and Energy Systems,2010,32(3):170~177
    [123]Albadi MH, El-Saadany EF. Overview of wind power intermittency impacts on power systems. Electric Power Systems Research,2010,80(6):627~632
    [124]Troncoso E, Newborough M. Electrolysers as a load management mechanism for power systems with wind power and zero-carbon thermal power plant. Applied Energy,2010,87(1):1~15
    [125]Vlad C, Munteanu I, Bratcu AI. Output power maximization of low-power wind energy conversion systems revisited:Possible control solutions. Energy Conversion and Management,2010,51(2):305~310
    [126]Kose R. An evaluation of wind energy potential as a power generation source in Kutahya, Turkey. Energy Conversion and Management,2004,45(11-12):1631~ 1641
    [127]Heiermann J, Auweter-Kurtz M, Sleziona PC. Numerical evaluation of an inductive plasma wind tunnel source on structured and unstructured meshes. European Space Agency(Special Publication),1999,426:567~571
    [128]Fichaux N, Ranchin T. Assessment of offshore wind power potential by space-borne radar:Towards a multi-source approach (Evaluation du potentiel eolien offshore par radars spatio-portes:Vers une approche multisource). Societe Francaise de Photogrammetrie et de Teledetection,2001,163:3~8
    [129]Dotzek N. Derivation of physically motivated wind speed scales. Atmospheric Research,2009,93(1-3):564~574
    [130]Moon IJ, Ginis I, Hara T, etc. A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Monthly Weather Review,2007,135(8):2869~2878
    [131]De R, Wim C, Kok K. A combined physical-statistical approach for the downscaling of model wind speed. Weather and Forecasting,2004,19(3):485~495
    [132]Macklin T, Anderson C, Gommenginger C. A physically-based model of ocean backscatter for wind speed retrieval from SAR, scatterometer and altimeter. European Space Agency (Special Publication),2000,461:471~477
    [133]Negnevitsky M, Johnson P, Santoso S. Short term wind power forecasting using hybrid intelligent systems. In:Proceedings of the Power Engineering General Meeting,2007.1~4
    [134]Negnevitsky M, Potter CW. Innovative short-term wind generation prediction techniques. In:Proceedings of the Power Systems Conference and Exposition,2006. 60~65
    [135]Barthelmie RJ. Evaluation of empirical and statistical methods for predicting offshore wind speeds. Wind Engineering,1997,21(2):103~112
    [136]Lange M. On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors. Journal of Solar Energy Engineering, Transactions of the ASME,2005,127(2):177~184
    [137]Miranda MS, Dunn RW. One-hour-ahead wind speed prediction using a Bayesian methodology. IEEE power engineering society general meeting. Piscata-way:Inst. of Elec. and Elec. Eng. Computer Society,2006.1~6
    [138]Cadenas E, Rivera W. Wind speed forecasting in the South Coast of Oaxaca, Me'xico. Renewable Energy,2007,32(12):2116~2128
    [139]Palomares-Salas JC, DelaRosa JJG, Ramiro JG, ect. ARIMA vs. Neural Networks for wind speed forecasting. IEEE international conference on computational intelligence for measurement systems and applications. Piscataway:IEEE Computer Society,2009.129~133
    [140]Torres JL, Garcia A, De Blas M, etc. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Solar Energy 2005,79(1):65~77
    [141]Milligan M, Schwartz M, Wan YH. Statistical wind power forecasting for U.S.Wind farms.84th American Meteorological Society (AMS) Annual Meeting. Seattle:American Meteorological Society,2004.3637~3644
    [142]Zaphiropoulos Y, Dellaportas P, Morfiadakis E. Prediction of wind speed and direction at a potential site. Wind Engineering,1999,23(3):167~175
    [143]El-Fouly THM, El-Saadany EF, Salama MMA. Grey predictor for wind energy conversion systems output power prediction. IEEE Transactions on Power Systems, 2006,21(3):1450
    [144]El-Fouly THM, El-Saadany EF, Salama MMA. Improved Grey predictor rolling models for wind power prediction. IET Generation, Transmission and Distribution 2007,1(6):928-937
    [145]Laubrich T, Kantz H. A first order geometric auto regressive process for boundary layer wind speed simulation. European Physical Journal,2009,70(4): 575~581
    [146]Cadenas E, Rivera W. Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks. Renewable Energy,2009,34(1):274~ 278
    [147]De ARRB, L MMS, De O, etc. Application of wavelet and neural network models for wind speed and power generation forecasting in a Brazilian experimental wind park. IEEE international conference on Neural Networks. Piscataway:Institute of Electrical and Electronics Engineers Inc,2009.172~178
    [148]Monfared M, Rastegar H, Kojabadi HM. A new strategy for wind speed forecasting using artificial intelligent methods. Renewable Energy,2009,34(3): 845~848
    [149]Zhang GP. A neural network ensemble method with jittered training data for time series forecasting. Information Sciences,2007,177(23):5329~5346
    [150]Zhang GP. Time series forecasting using a hybrid ARIMA and neural network model. Neuro-computing,2003,50:159~175
    [151]Louka P, Galanis G, Siebert N, etc. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(12):2348~2362
    [152]Thanasis GG, P Louka, P Katsafados, etc. Applications of Kalman filters based on non-linear functions to numerical weather predictions. Annual of Geophys,2006, 24(10):2451~2460
    [153]Barbounis TG, Theocharis JB, Alexiadis MC, etc. Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Transactions on Energy Conversion,2006,21(1):273~284
    [154]Li SH. Wind Power Prediction Using Recurrent Multilayer Perceptron Neural Networks. IEEE Conference Proceedings of Power Engineering Society General Meeting. Toronto:Institute of Electrical and Electronics Engineers Inc,2003.2325~ 2330
    [155]曾广勇.兰新线大风地区挡风墙的勘测与设计.路基工程,1998,15(6):24-29
    [156]乌鲁木齐铁路局科委.兰新复线防风安全工程.中国铁路,1995,33(10):43
    [157]刘风华.加筋土式挡风墙优化研究.铁道工程学报,2006,22(1):96-99
    [158]刘风华.不同类型挡风墙对列车运行安全防护效果的影响.中南大学学报(自然科学版),2006,37(1):176-182
    [159]姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响.中国铁道科学,2006,27(2):66-70
    [160]白国良,赵更歧,赵春莲,等.单跨空冷支架结构挡风墙阵风系数风洞试验研究.西安建筑科技大学学报(自然科学版),2009,41(1):1-5
    [161]赵更歧,白国良,李晓文.三跨空冷支架结构挡风墙阵风系数风洞试验研究.工业建筑,2009,39(3):39-42
    [162]董汉雄.兰新铁路百里风区挡风墙设计.路基工程,2009,26(2):95-96
    [163]王学楷.兰新铁路提速改造工程挡风墙的设计与施工.路基工程,2005,22(6):62-64
    [164]刘林,白国良,李晓文,等.空冷支架结构挡风墙风压分布试验研究.工业建筑,2009,39(8):46-51
    [165]高注,王蜀东,尹永顺.挡风墙高度的研究.中国铁道科学,1990,11(1):14-23
    [166]王兆军,张军,朱春花,等.南疆列车倾覆事故的动力学因素分析.力学与实践,2007,29(5):87-89
    [167]周劲松,赵洪伦.铁道车辆稳定性与曲线通过性能折衷最优化研究.铁道学报,1998,20(3):39-45
    [168]丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型.电力自动化设备,2005,25(8):32-34
    [169]吴兴华,周晖,黄梅.基于模式识别的风电场风速和发电功率预测.继电器,2008,36(1):27-32
    [170]张国强,张伯明.基于组合预测的风电场风速及风电机功率预测.电力系统自动化,2009,33(18):92-96
    [171]周培毅,张新燕.基于时间序列与支持向量机的风电场风速预测研究.陕西电力,2009,26(12):1-4
    [172]郭鹏.双自回归滑动平均模型风速预测研究.现代电力,2009,25(6):66-69
    [173]傅蓉,王维庆,何桂雄.基于气象因子的BP神经网络风电场风速预测.可再生能源,2009,27(5):86-89
    [174]曾杰,张华.基于最小二乘支持向量机的风速预测模型.电网技术,2009,33(18):144-147
    [175]杨琦,张建华,王向峰,李卫国.基于小波-神经网络的风速及风力发电量预测.电网技术,2009,33(17):44-48
    [176]栗然,王粤,肖进永.基于经验模式分解的风电场短期风速预测模型.中国电力,2009,53(9):77-81
    [177]罗海洋,刘天琪,李兴源.风电场短期风速的改进Volterra自适应预测法.四川电力技术,2009,32(3):16-19
    [178]何育,高山,陈昊.基于ARMA-ARCH模型的风电场风速预测研究.江苏电机工程,2009,28(3):1-4
    [179]罗海洋,刘天琪,李兴源.风电场短期风速的混沌预测方法.电网技术,2009,33(9):67-71
    [180]祝贺,徐建源.风电场GM-WEIBULL风速分布组合模型出力预测.华北电力,2008,36(9):18-20
    [181]张树京,齐立心.时间序列分析简明教程.北京:北京交通大学出版社,2003.1-10
    [182]杨叔子,吴雅.时间序列分析的工程应用.武汉:华中科技大学出版社,2007.1-24
    [183]Xian Guang-Ming, Zeng Bi-Qing. An intelligent fault diagnosis method based on wavelet packet analysis and hybrid support vector machines. Expert Systems with Applications,2010,37(6):4721
    [184]Cherif LH, Debbal SM, Bereksi-Reguig F. Choice of the wavelet analyzing in the phonocardiogram signal analysis using the discrete and the packet wavelet transform. Expert Systems with Applications,2010,37(2):913~918
    [185]Khamedi R, Fallahi A, Refahi Oskouei A. Effect of martensite phase volume fraction on acoustic emission signals using wavelet packet analysis during tensile loading of dual phase steels. Materials and Design,2010,31(6):2725~2759
    [186]Salmen J, Caup L, Igel C. Real-time estimation of optical flow based on optimized haar wavelet features. Lecture Notes in Computer Science,2011, 6576(2011):448~461
    [187]Kopsaftopoulos FP, Fassois SD. Experimental assessment of vibration-based time series methods for Structural Health Monitoring. Proceedings of the 4th European Workshop on Structural Health Monitoring,2008.907~914
    [188]Trendafilova I, Manoach E. Vibration-based damage detection in plates by using time series analysis. Mechanical Systems and Signal Processing,2008,22(5): 1092-1106
    [189]Loutridis SJ, Manoach E. Self-similarity in vibration time series:Application to gear fault diagnostics. Journal of Vibration and Acoustics,2008,130(2):189~ 198
    [190]Zolock J, Greif R. Application of time series analysis and neural networks to the modeling and analysis of forced vibrating mechanical systems. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE,2003,116(2): 1157~1164
    [191]Dong K, Shang Peng-jian; Zhang Hong. The multi-dependent hurst exponent in traffic time series. Applied Mechanics and Materials,2010,20-23:346~351
    [192]Ghosh B, Basu B, O'Mahony M. Multivariate short-term traffic flow forecasting using time-series analysis. IEEE Transactions on Intelligent Transportation Systems, 2009,10(2):246~254
    [193]Fukuda K, Hirotsu T, Akashi O. Correlation among piecewise unwanted traffic time series. IEEE Global Telecommunications Conference,2008.1616~1620
    [194]Wibowo TCS, Saad N, Karsiti MN. System identification of an interacting series process for real-time model predictive control. Proceedings of the American Control Conference,2009.4384~4389
    [195]Park US, Ikeda M. Stability analysis and control design of LTI discrete-time systems by the direct use of time series data. Automatica,2009,45(5):1265~1271
    [196]Hung Meei-Ling, Yan Jun-Juh. Decentralized model-reference adaptive control for a class of uncertain large-scale time-varying delayed systems with series nonlinearities. Chaos, Solitons and Fractals,2007,33(5):1558~1568
    [197]Doganis P, Aggelogiannaki E, Sarimveis H. A combined model predictive control and time series forecasting framework for production-inventory systems. International Journal of Production Research,2008,46(24):6841~6853
    [198]Kazantzis N, Chong KT, Park JH, etc. Control-relevant discretization of nonlinear systems with time-delay using Taylor-Lie series. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2005,127(1):153~ 159
    [199]Hossaini-asl E, Shahbazian M. Nonlinear dynamic system control using wavelet neural network based on sampling theory. Proceedings 2009 IEEE International Conference on Systems, Man and Cybernetics,2009.4502~4507
    [200]Yousef HA. Wavelet network-based motion control of DC motors. Expert Systems with Applications, Man and Cybernetics,2010,37(2):1522~1527
    [201]Kulkarni Ajay, Purwar S. Wavelet based adaptive back stepping controller for a class of non regular systems with input constraints. Expert Systems with Applications, Man and Cybernetics,2009,36(3):6686~6696
    [202]Yan Ru-qiang, Gao RX. Base wavelet selection for bearing vibration signal analysis. International Journal of Wavelets, Multiresolution and Information Processing,2009,7(4):411~426
    [203]Castro E, Garcia-Hernandez MT, Gallego A. Defect identification in rods subject to forced vibrations using the spatial wavelet transform. Applied Acoustics, Man and Cybernetics,2007,68(6):699~715
    [204]Seonguk M, Min K. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration. Measurement Science and Technology,2008,19(8):6686~6696
    [205]Janicke H, Bottinger M, Mikolajewicz U. Visual exploration of climate variability changes using wavelet analysis. IEEE Transactions on Visualization and Computer Graphics,2009,15(6):1375~1382
    [206]Gonzalez D, Balcells J, Bialasiewicz JT. Exploration of application of Continuous Wavelet Transform to power quality analysis. IEEE International Symposium on Industrial Electronics. New York:Institute of Electrical and Electronics Engineers Inc,2008.2242~2246
    [207]Van De Plas R, Wu Li-li, Zhao Jian-guang. Discrete wavelet transform-based multivariate exploration of tissue via imaging mass spectrometry. International Conference on Computer Science and Software Engineering. New York:Association for Computing Machinery,2008.1008~1011
    [208]Cattani C, Kudreyko A. Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind. Applied Mathematics and Computation,2010,215(12):4164~4171
    [209]Imhan SV, Harish M, Haripriya AR. Discrete cosine harmonic wavelet transform and its application to signal compression and subband spectral estimation using modified group delay. Signal, Image and Video Processing,2009,3(1):85~ 99
    [210]Cattani C. Fractals based on harmonic wavelets. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2009,5592 ():729~744
    [211]张登峰.改进的基于小波-卡尔曼滤波的短期负荷预测:[硕士学位论文].西安:西安科技大学,2005
    [212]杨葳葳.小波神经网络在汽轮发电机组故障预测中的应用:[硕士学位论文].杭州:浙江大学,2008
    [213]刘学琴.小波和神经网络在电力系统中长期负荷预测中的应用研究:[硕士学位论文].西安:西安理工大学,2008
    [214]周巍.基于小波及人工神经网络的短期负荷预测研究:[硕士学位论文].南京:东南大学,2005
    [215]于洪仕.基于小波包变换和神经网络的煤与瓦斯突出预测:[硕士学位论文].大连:辽宁工程技术大学,2005
    [216]黄宜军,邬长安.基于自适应多小波网络预测模型的飞控系统故障诊断仿真研究.系统仿真学报,2008,20(5):1270-1273
    [217]李瑞莹,康锐.基于神经网络的故障率预测方法.航空学报,2008,29(2):357-363
    [218]马春阳,李果.基于模糊神经网络的设备故障预测研究.噪声与振动控制,2006,26(6):33-39
    [219]秦衡峰,卜英勇,王福亮.BP神经网络用于风机振动报警时间预测.中国设备工程,2004,18(9):44-45
    [220]薛小兰,温秀兰,张鹏.基于遗传神经网络的机械振动信号预测.导弹与制导学报,2007,27(3):239-241
    [221]赵闯,刘凯,李电生.基于广义回归神经网络的货运量预测.铁道学报,2004,26(1):12-15
    [222]刘志杰,季令,叶玉玲.基于径向基神经网络的铁路货运量预测.铁道学报,2006,28(5):1-5
    [223]张德丰MATLAB神经网络仿真与应用.北京:电子工业出版社,2009.1-20
    [224]何玉彬,李新忠.神经网络控制技术及其应用.北京:科学出版社,2000.1- 10
    [225]肖胜中.小波神经网络及理论.大连:东北大学出版社,2006.1-5
    [226]侯媛彬.神经网络.西安:西安电子科技大学出版社,2010.1-7
    [227]陈国良,王熙法.遗传算法及其应用.北京:北京人民邮电大学出版社,1996.71-93
    [228]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.21-43
    [229]雷英杰,张善文,李继武,周创明.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005.11-29
    [230]Zhang Ke, Liu Gui-zhong. Selecting crossover site with unequal probability in genetic algorithms. Information Control,1997,26(1):53~60
    [231]Dinabandhu B, Nikhil RP, Sankar KP. Directed mutation in genetic algorithms. Information Science,1994,79(3-4):251~270
    [232]Xidong Jin, Li Zhi. Genetic-catastrophic algorithm and its application in nonlinear control system. System Simulation Journal,1997,9(2):111~115
    [233]Wang Y. A neural network adaptive control based on rapid learning method and its application. Advances In Modelling and Analysis,1994,46(3):27~34
    [234]Montana DJ, Davis L. Training feed Forward neural network using genetic algorithm. Proceedings of the 11th International Joint Conference on Artificial Intelligence,1989.762~767
    [235]Rajakovic N, Slobodan R. Sensitivity analysis of an optimal short term hydro-thermal schedule. IEEE Transactions on Power Systems,1993,3(3):1235~ 1332
    [236]吴金华,吴耀武,熊信艮.基于退火演化算法和遗传算法的机组优化组合算法.电网技术,2003,27(1):26-29
    [237]陈奇,郭瑞鹏.基于改进遗传算法与原对偶内点法的无功优化混合算法.电网技术,2008,32(24):50-54
    [238]尹鹏飞,张晓丹.一种基于简单遗传算法的K-Means改进算法.吉首大学学报(自然科学版),2009,14(6):43-45
    [239]李志宇,史浩山.基于自适应遗传算法的传感器网络数据融合算法.系统仿真学报,2009,20(14):4429-4432
    [240]王伟,沈振中,李桃凡.遗传算法与自适应粒子群算法耦合的大坝安全预警评价模型.岩土工程学报,2009,26(1):1242-1247.
    [241]陈晓敏,王科.基于退火单亲遗传算法的压气机叶片排序算法.西南师范大学学报(自然科学版),2009,34(4):156-158.
    [242]石露,李小春,任伟,方志明.蚁群算法与遗传算法融合及其在边坡临界滑动面搜索中的应用.岩土力学,2009,30(11):3486-3492.
    [243]马恒,史国友,刘剑,杨家轩.基于样条小波和混合遗传算法的多源图像自动配准算法.大连海事大学学报,2009,35(1):23-26
    [244]赵应丁,刘金刚.基于遗传算法的指纹图像二值化算法研究.计算机工程,2006,32(7):169-171
    [245]陈晓敏,朱江,赵成林,周正.时变MIMO信道卡尔曼追踪的改进算法.通信技术,2008,41(3):8-13
    [246]郭文强,高晓光,侯勇严.基于卡尔曼预测算法的云台三维空间目标跟踪.陕西科技大学学报,2007,25(3):89-92
    [247]程建.基于卡尔曼预测采样与空域图描述的稳健红外目标跟踪.红外与激光工程,2008,37(5):901-906
    [248]Ziedan NI. Extended kalman filter tracking and navigation message decoding of weak GPS L2C and L5 signals. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation. Long Beach:Institute of Navigation,2005.178~189
    [249]Jwo DJ, Lai CN. Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation. GPS Solutions,2008,12(4):249~260
    [250]Jwo DJ, Lai CN. Application of optimization technique for GPS navigation kalman filter adaptation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2008, 5226(2008):227~234
    [251]Abdelazim T, Walid AH, Naser ES. A genetic fuzzy and kalman filtering model for MEMS-IMU/GPS integration. Proceedings of the Institute of Navigation, National Technical Meeting,2009.609-616
    [252]王志贤.最优状态估计和系统辨识.西安:西北工业大学出版社2004.144-152
    [253][美]Lonnie C.Ludeman.邱天爽,李婷,毕英伟等,译.随机过程——滤波、估计和检测.北京:电子工业出版社,2005.112-115
    [254]求是科技.MATLAB7.0从入门到精通.北京:人民邮政出版社,2006.1-(?)
    [255]刘叔军,盖晓华.MATLAB7.0控制系统应用与实例.北京:机械工业出版社,2006.1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700