海绵Sarcotragus sp.和中药有柄石韦的次生代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋生物是链状二倍半萜的主要来源,其中Ircinia和Sarcotragus属海绵常常可以特征性地产生一端为呋喃环衍生物,而另一端为特窗酸(Tetronic acid)衍生物的二倍半萜类或者降二倍半萜。具有这样的结构特点的二倍半萜类化合物被称为呋喃型二倍半萜特窗酸(Furanosesterterpene Tetronic Acid,FTA)。研究表明这种类型的化合物往往具有很强的抗微生物、拒食、细胞毒等活性。
     为了从海洋生物中寻找具有潜在的生物活性的先导物质,我们对采集自韩国西南部Soheuksan岛周围水深20-25m的一批海绵进行了初步的活性筛选。结果表明Sarcotragus属海绵Sarcotragus sp.具有进一步研究的价值。利用BST活性跟踪和核磁共振氢谱双重导向的方法从该动物的甲醇和二氯甲烷的合并提取物中发现了4个对Brine Shrimp有致死活性的部位。对其中的两个部位的次生代谢产物进行了深入研究。利用溶剂萃取、快速反相色谱法、凝胶过滤色谱法以及正相和反相HPLC法分离了32个化合物,其中包括部分无法分离的双键位置异构体。采用1D,2D NMR、HRFABMS、IR、UV等手段鉴定了27个化合物的平面结构。采用CD光谱法、旋光分析法、化学降解法、以及衍生物制备等光谱学和化学手段鉴定了部分化合物的绝对构型。其中19个化合物为未见文献报道的新化合物。首次发现了12个具有新颖的丁二酸酯型重排末端的二倍半萜类成分(化合物5~16);2个极其少见的1,4-二甲氧基取代型FTA(化合物18,19)以及2个同样非常罕见的呋喃环转化为丁烯酸内酯的新化合物异构体(化合物20,22);同时还发现了4个新C21型降二倍半萜异构体(23~25,27)。对于化合物1~4,采用与文献对照旋光值的方法确定了它们的18位的绝对构型。利用化学氧化降解法确定了化合物21,22的18位的绝对构型。化合物23~26的18位的绝对构型则是利用制备它们的PGME衍生物的方法得以确定。采用圆二色谱法确定了化合物27的4位的绝对构型。
     对2007年以有关呋哺型二倍半萜类化合物(FTA)的研究进展进行了综述。文章并没有试图介绍所有已发表的FTA类成分,而是侧重介绍FTA类化合物的结构变化。将FTA类化合物的结构变化分为3部分分别进行了综述。并对部分结构新颖的化合物来源、结构变化的特点、以及药理作用进行了描述。共介绍FTA类化合物64个,引用文献33篇。
     本文还对FTA类化合物的结构鉴定方法进行了总结。主要介绍了利用NMR技术以及化学方法对FTA类化合物的结构鉴定方法。同样对FTA的结构中的3部分的不同结构类型的波谱数据分别进行归纳,总结出了利用~1H NMR和~(13)C NMR数据来确定FTA类化合物的波谱规律。针对不同位置的手性中心,分别介绍了利用化学方法、光谱方法(CD,[α]_D~t)进行绝对构型的确定方法。
     有柄石韦(Pyrrosia petiolosa(Christ)Ching)始载于《神农本草经》。为水龙骨科(Family Polypodiaceae)石韦属(genus Pyrrosia)植物。和石韦(P.lingua)以及庐山石韦(P.sheareri)一起是中药“石韦”的三种主要来源,三者均为《中华人民共和国药典》收载的正品药材。中医认为石韦性甘味苦,微寒,归肺、膀胱经。具有清肺泄热、利水通淋、清热止血之功效。用于淋病、小便不通、出血及肺热喘咳。属利水渗湿药。另外还有多达6种同属植物作为地区性用药成为了上述三种石韦的替代品。由于石韦属植物种类繁多,在我国分布也十分广泛,长期以来出现了同属不同种药材的混用现象。即使被中国药典收载的三种正品石韦之间在形态学上及化学成分上也存在显著的不同。前人关于有柄石韦的报道较少,关于起作用的物质基础也不十分明确。为此我们对中药有柄石韦进行了系统的化学成分研究。
     为了进一步地深入研究有柄石韦的化学成分,论文的第四章中综述了2007年4月以前石韦属的药用植物的研究进展。全面地概括了所有石韦属的植物的化学成分的研究状况。并且对其药理作用及临床应用也进行了归纳。引用文献27篇。
     采用反复硅胶柱色谱、聚酰胺柱色谱、Sephadex LH 20、PTLC、重结晶等手段从有柄石韦的全草的90%乙醇的回流提取物以及其水煎液中分离纯化得到31个化合物。利用1D,2D NMR,MS,IR,UV等波谱手段以及重结晶、酸水解、熔点测定等物理化学手段确定了它们的结构。分别为香草酸(33),原儿茶醛(34),二氢咖啡酸(35),咖啡酸(36),3,4-dihydroxylbenzalacetone(37),4-O-β-D-吡喃葡萄糖基咖啡酸(38),山奈酚(39),山奈酚-3-O-β-D-吡喃葡萄糖苷(40),穗花杉双黄酮(41),(±)圣草酚7-O-β-D-葡萄糖醛酸甲酯(42),(±)圣草酚-7-O-β-D-葡萄糖醛酸乙酯(43),棉子皮亭-7-O-β-D-吡喃葡萄苷(44),山奈酚3-O-β-D-吡喃葡萄糖苷-7-O-α-L-呋喃阿拉伯糖苷(45),棉子皮亭7-O-(6-α-L-呋喃阿拉伯糖苷)-β-D-吡喃葡萄糖苷(46),绿原酸(47),绿原酸甲酯(48),绿原酸乙酯(49),5-caffeoyl-1,3-quinide(50),methyl 3,4-di-O-caffeoyl quinate(51),methyl 3,5-di-O-caffeoyl quinate(52),里白烯(53),24-methylene-9,19-cyclolanost-3β-yl acetate(54),cycloeucalenol(55),α-生育酚(56),β-谷甾醇(57),胡萝卜苷(58),α-D-葡萄糖(59),β-D-葡萄糖(60),蔗糖(61)以及α-D-ethylfructofuranoside(62),5-羟甲基糠醛(63)。其中化合物45为未见文献报道的新化合物;化合物35,37,38,41,49~52,54~56,62为首次从该属植物中分离得到。33,34,36,59,60,63为首次从该植物中分离得到。
Marine organisms, particularly sponges, have continued to provide a large group oflinear sesterterpenes. Quite a number of these compounds contain aβ-substituted furanring, some times a butenolide, in one terminal and a tetronic acid moiety in the otherterminal. The sesterterpenes were called Furanosesterterpene Tetronic Acids which isoften abbreviated to FTA. They always co-occur with degradation products includingC21, C22 and C24 norsesterterpenes. Sponges of genera Ircinia and Sarcotragus haveproduced a wide variety of FTAs. Studies showed FTAs possessed biological propertiessuch as antimicrobial, anti-inflammation, cytotoxicity, anti-predator, antifouling and etc.
     In the course of our search for biologically active lead compounds from marineorganisms, sponge Sarcotragus sp. collected at Soheuksan Island in southwestern Koreawhich showed promising activities was chemically studied. Brine shrimp lethality assayand proton NMR co-guided fractionation led to 4 active fractions which displayedcharacteristic FTA resonances in ~1H NMR spectra. 2 of the active and structurallyinteresting fractions were intensively studied. Solvent extraction, reversed phase flashchromatography, gel filtration on Sephadex LH 20, and semi-preparative HPLC wereemployed for separation and purification of the metabolites. Structurally elucidation of27 metabolites isolated from the methanol and dichloromethane extracts were aided by1D, 2D NMR, HRFABMS, IR, and UV. Some metabolites, although could notchromatographically resolved from their co-occuring positional isomers, werenevertheless characterized by spectroscopic analysis and chemical degradation. Theabsolute stereochemical features of some metabolites were pinned down by oxidationcleavage, PGME amides preparation, circular dichroic spectroscopy, and specific opticalrotation data comparison. 19 out of the 27 metabolites were new compounds.Compounds 5~16 possessed an unprecedent succinate terminal which derived from abenzilic rearrangement of tetronic acid moiety. 2 metabolites, 18 and 19, featured a rare1, 4-dimethoxy furan moiety. In compounds 20~22, the furan moiety were oxygenatedinto butenolide which is unusual in FTAs. 23~27 were characterized as C21norsesterterpenes derived from the degradation of tetronic acid terminal.
     A review titled as "Progress on furanosesterterpenes tetronic acid" was provided. Related literature published up to February 2007 was reviewed and totally 33 referenceswere cited. The article does not try to illustrate all the FTAs reported but placedemphasis on the structural diversity of FTAs. It was organized in a different way fromthose generally adopted. The structure of a FTA was divided into 3 parts, namely, furanterminal (F part), terpene bridge (T part) and tetronic acid terminal (A part). All theFTAs were introduced by their variation in the 3 parts, respectively.
     The structural identification methods of FTAs were summarized based on 32references in Chapter Three. Similar with the review described above, extensive studieson the NMR data of the 3 parts of FTAs derivatives were carried out, which allows oneto judge different structure variation simply through ~1H NMR or/and ~(13) C NMR spectra.Stereochemistry determination was also discussed. Different chiral sites in FTA maylead to different spectroscopic or chemical strategies, including chemical degradation,PGME method, CD spectroscopy and optical rotation data analysis.
     The genus Pyrrosia comprises 110 species and over 50 of them have been found inChina. P. petiolosa, which occurs in most places of China, is one of the 3 main sources(P. petiolosa, P. lingua and P. sheareri) of the traditional Chinese herbal medicine"ShiWei" and has been traditionally used for the treatment of nephroptosis and asthma.As the review (up to April, 2007, 27 References cited) in Chapter Four showed, thespecies of this genus are generous in producing flavanoids, triterpenoids and phenolicacids. In order to find the bioactive components against nephroptosis, we isolated 31compounds from the ethanol extracts and the water extracts of this plant via repeatedcolumn chromatography on silica gel, polyamide, PTLC and recrystallization. Theywere identified as vanillic acid (33) , protocatechualdehude (34) , hydrocaffeic acid (35) ,caffeic acid (36) , 3,4-dihydroxylbenzalacetone (37) , 4-O-β-D-glucopyranosylcaffeic acid (38) , kaempferol (39) , kaempferol-3-O-β-D-glucopyranoside (40) ,amentoflavone (41) , (±) eriodictyol-7-O-β-D-glucuronide methyl ester (42) , (±)eriodictyol-7-O-β-D-glucuronide ethyl ester (43) , gossypetin-7-O-β-D-glucopyranoside (44) , kaempferol 3-O-β-D-glucopyranoside-7-O-α-L-arabinofuranoside (45) , gossypetin 7-O-β-D-glucopyranosyl (1→6) -α-L-arabinofuranoside (46) , chlorogenic acid (47) , chlorogenic acid methyl ester (48) ,chlorogenic acid ethyl ester (49) , 5-caffeoyl-1,3-quinide (50) , methyl 3, 4-di-O-caffeoyl quinate (51) , methyl 3, 5-di-O-caffeoyl quinate (52) , diploptene (53) , 24- methylene-9, 19-cyclolanost-3-yl acetate (54) , cycloeucalenol (55) ,α-tocopherol (56) ,β-sitosterol (57) , daucosterol (58) ,α-D-glucose (59) ,β-D-glucose (60) , sucrose (61) , ethyl a-D-fructofuranoside (62) and 5-hydroxymethylfurfural(63) by physico-chemical analysis and their ID, 2D NMR, MS, UV data.Among them, compound 45 was a new compound, and for the first time, the occurrenceof compound 35, 37, 38, 41, 49~52, 54~56, 62 in genus Pyrrosia were demonstrated.Compounds 33, 34, 36, 59, 60, 63 were newly found from this species.
引文
[1]. M. Orsenigo, Toxin production by Helminthosporium oryzae. Ⅱ. Influence of nutrition, pH, temperature, and age of culture. Annali della Sperimentazione Agraria 1956, 10, 1809-39, 1745.
    [2]. P. Crews and S. Naylor, Sesterterpenes: An emerging group of metablites from marine and terrestrial organisms. Springer-Verlag: Wien New York, 1985; Vol. 48, p 204-269.
    [3]. J. R. Hanson, Di-and sesterterpenes. 2. Sesterterpenes. Chem. Terpenes Terpenoids 1972, 200-206.
    [4]. J. R. Hanson, Sesterterpenoids. Terpenoids and Steroids 1974, 4, 171-182.
    [5]. J. R. Hanson, Sesterterpenoids. Natural Product Reports 1986, 3, (2), 123-132.
    [6]. J. R. Hanson, The sesterterpenoids. Natural Product Reports 1992, 9, (5), 481-489.
    [7]. J. R. Hanson, The Sesterterpenoids. Natural Product Reports 1996, 13, (6), 529-535.
    [8]. Y. Liu, T. A. Mansoor, J. Hong, C.-O. Lee, C. J. Sim, K. S. Im, N. D. Kim and J. H. Jung, New cytotoxic sesterterpenoids and norsesterterpenoids from two sponges of the genus Sarcotragus. Journal of Natural Products 2003, 66, (11), 1451-1456.
    [9]. Y. Liu, J. Hong, C.-O. Lee, K. S. Ira, N. D. Kim, J. S. Choi and J. H. Jung, Cytotoxic pyrrolo-and furanoterpenoids from the sponge Sarcotragus species. Journal of Natural Products 2002, 65, (9), 1307-1314.
    [10]. K. Choi, J. Hong, C.-O. Lee, D.-k. Kim, C. J. Sim, K. S. Im and J. H. Jung, Cytotoxic furanosesterterpenes from a marine sponge Psammocinia sp. Journal of Natural Products 2004, 67, (7), 1186-1189.
    [11]. H. H. Issa, J. Tanaka and T. Higa, New cytotoxic furanosesterterpenes from an Okinawan marine sponge, Ircinia sp. Journal of Natural Products 2003, 66, (2), 251-254.
    [12]. Y. Kato, N. Fusetani, S. Matsunaga and K. Hashimoto, Okinonellins A and B, two novel furanosesterterpenes, which inhibit cell division of fertilized starfish eggs, from the marine sponge Spongionella sp. Experientia 1986, 42, (11-12), 1299-300.
    [13]. K. A. E. Sayed, A. M. S. Mayer, M. Kelly and M. T. Hamann, The Biocatalytic Transformation of Furan to Amide in the Bioactive Marine Natural Product Palinurin. Journal of Organic Chemistry 1999, 64, (25), 9258-9260.
    [14]. G. Alfano, G. Cimino and S. De Stefano, Palinurin, a new linear sesterterpene from a marine sponge. Experientia 1979, 35, (9), 1136-1137.
    [15]. J. Shin, J. R. Rho, Y. Seo, H. S. Lee, K. W. Cho and C. J. Sim, Sarcotragins A and B, new sesterterpenoid alkaloids from the sponge Sarcotragus sp. Tetrahedron Letters 2001, 42, (16), 3005-3007.
    [16]. G. Cimino, S. De Stefano, L. Minale and E. Fattorusso, Ircinin-1 and-2, linear sesterterpenes from the marine sponge Ircinia oros. Tetrahedron 1972, 28, (2), 333-341.
    [17]. V. Liokas, M. J. Garson and J. A. Carver, A new furanosesterpene from the marine sponge Psammocinia rugosa. Australian Journal of Chemistry 1989, 42, (10), 1805-1811.
    [18]. S. Urban and R. J. Capon, Cometins (A-C), new furanosesterterpenes from an Australian marine sponge, Spongia sp. Australian Journal of Chemistry 1992, 45, (8), 1255-1263.
    [19]. S. De Rosa, A. Milone, A. De Giulio, A. Crispino and C. Iodice, Sulfated furanosesterterpenes from two sponges of the genus Ircinia. Natural Product Letters 1996, 8, (4), 245-251.
    [20]. Y. Liu, B. H. Bae, N. Alam, J. Hong, C. J. Sim, C.-O. Lee, K. S. Im and J. H. Jung, New cytotoxic sesterterpenes from the sponge Sarcotragus species. Journal of Natural Products 2001, 64, (10), 1301-1304.
    [21]. G. Cimino, S. De Stefano and L. Minale, Further linear furanoterpenes from marine sponges. Tetrahedron 1972, 28, (24), 5983-5991.
    [22]. A. De Giulio, S. De Rosa, G. Di Vincenzo, G. Strazzullo and N. Zavodnik, Norsesterterpenes from the North Adriatic sponge Ircinia oros. Journal of Natural Products 1990, 53, (6), 1503-1507.
    
    [23]. C. J. Barrow, J. W. Blunt, M. H. G Munro and N. B. Perry, Oxygenated furanosesterterpene tetronic acids from a sponge of the genus Ircinia. Journal of Natural Products 1988, 51, (6), 1294-1298.
    
    [24]. C. J. Barrow, J. W. Blunt, M. H. G. Munro and N. B. Perry, Variabilin and related compounds from a sponge of the genus Sarcotragus. Journal of Natural Products 1988, 51, (2), 275-281.
    
    [25]. R. Kazlauskas, P. T. Murphy, R. J. Quinn and R. J. Wells, Two new sesterterpene lactones from a sponge. Tetrahedron Letters 1976, (30), 2635-2636.
    
    [26], M. R. Kernan, R. C. Cambie and P. R. Bergquist, Chemistry of sponges. XI. 22-Deoxyvariabilin, a new sesterterpene from the sponge Thorecta sp. Journal of Natural Products 1991, 54, (1), 265-268.
    
    [27]. K. McPhail, M. T. Davies-Coleman and P. Coetzee, A New Furanosesterterpene from the South African Nudibranch Hypselodoris capensis and a Dictyoceratida Sponge. Journal of Natural Products 1998,61, (7), 961-964.
    
    [28]. W. D. Schmitz, N. B. Messerschmidt and D. Romo, b-Lactone Based Strategy Applied to the Total Synthesis of (8S,21S,22S,23R)- and (8R,21S,22S,23R)-Okinonellin B. Journal of Organic Chemistry 1998,63, (7), 2058-2059.
    
    [29]. A. Martinez, C. Duque and Y. Fujimoto, Novel fatty acid esters of (7E,12E,18R,20Z)-variabilin from the marine sponge Ircinia felix. Lipids 1997, 32, (5), 565-569.
    
    [30]. S. De Rosa, A. De Giulio, A. Crispino, C. Iodice and G. Tommonaro, Palinurin and fasciculatin sulfates from two thyrrenean sponges of the genus Ircinia. Natural Product Letters 1997,10, (1), 7-12.
    
    [31]. A. Gonzalez Gonzalez, M. Lopez Rodriguez and A. San Martin Barrientos, On the stereochemistry and biogenesis of twenty-one carbon linear furanoterpenes in Ircinia sp. Journal of Natural Products 1983,46, (2), 256-261.
    
    [32]. N. Shoji, A. Umeyama, K. Kishi, S. Arihara, Y. Ohizumi and J. i. Kobayashi, Untenic acid, a novel calcium(2+)-ATPase activator from an Okinawan marine sponge. Australian Journal of Chemistry 1992, 45, (4), 793-795.
    
    [33]. I. N'Diaye, G. Guella, I. Mancini, J. M. Kornprobst and F. Pietra, Konakhin, a novel type of degraded sesterterpene; isolation from a marine sponge of Senegal. Journal of the Chemical Society, Chemical Communications 1991, (2), 97-98.
    [1]. K. H. Jang, B. H. Lee, B. W. Choi, H.-S. Lee and J. Shin, Chromenes from the brown alga Sargassum siliquastrum. Journal of Natural Products 2005, 68, (5), 716-723.
    [2]. S. Yamabe, N. Tsuchida and S. Yamazaki, A FMO-Controlled Reaction Path in the Benzil-Benzilic Acid Rearrangement. Journal of Organic Chemistry 2006, 71, (5), 1777-1783.
    [3]. A. Gonzalez Gonzalez, M. Lopez Rodriguez and A. San Martin Barrientos, On the stereochemistry and biogenesis of twenty-one carbon linear furanoterpenes in Ircinia sp. Journal of Natural Products 1983, 46, (2), 256-261.
    [4]. E Cafieri, E. Fattorusso, C. Santacroce and L. Minale, Fasciculatin, a novel sesterterpene from the sponge Ircinia fasciculata. Tetrahedron 1972, 28, (6), 1579-1583.
    [5]. C. Zdero, F. Bohlmann, J. Solomon and X. A. Dominguez, Further isocedrene derivatives and other constituents from Perezia species. Phytochemistry 1988, 27, (3), 849-53.
    [6]. K. Choi, J. Hong, C.-O. Lee, D.-k. Kim, C. J. Sim, K. S. Im and J. H. Jung, Cytotoxic furanosesterterpenes from a marine sponge Psammocinia sp. Journal of Natural Products 2004, 67, (7), 1186-1189.
    [7]. I. Rothberg and P. Shubiak, Structure of antibiotics from the sponge Ircinia strobilina. Tetrahedron Letters 1975, (10), 769-772.
    [8]. C. J. Barrow, J. W. Blunt, M. H. G. Munro and N. B. Perry, Oxygenated furanosesterterpene tetronic acids from a sponge of the genus Ircinia. Journal of Natural Products 1988, 51, (6), 1294-1298.
    [9]. Y. Liu, T. A. Mansoor, J. Hong, C.-O. Lee, C. J. Sim, K. S. Im, N. D. Kim and J. H. Jung, New cytotoxic sesterterpenoids and norsesterterpenoids from two sponges of the genus Sarcotragus. Journal of Natural Products 2003, 66, (11), 1451-1456.
    [10]. J. Shin, Y. Seo, K. W. Cho, J.-R. Rho and C. J. Sim, Stellettamide B, a new indolizidine alkaloid from a sponge of the genus Stelletta. Journal of Natural Products 1997, 60, (6), 611-613.
    [11]. H. H. Issa, J. Tanaka and T. Higa, New cytotoxic furanosesterterpenes from an Okinawan marine sponge, Ircinia sp. Journal of Natural Products 2003, 66, (2), 251-254.
    [12]. W. Giersch and K. H. Schulte-Elte, Enantiomeric 3,7-dimethylocta-1,7-dienes as useful chiral building blocks. A new access to both optical antipodes of natural (E)-3,7-dimethyloct-2-ene-1,8-diol and (E)-3,7-dimethyloct-2-ene-1,8-dicarboxylic acid. Helvetica Chimica Acta 1990, 73, (3), 733-738.
    [13]. T. Yabuuchi and T. Kusumi, Phenylglycine Methyl Ester, a Useful Tool for Absolute Configuration Determination of Various Chiral Carboxylic Acids. Journal of Organic Chemistry 2000, 65, (2), 397-404.
    [14]. A. F. Beecham, The CD of αβ-unsaturated lactones. Tetrahedron 1972, 28, (22), 5543-5554.
    [15]. J. K. Gawronski, Q. H. Chert, Z. Geng, B. Huang, M. R. Martin, A. I. Mateo, M. Brzostowska, U. Rychlewska and B. L. Feringa, Chiroptical properties, structure, and absolute configuration of heterosubstituted 2(5H)-furanones. Chirality 1997, 9, (5/6), 537-544.
    [16]. J. K. Gawronski, A. van Oeveren, H. van der Deen, C. W. Leung and B. L. Feringa, Simple Circular Dichroic Method for the Determination of Absolute Configuration of 5-Substituted 2(5H)-Furanones. Journal of Organic Chemistry 1996, 61, (4), 1513-1515.
    [17]. U. Hoeller, G. M. Koenig and A. D. Wright, Two new sesterterpene tetronic acids from the marine sponge Ircinia oros. Journal of Natural Products 1997, 60, (8), 832-835.
    [18]. B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols and J. L. McLaughlin, Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica 1982, 45, (1), 31-34.
    [19]. P. N. Solis, C. W. Wright, M. M. Anderson, M. P. Gupta and J. D. Phillipson, A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Medica 1993, 59, (3), 250-252.
    [1]. C. J. Barrow, J. W. Blunt and M. H. G. Munro, Autooxidation studies on the marine sesterterpene tetronic acid, variabilin. Journal of Natural Products 1989, 52, (2), 346-59.
    
    [2]. K. Choi, J. Hong, C.-O. Lee, D.-k. Kim, C. J. Sim, K. S. Im and J. H. Jung, Cytotoxic furanosesterterpenes from a marine sponge Psammocinia sp. Journal of Natural Products 2004, 67, (7), 1186-1189.
    
    [3]. Our unpublished data.
    
    [4]. Y. Liu, B. H. Bae, N. Alam, J. Hong, C. J. Sim, C.-O. Lee, K. S. Im and J. H. Jung, New cytotoxic sesterterpenes from the sponge Sarcotragus species. Journal of Natural Products 2001, 64, (10), 1301-1304.
    
    [5]. I. N'Diaye, G. Guella, I. Mancini, J. M. Kornprobst and F. Pietra, Konakhin, a novel type of degraded sesterterpene; isolation from a marine sponge of Senegal. Journal of the Chemical Society, Chemical Communications 1991, (2), 97-8.
    
    [6]. U. Hoeller, G. M. Koenig and A. D. Wright, Two new sesterterpene tetronic acids from the marine sponge Ircinia oros. Journal of Natural Products 1997, 60, (8), 832-835.
    
    [7]. D. Lumsdon, R. J. Capon, S. G. Thomas and A. A. Beveridge, A new sesterterpene tetronic acid and a pentaprenylated p-quinol from an Australian marine sponge, Spongia sp. Australian Journal of Chemistry 1992,45, (8), 1321-1325.
    
    [8]. M. R. Kernan, R. C. Cambie and P. R. Bergquist, Chemistry of sponges. XI. 22-Deoxyvariabilin, a new sesterterpene from the sponge Thorecta sp. Journal of Natural Products 1991, 54, (1), 265-268.
    
    [9]. C. J. Barrow, J. W. Blunt, M. H. G. Munro and N. B. Perry, Oxygenated furanosesterterpene tetronic acids from a sponge of the genus Ircinia. Journal of Natural Products 1988, 51, (6), 1294-1298.
    
    [10]. C. J. Barrow, J. W. Blunt, M. H. G. Munro and N. B. Perry, Variabilin and related compounds from a sponge of the genus Sarcotragus. Journal of Natural Products 1988,51, (2), 275-281.
    
    [11]. R. J. Capon and J. K. MacLeod, A new sesterterpene tetronic acid from an Australian sponge, Ircinia sp. Australian Journal of Chemistry 1987,40, (7), 1327-1330.
    
    [12]. L. V. Manes, P. Crews, M. B. Ksebati and F. J. Schmitz, The use of two-dimensional NMR and relaxation reagents to determine stereochemical features in acyclic sesterterpenes. Journal of Natural Products 1986,49, (5), 787-793.
    
    [13]. G. Alfano, G. Cimino and S. De Stefano, Palinurin, a new linear sesterterpene from a marine sponge. Experientia 1979, 35, (9), 1136-1137.
    
    [14]. A. Martinez, C. Duque, N. Sato, R. Tanaka and Y. Fujimoto, (18R)-Variabilin from the sponge Ircinia felix. Natural Product Letters 1995,6, (1), 1-6.
    
    [15]. N. Fusetani, Y. Kato, S. Matsunaga and K. Hashimoto, Bioactive marine metabolites. V. Two new furanosesterterpenes, inhibitors of cell division of the fertilized starfish eggs, from the marine sponge Cacospongia scalaris. Tetrahedron Letters 1984,25, (43), 4941-4942.
    
    [16]. Y. Liu, T. A. Mansoor, J. Hong, C.-O. Lee, C. J. Sim, K. S. Im, N. D. Kim and J. H. Jung, New cytotoxic sesterterpenoids and norsesterterpenoids from two sponges of the genus Sarcotragus. Journal of Natural Products 2003, 66, (11), 1451-1456.
    
    [17]. Y. Liu, J. Hong, C.-O. Lee, K. S. Im, N. D. Kim, J. S. Choi and J. H. Jung, Cytotoxic pyrrolo- and furanoterpenoids from the sponge Sarcotragus species. Journal of Natural Products 2002, 65, (9), 1307-1314.
    
    [18].K. A. E. Sayed, A. M. S. Mayer, M. Kelly and M. T. Hamann, The Biocatalytic Transformation of Furan to Amide in the Bioactive Marine Natural Product Palinurin. Journal of Organic Chemistry 1999, 64, (25), 9258 - 9260.
    
    [19]. H. H. Issa, J. Tanaka and T. Higa, New cytotoxic furanosesterterpenes from an Okinawan marine sponge, Ircinia sp. Journal of Natural Products 2003, 66, (2), 251-254.
    
    [20]. S. Urban and R. J. Capon, Cometins (A-C), new furanosesterterpenes from an Australian marine sponge, Spongia sp. Australian Journal of Chemistry 1992,45, (8), 1255-1263.
    
    [21]. L. Murray, H. Hamit, J. N. A. Hooper, L. Hobbs and R. J. Capon, A new sesterterpene tetronic acid from an Australian marine sponge, Psammocinia sp. Australian Journal of Chemistry 1995, 48, (11), 1899-1902.
    
    [22]. K. McPhail, M. T. Davies-Coleman and P. Coetzee, A New Furanosesterterpene from the South African Nudibranch Hypselodoris capensis and a Dictyoceratida Sponge. Journal of Natural Products 1998,61,(7), 961-964.
    
    [23]. A. De Giulio, S. De Rosa, G. Di Vincenzo, G. Strazzullo and N. Zavodnik, Norsesterterpenes from the North Adriatic sponge Ircinia oros. Journal of Natural Products 1990, 53, (6), 1503-1507.
    
    [24]. R. Davis and R. J. Capon, Two for one: structure revision of the marine sesterterpene tetronic acid strobilinin to (8Z,13E,20Z)-strobilinin and (8E,13Z,20Z)-strobilinin. Australian Journal of Chemistry 1994,47, (5), 933-936.
    
    [25]. F. Cafieri, E. Fattorusso, C. Santacroce and L. Minale, Fasciculatin, a novel sesterterpene from the sponge Ircinia fasciculata. Tetrahedron 1972,28, (6), 1579-1583.
    
    [26]. A. Gonzalez Gonzalez, M. Lopez Rodriguez and A. San Martin Barrientos, On the stereochemistry and biogenesis of twenty-one carbon linear furanoterpenes in Ircinia sp. Journal of Natural Products 1983,46, (2), 256-261.
    
    [27]. G. Guella, I. Mancini, I. N'Diaye and F. Pietra, C20 furanoterpenic aldehydes cooccurring in dictyoceratid sponges with conjugated furanosesterterpenic tetronic acids. Tetrahedron Letters 1991, 32, (44), 6415-16.
    
    [28]. T. Yabuuchi and T. Kusumi, Phenylglycine Methyl Ester, a Useful Tool for Absolute Configuration Determination of Various Chiral Carboxylic Acids. Journal of Organic Chemistry 2000, 65, (2), 397-404.
    
    [29]. A. F. Beecham, The CD of αβ-unsaturated lactones. Tetrahedron 1972,28, (22), 5543-5554.
    
    [30]. J. K. Gawronski, A. van Oeveren, H. van der Deen, C. W. Leung and B. L. Feringa, Simple Circular Dichroic Method for the Determination of Absolute Configuration of 5-Substituted 2(5H)-Furanones. Journal of Organic Chemistry 1996,61, (4), 1513-1515.
    
    [31]. J. K. Gawronski, Q. H. Chen, Z. Geng, B. Huang, M. R. Martin, A. I. Mateo, M. Brzostowska, U. Rychlewska and B. L. Feringa, Chiroptical properties, structure, and absolute configuration of heterosubstituted 2(5H)-furanones. Chirality 1997, 9, (5/6), 537-544.
    
    [32].C.-Y. Chen, F.-R. Chang, Y.-C. Shih, T.-J. Hsieh, Y.-C. Chia, H.-Y. Tseng, H.-C. Chen, S.-J. Chen, M.-C. Hsu and Y.-C. Wu, Cytotoxic Constituents of Polyalthia longifolia var. pendula. Journal of Natural Products 2000, 63, (11), 1475-1478.
    [1].阴健,顾海鸥,何希荣等,中药现代临床与应用Ⅱ.中国古籍出版社,:北京,1995;p104-106.
    [2].包文芳,孟宪纾,周荣汉,中国石韦属化学成分与分类学的研究(第1报).沈阳药学院报1982,(3),62-71.
    [3].李洁,童玉懿,邢公侠,中药石韦的原植物调查和品质评价.中国中药杂志1991,16,(9),520-522.
    [4].韩基善,王明时,庐山石韦的化学成分的研究.南京药学院报1984,15,(1),40-43.
    [5].上海第一医学院等,石韦治疗慢性气管炎的有效成分研究.医药工业1973,(6),1-13.
    [6].H-Hikin,K.Meguro and T.Takemot,Isolation of diploptene from Pyrrosia lingua.Chemical &Pharmaceutical Bulletin 1963,11,409-10.
    [7].李洁,杨峻山,童玉懿,有柄石韦的化学成分研究.中草药1992,23,(7),348.
    [8].郑兴,许云龙,徐军,西南石韦的化学成分研究.中国中药杂志1998,23,(2),98-99.
    [9].徐成坤,王建中,北京石韦的化学成分研究.广东药学院报1999,15,(1),21-22.
    [10]. H. Yamashita, K. Masuda, T. Kobayashi, H. Ageta and K. Shiojima, Dammarane triterpenoids from rhizomes of Pyrrosia lingua. Phytochemistry 1998, 49, (8), 2461-2466.
    [11]. K. Masuda, H. Yamashita, K. Shiojima, Y. Itoh and H. Ageta, Fern constituents: triterpenoids isolated from rhizomes of Pyrrosia lingua. Ⅰ. Chemical & Pharmaceutical Bulletin 1997, 45, (4), 590-594.
    [12]. H. Yamashita, K. Masuda, H. Ageta and K. Shiojima, Fern constituents: cyclohopenol and cyclohopanediol, novel skeletal triterpenoids from rhizomes of Pyrrosia lingua. Chemical & Pharmaceutical Bulletin 1998, 46, (4), 730-732.
    [13].水野瑞夫,饭沼宗和,今井均尚等,石韦的化学成分.植物学报1986,28,(3),339—340.
    [14]. K.R. Markham and O. M. Andersen, Kaempferol 3-O-sophoroside-7-O-a-L-arabinofuranoside, neohesperidosides and other flavonoids from the fern Pyrrosia serpens. Phytochemistry 1990, 29, (12), 3919-20.
    [15]. C. Yang, J.-G. Shi, S.-Y. Mo and Y.-C. Yang, Chemical constituents of Pyrrosia petiolosa. Journal of Asian Natural Products Research 2003, 5, (2), 143-150.
    [16]. Y. C. Yang, C. Yang, S. Y. Mo and J. G. Shi, A new flavonol diglycoside from Pyrrosia petiolosa. Chinese Chemical Letters 2003, 14, (9), 920-922.
    [17]. K. Hori, T. Satake, Y. Saiki, N. Tanaka, T. Murakami and C. M. Chert, Chemical and chemotaxonomical studies of filices. LⅩⅩⅣ. The novel flavanone glycosides of Pyrrosia linearfolia (Hook.) Ching. Yakugaku Zasshi 1988, 108, (5), 417-21.
    [18].包文芳,席晓红,光石韦的两个shan酮类化合物.西北药学杂志1989,4,(1),16-17.
    [19].江苏新医学院,中药大辞典(缩印本)上册.上海科学技术出版社:上海,1986;p 580.
    [20].北京市中药科学研究所,药学论文摘要1978,40.
    [21].童玉懿,李洁,王珂,张世勇,程桂芳,石韦类的研究.北京医科大学出版社:北京,2001;p212-214.
    [22].上海市气管炎会战组,石韦治疗慢性支气管炎的研究.1972.
    [23].上官瑞,用石韦治疗支气管哮喘.上海中医药杂志1965,(2),18.
    [24].内科疾病全展选编.1970;p 65.
    [25].阮国治,王万林,寇瑞馨,中药治疗输尿管结石223例.河南中医1988,8,(5),18-19.
    [26].顾文海,飞廉分清汤治疗乳糜尿985例临床观察.新中医1991,23,(10),38-39.
    [27].王万林,李玉轩,常秀英,气血再生汤及雄性激素治疗苯中毒贫血疗效观察.中西医结合杂志 1989,9,(1),9.
    [1].韩基善,王明时,庐山石韦的化学成分的研究.南京药学院报 1984,15,(1),40-43.
    [2].文志明,徐礼粲,山芍药汤化学成分的分离及鉴定.中国中药杂志2001,26,(7),474-477.
    [3]. J. E Charles, The Aldrich Library of NMR Spectra. Edition Ⅱ. 1983, 2, 167D.
    [4]. J.P. Charles, The Aldrich Library of NMR Spectra. Edition Ⅱ. 1983, 2, 181C.
    [5]. K. Ohmura, T. Miyase and A. Ueno, Sesquiterpene glucosides and a phenylbutanoid glycoside from Hypochoeris radicata. Phytochemistry 1989, 28, (7), 1919-1924.
    [6]. M.A. Bernards, D. Strack, V. Wray and B. E. Ellis, Caffeoyl glucosides in fungal challenged tomato suspension cultures. Phytochemistry 1991, 30, (2), 497-499.
    [7]. N. Li, Y. Wu, X. Li, J. Wang and N. Wang, Chemical constituents of Camptosorus sibiricus Rupr. (Ⅰ). Zhongcaoyao 2005, 36, (2), 182-184.
    [8]. C.-B. Cui and Y. Tezuka, Constituents of a fern, Davallia mariesii Moore. Ⅰ. Isolation and structures of Davallialactone and a new flavanone glucuronide. Chem. Pharm. Bull. 1990, 38, (12), 3218-3225.
    [9]. C. Yang, J.-G. Shi, S.-Y. Mo and Y.-C. Yang, Chemical constituents of Pyrrosia petiolosa. Journal of Asian Natural Products Research 2003, 5, (2), 143-150.
    [10].将受军,魏峰,鲁静等,小野芝麻的化学成分研究.中国药科大学学报2002,33,(6),487-488.
    [11].J.R. Velandia, M. r. G. d. Carvalho, R. Braz-Filho and A. A. Werle, Biflavonoids and a Glucopyranoside Derivative from Ouratea semiserrata. Phytochemical Analysis 2002, 13,283-292.
    [12]. G. Dora and J. M. Edwards, Taxonomic Status of Lanaria lanata and Isolation of a Novel Biflavone. Journal of Natural Products 1991, 54, (3), 796-801.
    [13]. F. M. Soliman, A. H. Shehata, A. E. Khaleel and S. M. Ezzat, An Acylated Kaempferol Glycoside from flowers ofFoeniculum vulgare and F. dulce. Molecules 2002, 7, 245-251.
    [14].N. Nakatani, S.-i. Kayano, H. Kikuzaki, K. Sumino, K. Katagiri and T. Mitani, Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). Journal of Agricultural and Food Chemistry 2000, 48, 5512-5516.
    [15]. T. Yatefuji, N. Izumi, T. Ohta, S. Arai, M. Ikeda and M. Kurimoto, Isolation and identification of compounds form Brazilian Propolis which enhance macrophage spreading and mobility. Biol. pharm. Bull. 1996, 19, (7), 966-970.
    [16].刘延泽,翼春茹,冯卫生,谢晶曦,芫花叶水溶性成份的分离与鉴定.中草药1989,20,(2),9—12.
    [17].K. Miyazaki, S. Ishizawa, S. Nagumo, T. Inoue and M. Nagai, Studies on the Constituents of Aceraceae Plants. Ⅸ. Constituents ofAcer cissifolium. Shoyakugaku Zasshi 1991, 45, (4), 333-335.
    [18].A. Rumvero-Sanchez and P. Vazquez, Quinic acid esters from Isertia haenkeana. Phytochemistry 1991, 30, (1), 311-313.
    [19].T. Deyama, T. Ikawa, S. Kitagawa and S. Nishibe, The Constituents of Eucommia ulmoides OLIV. V. Isolation of Dihydroxydehydrodiconiferyl Alcohol Isomers and Phenolic Compounds. Chem. Pharm. Bull. 1987, 35, (5), 1785-1789.
    [20]. S. Wang, Y. Pei and H. Hua, A new caffeolyquiniclactone, Neochlorogeniclatone from the leaves of Betula platyphylla Suk. Chinese Chemical Letters 2001, 12, (6), 509-510.
    [21].K.R. Hanson, Chlorogenic acid biosynthesis. Relation between the chemical structures of cinnamoyl and hydroxycinnamoyl conjugates and Rcg values from gradient chromatography. Biochemistry 1965, 4, (12), 2731-2735.
    [22]. M. Sefkow, A. Kelling and U. Schilde, First efficient syntheses of 1-, 4-, and 5-caffeoylquinic acid. European Journal of Organic Chemistry 2001, 14, 2735-2742.
    [23]. T. d. Paulis, D. E. Schmidt, A. K. Bruchey, M. T. Kirby and P. R. Martin, Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter. European Journal of Pharmacology 2002, 442, 215-223.
    [24]. G. N. Zehentbauer, P. R. Bunke, A. Ekanayake, J. D. Young, O. Frank and T. F. Hofmann, Processes for isolating bitter quinides for use in food and beverage products. In (The Procter & Gamble Company, USA). Application: US US, 2006; p 10pp.
    [25]. G. N. Zehentbauer, P. R. Bunke, A. Ekanayake, J. D. Young, O. Frank, T. F. Hofmann and S. Blumberg, Processes for isolating bitter quinides for use in food and beverage products. In (The Procter & Gamble Company, USA). Application: US US, 2007; pp 12pp, Cont-in-part of U S Ser No 156,883.
    [26].岳建民,赵勤实,林中文,孙汉董,灯盏细辛中酚类化合物的化学研究.植物学报2000,42,(3),311-315.
    [27].张卫东,孔德云,李惠庭,杨根金,秦路平,灯盏花的化学成分研究.中国医药工业杂志1998,29,(12),554-555.
    [28]. P. Basnet, K. Matsushige, K. Hase, S. Kadota and T. Namba, Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective acitivity in experimental liver injury models. Biol. pharm. Bull. 1996, 19, (11), 1479-1484.
    [29]. R Basnet, K. Matsushige, K. Hase, S. Kadota and T. Namba, Potent antihepatotoxic acitivity of dicaffeoyl quinic acids from Propolis. Biol. pharm. Bull. 1996, 19, (4), 655-657.
    [30]. S. Kenji and A. Hiroyuki, Fern constituents: Two new triterpenoid hydrocarbons, hop-16-ene and isohop-22(29)-ene, isolated from Davallia mariesii Chem. Pharm. Bull. 1990, 38, (2), 347-349.
    [31]. J. D. R Teresa, J. G. Urones, I. S. Marcos, P. Basabe, M. J. S. Cuadrado and R. F. Moro, Triterpenes form Euphorbia broteri. Phytochemistry 1987, 26, (6), 1767-1776.
    [32]. T. Kikuchi, S. Kadota and K. Tsubono, Studies on the constituents of orchidaceous plants. Ⅳ proton and carbon-13 signal assignments of cycloeucalenol-type triterpenes from Nervilia purpurea Schlechter by two-dimensional nuclear magnetic resonance spectroscopy. Chem. Pharm. Bull. 1986, 34, (6), 2479-2486.
    [33]. S. Robert and G. Ira, Vitamins and Hormones Academic Press: New York and London, 1965; Vol. ⅩⅩ p407-439.
    [34]. P. A. J. Gorin and M. Mazurek, Further Studies on the Assignment of Signals in ~(13)C Magnetic Resonance Spectra of Aldoses and Derived Methyl Glycosides. Canadian Journal Chemistry 1975, 53, (8), 1212-1223.
    [35].于德泉,杨峻山,分析化学手册(第二版)核磁共振波谱分析.化工出版社:北京,2005;Vol.第七分册,p 495,901,905.
    [36].赵雪梅,朱大元,胡柚皮中的化学成分研究(Ⅰ).中国中药杂志2003,28,(3),237-239.
    [37].周乐,王宁,苗芳,赵海双,田鹏,秦岭龙胆的化学成分.有机化学2004,24,(10),1249-1252.
    [38]. C.-Z. Zhang, X.-Z. Xu and C. Li, Fructosides From Cynomorium songaricum. Phytochemistry 1996, 42, (3), 975-976.
    [39]. G.-M. Fu, B.-Y. Yu and D.-N. Zhu, Study on chemical constituents from Breynia fruticosa. Journal of China Pharmaceutical University 2004, 35, (2), 114-116.
    [40].袁干军,杜方麓,硕苞蔷薇果的化学成分研究.中药材2000,23,(8),454-455.
    [41].张春玲,王喆星,狗脊化学成分的分离与鉴定.中国药物化学杂志2001,11,(5),279-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700