沙漠地区长大纵坡沥青路面稳定性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙漠地区高温季节地表最高温度可达70℃以上,在高温环境和车辆荷载共同作用下沥青路面极易产生车辙病害。低温季节,沙漠地区最低气温可达-30℃以下,且降温速率较快,沥青面层和半刚性基层在温度梯度作用下容易发生收缩开裂,进而引起路面结构的破坏。甘肃部分沙漠处于山区,公路存在长大纵坡路段,由于特殊的温度、荷载应力工作状态,该路段车辙与裂缝病害更加严重。针对沙漠地区长大纵坡沥青路面温度、应力工作状态提出合理的路面设计方法是解决沙漠地区长大纵坡沥青路面病害的根本途径。本文以甘肃沙漠地区长大纵坡沥青路面工程为依托对长大纵坡沥青路面稳定性控制进行研究。
     根据甘肃地区气象资料及沥青路面温度场数值仿真模型分析结果,对沙漠地区气温年变化趋势及高温天气、常温天气、低温天气条件下沥青路面特征温度进行了预估,为分析沥青路面温度应力奠定基础。
     以甘肃地区沙漠公路路面结构为基础,分析荷载温度共同作用下路面结构剪应力分布特性及路面永久变形分布特性,为提出沙漠地区长大纵坡沥青混合料质量控制指标提供依据。
     针对长大纵坡路段车辙病害形成原因,采用混合料抗剪性能试验对沥青混合料性能影响因素进行系统分析,确定了长大纵坡沥青混合料技术性能控制指标,提出了沙漠地区长大纵坡沥青混合料优化设计方法。
     针对甘肃沙漠地区低温环境特点,采用有限元模型分析了不同温缩系数时路面结构层温度应力分布规律,并针对不同的层间粘结情况分析长大纵坡沥青路面层间剪应力工作状态,以此为基础提出了基于抗裂效应的橡胶沥青粘结层技术性能指标,并对橡胶沥青粘结层性能进行了评价。
Desert has dry climate, great evaporation and large temperature changes. Summer is hot,the maximum surface temperature at about70℃, asphalt softened in the vehicle load prone torutting; winter is cold, the lowest surface temperature can reach-30℃or less, asphalt pavementembrittlement, cracking greatly reduced, easy cause pavement cracking. Part of the desert in themountains of Gansu, road presence grew longitudinal sections, due to the special temperature,load stress working conditions, ruts and cracks in the road more severe disease. For desert regiongrew longitudinal asphalt pavement temperature, stress working condition reasonable pavementdesign method is to solve the desert grew longitudinal asphalt pavement fundamental way. In thispaper, grew up in the desert regions of Gansu asphalt pavement works longitudinal study based onlongitudinal grow key technology of asphalt pavement.
     According to meteorological data Gansu and asphalt pavement temperature field numericalsimulation model analysis results, the temperature trends in desert areas and hot weather,temperature weather, asphalt pavement characteristics under low temperature weather conditionswere forecast for the analysis of temperature stress laid asphalt pavement foundation.
     In Gansu desert highway pavement structure is based on the analysis of shear stressdistribution characteristics and the distribution characteristics of the road pavement permanentdeformation under load temperature coupling effect, provide the basis for the proposed desertregion grew longitudinal asphalt quality control indicators.
     Longitudinal sections for grown rut causes disease, the use of performance tests on shearmix asphalt mixture performance factors affecting system analysis to determine the longitudinalgrowing up control of asphalt technical performance indicators, grew up in desert areas proposedvertical slope optimization design method of asphalt mixture, asphalt longitudinal grew designedto provide a reference desert areas.
     According to the characteristics of low-temperature environment in Gansu desert areas,using the finite element model of temperature stress distribution pavement layer shrinkagecoefficient at different temperatures and for different layers bond grew between the longitudinalanalysis of asphalt pavement layer shear stress working conditions, as the basis for proposed basedrubber asphalt stress absorbing layer cracking effect technical performance indicators and rubberasphalt stress absorbing layer performance were evaluated.
引文
[1]王国余.沙漠公路路面材料及路用性能研究[D].硕士学位论文.西安:长安大学,2004
    [2] Hofstra A Klomp AJG. Permanent Deformation of Flexible Pavements Under SimulatedRoad Traffic Conditions[C].Proceedings. Third International Conference on the StructuralDesign of Asphalt Pavements. V01.1,London1972.613-621
    [3] Sneddon,I. N.. Fourier transforms. McCrraw-Hill, New York, N. Y,1951.
    [4] Dorman G M. The Extension to Practice of a Fundamental Procedure for the Design ofFlexible Pavements[C].Proceedings First International Conference on the Structural DesignofAsphalt Pavements. Ann Arbor. University of Michigan1962,785-793
    [5] Dorlnan G M.Metcalf C T. Design Curves for Flexible Pavements Based on LayeredSystem Theory[J].Highway Research Board Record No.71,1965
    [6] Monismith C L,McLean D B.Design Considerations for Asphalt Pavements [M].Berkley:University D B.Design Considerations for Asphalt Pavements of California,1971
    [7] Barksdale R D.Laboratory Evaluation of Rutting in Base Course Materials [C].ProceedingsThird International Conference on the Structural Design of Asphalt Pavements VO1.1London1972.161-174
    [8] Hofstra A,Klomp A J G.Permanent Deformation of Flexible Pavements Under SimulatedRoad Traffic Conditions[C].Proceedings. Third International Conference on the StructuralDesign of Asphalt Pavements.V01.1,London1972.613-621
    [9] Shields D H, Zeng M L, Kwork R. Nolinear Viscoelasric Behavior of Concrete in StressRalaxation.Journal of the Association of Asphalt Paving Technolocists,1999,68:358-389
    [10] Weissman, S L, Sackman J L.the Effect of Traffic Wander on Rut Evolution in Pavementswith Aasphalt conerete Surface Layer. Symplectic Engineering Corporation,1999.12
    [11] Ben Bruscella,Vincent Rouillard,Michael Sek.Analysis of Road Surface Profiles.journal ofTranspor tation Engineering,1999,125(1):55-59
    [12] Chen J S,Tsai C J.[1] How Good are Linear Viscoealstic Properties of Aspalt Binder toPredict Rutting and Fatigue Craking Journal of Material and Performance,1999,8(4):443-449
    [13] K1M S M,ROESSET J M, Moving Loads on a Plate on Elastic Foundation[J].Journal ofEngineering Me-chanics,1998,124(9):1010-1017.
    [14] Sebaaly,P.E.,Tabatabaee,N.,Kulakowski,B.T.,and Scullion, T. Instrumentation for flexiblepavements-Field performance of selectedsensors." Final Report No. FHWA-RD-91-094,Vols. A and2, Federal Highway Admin., Washington, D. C.,1991.
    [15] H Huang. T D White. Modeing and analysis of accelerated pavement test[J].Washington.DC
    [16] G.Eason.The Stress Produced in a Semi-Infinite Solid by a Moving Surface Force.Intemational JoLUnal of Engineering Sciences,1965,2:581-609.
    [17] Fryba L.Vibration of Solids and Structures under Moving Loads[M] London:ThomasTelford,1999.
    [18] H.H.Hung and Y B.Yang.Elasitc Waves in Visco-Elastic half-Sapce Generated by VariousVehicle Loads. Soil Dynamics and Earthquake Engineering,2001,21:1-17.
    [19] Karim Chatti, Hyung B. Kim, Kyong K. Yun, Joe P. Mahoney, Carl L. Monismith FieldInvestigation into Effects of Vehicle Speed and Tire Pressure on Asphalt Concrete PavementStrains Thursday, January18,2007
    [20] Raj Siddharthan, Jian Yao, Peter E. Sebaaly Field Verification of Moving Load Model forPavement Response Thursday, January18,2007
    [21] Kim, Seong-Min (Center for Transportation Research, University of Texas at Austin); Won,Moon C.McCullough, B. Frank Source:Dynamic stress response of concrete pavements tomoving tandem-axle loads Transportation Research Record, n1809,2002, p32-41
    [22] Bueno,B.D.,WR.da Silva, D.C. de Lima et al. Engineering Properties of fiber reinforcedcold asphalt mixes[J]. Journal of Environmental Engineering,2003,129(10):952-955
    [23] Cooley L.A, Jr., E.R Brown., D.E. Watson. Evaluation of open-graded friction coursemixtures contain cellulose fibers[J]. Transportation Rcscarch Rccord,2000(1723):19-25.
    [24] DiPl. Ing. Ludwig,B B. Steve. The Influence to The Mechanical Probcrtics of BituminousMastics And, Thus to open Grain Asphalt Using Synthetic Fibres[A]. AAPA12thInternational Flexible Pavements Conferenee[C].2003:1-9
    [25]彭妙娟.沥青路面车辙分析的非线性理论和方法[D]:[博士学位论文].上海:同济大学道路与铁道土程,2005
    [26]朱永灵.沥青路面的车辙研究[D].[硕士学位论文].上海:同济大学道路与交通工程,1988
    [27]许志鸿,郭大智,吴晋伟等.沥青路面车辙的理论计算[J].中国公路学报,1990.3(3):27-36
    [28]徐世法.沥青路面的的粘弹性力学分析与车辙预估[D].[硕士学位论文].上海:同济大学道路与交通工程,1988
    [29]徐世法,朱照宏.高等级道路沥青路面车辙的预估方法与控制指标评述.华东公路,1991(4)
    [30]张宜洛,长大纵坡路段沥青路面行为和混合料设计研究[D].[博士学位论文].西安:长安大学,2012.
    [36]孙璐,邓学钧.运动负荷下粘弹性Kelvin地基上无限大板的稳态响应[J].岩土工程学报,1997,19(2):14-22.
    [37]娄平,曾庆元.移动荷载作用下板式轨道的有限元分析[J].交通运输工程2004,4(1):29-33
    [38]蒋建群,周华飞,张土乔.移动荷载下粘弹性地基上无限大板的稳态响应.中国公路学报,2006.1
    [39]金日光,刘薇.应力一温度等效性及WLF方程参数的物理意义[J].北京华学院学报(自然科学版),1994,21(2):18-25.
    [40]彭妙娟,许志鸿.沥青路面车辙预估方法[f].同济大学学报(自然科学版)2004.32(11)
    [41]朱伯芳编著,有限单元法原理与应用[M].北京:水利水电出版社,2003
    [42]王富耻张朝晖编著,ANSYS10.0有限元分析理论与工程应用[M],北京:电子工业出版社,2006.5
    [43]陆辉.轮载作用下沥青路面结构非线性三维有限元分析方法的研究.同济大学博士论文.2001.4
    [44]偶昌宝.沥青路面结构动力响应分析.浙江大学硕士论文.2005.2
    [45]杨捷.沥青车辙与拥抱形成机理的粘弹性分析.2006.4
    [46] H Huang.TD White.Modeing and analysis of accelerated pavement test[J].Washington.DC
    [47] Zhong Wu. Finite Elemet Simulation of Rutting On Supperpave Pavementsò
    [48]孙立军等.沥青路面结构行为理论.北京:人民交通出版社,2005,11
    [49]毕玉峰.沥青混合料抗剪试验方法及抗剪参数研究[D].同济大学博士学位论文.2004.
    [50]黄菲.路面永久变形数值模拟及车辙预估.东南大学硕士论文,2006
    [51]陈小念.沥青路面力学响应的三维有限元分析.兰州理工大学硕士论文.2006,5
    [52]郭大智.层状粘弹性体系力学.哈尔滨,哈尔滨工业大学出版社,2001,3
    [53]杨少伟.可能速度与公路线性设计方法研究.长大大学博士论文,2004
    [54]石飞荣.山区高速公路纵坡设计.西安公路交通大学硕士学位论文,2000
    [55]杨少伟石飞荣等.运行车速中的汽车换挡.长安大学学报,2004.3
    [56]张雨化主编.道路勘测设计.北京:人民交通出版社,1997
    [57]邓学钧,黄晓明.路面设计原理与方法[M].北京:人民交通出版社,2001
    [58]杭文,李旭宏等.公路货物超载运输轴载调查及数据分析研究.公路交通科技.2005.8
    [59]王超.多轴汽车转向特性及其操纵稳定性研究[D].硕士论文,西安:长安大学,2006.4
    [60]于永涛.多轴驱动混合动力汽车动力总成参数匹配及性能仿真[D].硕士论文,吉林:吉林大学2006.5
    [61]中华人民共和国行业标准.公路路线设计规范(JTG D20-2006).北京:人民交通出版社,2006
    [62]符锌砂,高捷.高速公路纵坡路段货车运行车速预测[J],公路交通科技.2008.6
    [63]黄晓明主编.高速公路沥青路面设计理论与方法.北京:人民交通出版社,2006.7
    [64]王丽娟.西部公路路面结构研究[D].硕士论文,西安:长安大学,2005.4
    [65]王辉.重载高温区沥青路面结构与材料研究[D].博士学位论文.长沙:中南大学,2008
    [66]申爱琴等.山区高速公路沥青路面车辙成因与防治措施[J].筑路机械与工程机械化.2007.6
    [67]蒋云昕,王雅茹.浅谈加强沥青路面车辙防治措施.华东公路.2009.2
    [68]王丽娟.西部公路路面结构研究.长安大学硕士论文,2005.4
    [69]黄芳.半柔性复合路面结构设计理论与方法研究[D].硕士论文,重庆:重庆交通大学2008.3
    [70]徐世法.高等级道路沥青路面车辙预估和防治[D].[博士学位论文].上海:同济大学道路与交通工程,1991
    [71]李一鸣.沥青混合料车辙试验探索[J].中国公路学报,1992.5(3)22-27
    [72]李一鸣,俞建荣.沥青路面车辙形成机理力学分析[J].东南大学学报,1994,14(1):90-95
    [73]黄晓明,张晓冰,邓学钧.沥青路面车辙形成规律环道试验研究[J].东南大学学报,2000,30(5):96-101
    [74]吴少鹏,王家主.长大纵坡沥青路面应力分析[J].武汉理工大学学报,2006,12
    [75]李明国,牛晓霞,申爱琴.山区高速公路沥青路面的抗车辙能力[J].长安大学学报,2006,12
    [75]李凌林沥青路面长大纵坡段车辙性能研究.硕士学位论文[D].南京:东南大学,2008
    [76]杨海荣,关宏信.高温、重载、慢速条件下上坡沥青路面车辙[J].长沙理工大学学报,2008,12
    [77]周华飞移动荷载作用下结构与地基动力响应特性研究.博士学位论文[D].杭州:浙江大学,2005
    [78]鲁正兰,孙立军.沥青路面车辙预估方法研究[J].同济大学学报,2007.11
    [79]邱自萍.高模量沥青混凝土粘弹性分析[D].西安:长安大学,2009
    [80]王甲勇.基于车辙仪的有限元车辙预估及影响因素分析[D].西安:长安大学,2009
    [81]付元坤.沥青路面车辙预估模型研究[D].西安:长安大学,2009
    [82]李振霞.沥青路面复合基层结构与材料研究[D].西安:长安大学,2008
    [83]杨琳.长大纵坡段沥青路面受力分析与车辙防治研究[D].西安:长安大学,2009
    [84] JTG D50-2006,公路沥青路面设计规范[S].北京:人民交通出版社,2006
    [85]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004
    [86]王芳.高等级沥青路面使用性能评价指标与标准研究[J].路基工程,2009,27(5):16-20.
    [87]曹久林.沥青路面温度场及应力场的数值模拟研究[D].重庆:重庆交通大学,2012
    [88]苏凯.山区公路沥青路面基面层滑移分析[D].西安:长安大学,2004
    [89]阳宏毅.连续配筋混凝土复合式路面层间应力分析与结合技术研究[D].长沙:长沙理工大学,2005
    [90]赵亚兰.连续配筋混凝土基层沥青路面沥青层力学分析与设计指标研究[D].西安:长安大学,2007
    [9l]杨荣山,艾长发.柔性路面与半刚性路面的性能对比分析[J].四川建筑.2003,23(2)
    [92]夏伟.高等级半刚性基层沥青渝的动态响应分析[D].长沙:湖南大学,:2006.
    [93]傅海滨.动载作用下公路沥青路面结构应力和变形分析[D].北京:北京工业大学:2007.
    [94]孙红燕,王勇,陆剑卿.沥青路面设计指标探讨[J].西安:长安大学,2006.
    [95]吕刚.浅谈回弹弯沉值控制沥青路面施工质量[M].黑龙江:黑龙江交通科技,2003
    [96]赵英.浅析沥青路面的病害成因与防治[J].山西:山西建筑,2010.
    [97]项斌.沥青路面病害成因分析及处理措施[J].浙江:工程建设与设计,2010.
    [98]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].机械工业出版社,2009.
    [99]王辉.重载高温区沥青路面结构与材料研究[D].长沙:中南大学,2008.
    [100]王辉,李雪连,张起森.高温重载作用下沥青路面车辙研究[J].土木工程学报.2009,142(5):139-44.
    [101]张培森.车辆荷载作用下沥青路面结构应力分析[D].西安:长安大学,2007.
    [102]王向恒.沥青路面层间剪切破坏和层间功能层研究[D].西安:长安大学,2009.
    [103]贺雨田.重载车辆作用下沥青路面层间应力分析[D].西安:长安大学,2008.
    [104]刘红坡.层间接触对半刚性沥青路面力学响应的影响田.成都:西南交通大学,2006.
    [105]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].机械工业出版社,2009.
    [106]王辉.重载高温区沥青路面结构与材料研究[D].长沙:中南大学,2008.
    [107]王辉,李雪连,张起森.高温重载作用下沥青路面车辙研究[J].土木工程学报.2009,142(5):139-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700