新型全固态激光器及其锁模技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全固态激光器效率高、体积小、成本低、光束质量好,是当前激光领域的研究热点之一。特别是以掺镱(Yb~(3+))晶体作为增益介质的全固态激光器可以实现高功率、大能量和超短脉冲激光输出,近年来引起了人们的广泛关注。为了开发低阈值、高效率,不同形式激光运转的新型全固态掺Yb~(3+)激光器,本论文对国内一些新型掺Yb~(3+)晶体开展了系统的激光实验和理论研究,主要包括低阈值的Yb:GSO激光器、高效率的Yb:GdYAB自倍频激光器和自调Q的Yb,Na:CaF2激光器及各种新型激光器的锁模研究。研究结果不仅为新型激光材料的生长和应用提供了参考,而且对发展实用化的新型全固态超短脉冲激光器也具有一定的理论意义和实用价值。论文的主要工作和创新点包括以下几部分:
     1.利用ABCD传输矩阵对全固态激光器谐振腔内的光斑分布规律进行了分析。根据理论计算,率先在国际上实现了全固态Yb:GSO激光器低阈值激光输出。对利用半导体可饱和吸收镜(SESAM)锁模的谐振腔进行了理论分析,通过选择不同调制深度的SESAM和腔结构分别实现了新型全固态Yb:GSO激光器的调Q锁模和连续锁模脉冲输出。
     2.首次开展了新型Yb:GdYAB自倍频激光器的实验和理论研究,获得了高达67%的光-光转换效率和宽达67nm的红外激光调谐输出。推导了自倍频激光器动力学方程,分析了决定自倍频功率输出的各种参数,在此基础上进行了全固态Yb:GdYAB激光器的自倍频实验,得到从激光二极管到绿光的转换效率为18.6%,它是迄今为止CW运转的自倍频激光器输出最高的光光转换效率。
     3.利用SESAM对Yb:GdYAB激光器进行了锁模实验,首次得到了该激光器872fs的超短脉冲输出;并实现了全固态Yb:GdYAB激光器的双波长稳定锁模运转。分析了含自倍频效应的SESAM锁模激光器方程,证明了适度的自倍频效应在锁模激光器中具有抑制调Q和实现稳定锁模的作用。
     4.系统开展了新型Yb~(3+),Na+:CaF2系列氟化物晶体的激光和荧光实验研究。通过对比实验,证明了掺入Na+具有提高荧光效率,降低激光阈值的作用。利用Yb~(3+),Na+共掺CaF2晶体实现了低阈值激光输出,并发现了Yb,Na:CaF2激光器的自调Q运转特性。通过荧光测量发现,共掺Yb~(3+)和Na+的离子浓度有一定配比关系,浓度过高的Na+掺杂反而会降低晶体激光性能,为这种新型晶体的生长和研究提供了依据。
The laser diode pumped all-solid-state laser is one of the spotlights in the laser research field, owing to its high efficiency, compact size, low cost and good beam quality. In particular, the all-solid-state laser based on ytterbium-doped gain media has attracted great attention recently because it can generate laser pulses of high power, large energy and ultrashort duration. In order to search for new all-solid-state lasers with low threshold, high efficiency, systematic experimental and theoretical laser studies have been carried out in this dissertation on various types of novel laser crystals including low threshold Yb:GSO lasers, high efficiency self-frequency-doubling (SFD) Yb:GdYAB lasers, self-Q-switched Yb,Na:CaF2 lasers, and their mode-locking studies. The studies provide guidance for new laser crystal growing, and are of theoretical and practical value for the development of a new generation of all-solid-state ultrafast lasers. In this dissertation, my work and innovations will be presented as follows:
     1. The rule that governs the intra-cavity laser spot distribution of LD pumped lasers is analyzed using ABCD transmission matrix. Based on that rule, a low threshold LD pumped Yb:GSO laser is developed for the first time to our knowledge. The theory of SESAM-based mode-locking lasers is analyzed, and both Q-switched and CW mode locking operations of all-solid-state Yb:GSO lasers are obtained using different cavity configurations and SESAMs with different modulation depths.
     2. Experimental and theoretical studies on SFD Yb:GdYAB lasers have been performed for the first time. An optical conversion efficiency of 67% and an infrared tunable spectrum of 67 nm are achieved, respectively. The critical parameters that determine SFD efficiency are analyzed in detail through the dynamic equation derived for SFD lasers. Based on the theoretical analysis, a conversion efficiency of 18.6% from LD to green light is achieved, which is the highest optical conversion efficiency from LD to SFD visible up to now.
     3. A SESAM mode locking Yb:GdYAB laser is built, with an ultrafast laser pulse output of 872 fs. Stable two wavelength (infrared and visible) operation of the mode-locked solid state Yb:GdYAB laser is also achieved for the first time. The dynamic equation for SESAM mode-locked lasers including SFD is derived. It is proved that appropriate self second harmonic generation in mode-locked lasers can suppress the tendency of Q-switched operation.
     4. Laser and fluorescence experiments are carried out on a series of novel Yb,Na:CaF2 crystals. According to comparative experiments, it is proved that Na+ dopants can increase the fluorescence efficiency and lower the lasing threshold. A low threshold laser is realized in Yb~(3+), Na+ co-doped CaF2 crystals. Self-Q-switched mode-locking operation of the Yb,Na:CaF2 laser is observed. An appropriate co-doping concentration of Yb~(3+) ions and Na+ ions is found according to measured fluorescence, providing guidance for new laser crystal growing and research.
引文
[1] 刘颂豪,21世纪的光电子产业,科技管理研究,2001,2: 1~6。
    [2] 张伟忠,迎接21世纪“光电子时代”—论二极管泵浦固体激光器(DPSSL)发展前景,中国创业投资与高科技,2002,5: 58~59。
    [3] A. L. Schawlow and C. H. Townes, Infrared and Optical Masers, Physical Review, 1958, 112(6): 1940~1949.
    [4] M. Ross, YAG laser operation by semiconductor laser pumping, Proceedings of the IEEE, 1968, 56(2): 196~197.
    [5] H. G. Danielmeyer and F. W. Jr. Ostermayer, Diode-Pump-Modulated Nd:YAG Laser, Journal of Applied Physics, 1972, 43(6): 2911~2913.
    [6] L. J. Rosenkrantz, GaAs diode-pumped Nd:YAG laser, Journal of Applied Physics, 1972, 43(11): 4603~4605.
    [7] H. R. Telle, Tunable cw laser oscillation of NdP5O14 at 1.3 μm, Applied physics B, Photophysics and laser chemistry, 1984, 35(4): 195~198.
    [8] B.K. Zhou, J. K. Thomas, J. D. George, et al, Efficient, frequency-stable laser-diode-pumped Nd:YAG laser, Optics Letters, 1985, 10(2): 62~64.
    [9] T. Y. Fan, End-pumped Nd:LaF3 and Nd:LaMgAl11O19 lasers, IEEE Journal of Quantum Electronics, 1989, 25(8): 1845~1849.
    [10] K. Kubodera and K. Otsuka, Spike-mode oscillations in laser-diode pumped LiNdP4O12 lasers, IEEE Journal of Quantum Electronics, 1981, 17(6): 1139~1144.
    [11] I. P. Alcock and A. I. Ferguson, Mode-locking and Q-switching of an optically pumped miniature Nd3+:YAG laser, Optics Communications ,1986, 58(6): 417~419.
    [12] F. Hanson and G. Imthurn, Efficient laser diode side pumped neodymium glass slab laser, IEEE Journal of Quantum Electronics, 1988, 24(9): 1811~1813.
    [13] W. A. Clarkson and D. C. Hanna, Single frequency Q-switched operation of a laser dipole-pumped, Nd:YAG ring laser, Optics Communications, 1989, 73(6): 469~474.
    [14] J. E. Bernard, V. D. Lokhnygin, A. J. Alcock, Grating-tuned, single-longitudinal-mode, diode-pumped Nd:YVO4 laser, Optics Letters, 1993, 18(23): 2020~2022.
    [15] A. Giesen, H. Hugel, A. Voss, et al., Scalable concept for diode-pumped high-power solid-state lasers, Applied Physics B: Photophysics and Laser Chemistry, 1994, 58(5): 365~372.
    [16] H. Bruesselbach, D. S. Sumida, R. Reeder, et al., Scaling Yb:YAG lasers to kilowatt powers, Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 1996, 2:151~152.
    [17] W. Schoene, S. Knoke, A. Tuennermann, et al., Efficient diode-pumped cw solid-state lasers with output powers in the kW range , Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 1997, 11:479.
    [18] H. J. Eichler, J. Findeisen, B. Liu, et al., Highly efficient diode-pumped 3-μm Er3+:BaY2F8 laser, IEEE Journal on Selected Topics in Quantum Electronics, 1994, 3(1): 90~94.
    [19] J. F. Pinto, G.H. Rosenblatt and L. Esterowitz, Continuous-wave laser action in Er3+:YLF at 3.41 um, Electronics Letters, 1994, 30(19): 1596~1598.
    [20] A. B. Petersen, Diode-pumped tunable cerium UV lasers, Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 1996, 1: 92~93.
    [21] 霍玉晶和陆宝生,LD泵浦NYAB自倍频激光器的初步研究,《高技术通讯》,1991,1(12): 23~26。
    [22] 金天峰和缪同群,半导体激光泵浦的Nd:YVO4激光器的1.064 μm高效率连续输出,《光学学报》,1996,16(5):598~600。
    [23] 何慧娟和廖严,高转换效率二极管激光器泵浦固体激光器,《中国激光》,1997,24(10):886~890。
    [24] A. Heller. Transparent ceramics spark laser advances. Science & Technology, April 2006: 10~17.
    [25] J. Bartschke, R. Knappe, K.-J. Boller, et al., Investigation of Efficient Self-Frequency-Doubling Nd:YAB Lasers, IEEE Journal of Quantum Electronics, 1997, 33(12): 2295~2300.
    [26] 柳强,巩马理,陆富源等, 高功率二极管角抽运Yb:YAG板条激光器, 激光与光电子进展, 2005, 42(12): 13~13。
    [27] M. X. Guo, J.D. Li, W.Q. Fu, et al., A Kilowatt diode-pumped solid-state heat-capacity double-slab laser, Chinese Physics Letters, 2006, 23(9): 2530~2533.
    [28] M. DiDomenico, Small-signal Analysis of Internal (Coupling-Type) Modulation of Lasers, Journal of Applied physics, 1964, 35(10): 2870~2876.
    [29] A. J. DeMaria, D. A. Stetser and H. Heynau, Self mode-locking of lasers with saturable absorbers, Applied Physics Letters, 1966, 8(7): 174~176.
    [30] L. F. Mollenauer and R. H. Stlen, The soliton laser, Optics Letters, 1984, 9(1): 13~15.
    [31] K. J. Blow and D. Wood, Mode-locked lasers with nonlinear external cavities, Journal of the Optical Society of America B-Optical Physics, 1988, 5(3): 629~632.
    [32] D. E. Spence, P. N. Kean and W. Sibbetd, 60-fs pulse generation from a self-mode-locked Ti:sapphire laser, Optics Letters, 1991, 16(1): 42~44.
    [33] U. Keller, W. H. Knox, and H. Roskos, Coupled-cavity resonant passive mode-locked Ti:sapphire laser, Optics Letters, 1990, 15(23), 1377~1379.
    [34] U. Keller, D. A. B. Miller, G. D. Boyd, et al., Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber, Optics Letters, 1992, 17(7): 505~507.
    [35] D. Kopf, K. J. Weingarten, L. R. Brovelli, et al., Diode-pumped 100-fs passively mode-locked Cr:LiSAF laser with an antiresonant Fabry-Perot saturable absorber, Optics Letters,1994, 19(24): 2143~2145.
    [36] J.M. Dai, W.L. Zhang, L.Z. Zhang, et al., A diode-pumped, self-starting, all-solid-state self-mode-locked Cr:LiSGAF laser, Optics & Laser Technology, 2001, 33: 71~73.
    [37] 张志刚,柴路,孙虹等,腔内反射镜色散控制的、自启动的钛宝石飞秒脉冲激光器,光学学报,2001,21(2): 253~254。
    [38] P. Lacovara, H. K. Choi, C. A. Wang, et al., Room-temperature diode-pumped Yb:YAG Laser, Optics Letters, 1991, 16(14): 1089~1091.
    [39] T. Y. Fan, Heat generation in Nd: YAG and Yb: YAG, IEEE Journal of Quantum Electronics, 1993, 29(6): 1457~1459.
    [40] C. Bibeau, R. J. Beach, S. C. Mitchell, et al., High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser, IEEE Journal of Quantum Electronics, 1998, 34(10): 2010~2019.
    [41] E. C. Honea, R. J. Beach, S. C. Mitchell, et al., High-power dual-rod Yb:YAG laser, Optics Letters, 2000, 25(11): 805~807.
    [42] John Wallace, Industrial lasers Commercial disk laser reaches 4-KW output, Laser focus world, 2004.9.19~20.
    [43] F. Mougel, K. Dardenne, G. Aka, et al., Ytterbium-doped Ca4GdO(BO3)3:an efficient infrared laser and self-frequency doubling crystal, Journal of the Optical Society of America B-Optical Physics, 1999, 16(1): 164~172.
    [44] E. Montoya, J. Capmany, L. E. Baussa, et al., Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO, Applied Physics Letters, 1999, 74(21): 3113~3115.
    [45] P. Dekker, J. M. Dawes, J. A. Piper, et al., 1.1W CW self frequency doubled diode pumped Yb:Yal3(BO3)4 Laser, Optics Communication, 2001, 195: 431~436.
    [46] P. Dekker, P. A.Burns, J. M. Dawes, et al., Widely tunable yellow-green lasers based on the self-frequency-doubling material Yb:YAB, Journal of the Optical Society of America B-Optical Physics, 2003, 20(4): 706~712.
    [47] C. Honninger, G. Zhang, U. Keller, et al., Femtosecond Yb:YAG laser using semiconductor saturable absorbers, Optics Letters, 1995, 20(23): 2402~2404.
    [48] Y. Zaouter, J. Didierjean, F. Balembois, et al., 47-fs diode-pumped Yb3+:CaGdAlO4 laser, Optics Letters, 2006, 31(1): 119~121.
    [49] F. Thibault, D. Pelenc, F. Druon, et al., Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation, Optics Letters, 2006, 31(10): 1555~1557.
    [50] A. Lucca, G. Debourg, M. Jacquement, et al., High-power diode-pumped Yb3+:CaF2 femtosecond laser, Optics Letters, 2004, 29(23): 2767~2769.
    [51] V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, et al., Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser, Optics Letters, 2005, 30(10): 1150~1152.
    [52] G. Paunescu, J. Hein, R. Sauerbrey, 100-fs diode-pumped Yb:KGW mode-locked laser, Applied Physics B-Lasers and Optics, 2004, 79(5): 555~558.
    [53] A. A. Lagatsky, E.U. Rafailov, C.G. Leburn, et al., Highly efficient femtosecond Yb:KYW laser pumped by single narrow-stripe laser diode , Electronics Letters, 2003, 39(15): 1108~1110.
    [54] F. Droun, F. Balembois, P. Georges, Ultra-short-pulsed and highly-efficient diode-pumped Yb:SYS mode-locked oscillators, Optics Express, 2004, 12(20): 5005~5012.
    [55] U. Griebner, V. Petrov, K. Petermann, et al., Passively mode-locked Yb:Lu2O3 laser, Optics Express, 2004, 12(14) : 3125~3130.
    [56] P. Klopp, V. Petrov, U. Griebner, et al., Highly efficient mode-locked Yb:Sc2O3 laser, Optics Letters, 2004, 29(4) : 391~393.
    [57] F. Druon, S. Chénais, P. Raybaut, et al., Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser, Optics Letters, 2002, 27(3): 197~199.
    [58] F. Droun, S. Chénais, F. Balembois, et al., High-power diode-pumped Yb:GdCOB laser: from continous-wave to femtosecond regime, Optical Materials, 2002, 19(1): 73~80.
    [59] M. J. Lederer, M. Hildebrandt, V. Z. Kolev, et al., Passive mode locking of a self-frequency-doubling Yb:YAl3(BO3)4 laser, Optics Letters, 2002, 27(6): 436~438.
    [60] G. J. Valentine, A. J. Kemp, D. J. L. Birkin, et al., Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror,Electronics Letters, 2000, 36(19): 1621~1623.
    [61] S. Uemura, K. Torizuka, Center-wavelength-shifted passively mode-locked diode-pumped ytterbium (Yb): Yttrium aluminum garnet (YAG) laser, Japanese Journal of Applied Physics, 2005, 44(12): L361~L363.
    [62] M. Jacquemet, C. Jacqument, N. Janel, et al., Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping, Applied Physics B-Lasers and Optics, 2005, 80(2): 171~176.
    [63] M. jacquemet, F. balembois, S. ch′enais, et al., First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm, 2004, Applied Physics B-Lasers and Optics, 2004,78(1): 13~18.
    [64] S. Chenais, F. Balembois, F. Druon, et al., Multiwatt and broadly tunable laser action from diode-pumping of two silicate ytterbium-doped Crystals: Yb:YSO and Yb:SYS, Lasers and Electro-Optics Europe, 2003 CLEO/Europe, 2003 Conference on IEEE, 2003:10.
    [65] M. Jacquemet, C. Jacqument, N. Janel, et al., Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping, Applied Physics B-Lasers and Optics, 2005, 80(2): 171~176.
    [66] H. Suzuki, T.A.Tombrello, C. L. Melcher, et al., UV and gamma-ray excited luminescence of cerium-doped rare-earth oxyorthosilicates, Nuclear Instruments and Methods in Physics Research Section A, 1992, 320(1-2): 263~272.
    [67] D. W. Cooke, B.L. Bennett, K. J. McClellan, et al., Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate, Journal of Applied Physics, 2000, 87(11): 7793~7797.
    [68] H. Ishibashi, Development of large GSO single crystal for PET, Inorganic Products R&D Group Hitachi Chemical Co. Ltd., 2003, 17.
    [69] N. Miyazaki, T. Tamura, K. Kurashige, et al., Thermal stress analysis of GSO bulk single crystal, Journal of Crystal Growth, 1997, 182: 73~80.
    [70] N. V. Kuleshov, V. G. Shcherbitsky, A. A. Lagatsky, et al., Spectroscopy, excited-state absorption and stimulated emission in Pr3+-doped Gd2SiO5 and Y2SiO5 crystals, Journal of Luminescence, 1997, 71(1): 27~35.
    [71] A S S de Camargo, M R Davolos and L A O Nunes, Spectroscopic characteristics of Er3+ in the two crystallographic sites of Gd2SiO5, Journal of Physics: Condensed Matter, 2002, (14): 3353~3363.
    [72] J. H?ls?, K. Jyrk?s and M. Leskel?, Site selectively excited luminescence of Eu3+ in gadolinium, yttrium and lutetium oxyorthosilicates, Journal of the Less Common Metals, 1986, 126: 215~220.
    [73] P. H. Haumesser, R. Gaumé, B. Viana, et al., Determination of laser parameters of ytterbium-diode oxide crystalline materials, Journal of the Optical Society of America B-Optical Physics, 2002, 19(10): 2365~2375.
    [74] U. Keller, Recent developments in compact ultrafast lasers, Nature, 2003, 424 (14): 831~838.
    [75] U. Keller, K. J. Weingarten, F. X. Kratner, et al. Semiconductor Saturable Absorber Mirrors (SESAM's) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435~452.
    [76] 严成锋,掺镱稀土正硅酸盐宽调谐超快激光晶体的研究,中国科学院上海光学精密机械研究所,博士毕业论文,2006年。
    [77] C.F. Yan, G.J. Zhao, L.B. Su, et al., Growth and spectroscopic characteristics of Yb:GSO single crystal, Journal of Physics: Condensed Matter, 2006, 18: 1325~1333.
    [78] M. Haiml, R. Grange, U. Keller, et al., Optical characterization of semiconductor saturable absorbers, Applied Physics B-Lasers and Optics, 2004, 79(3): 331~339.
    [79] R. Paschotta, J. Aus der Au, G. J. Spühler, et al., Diode-pumped passively mode-locked lasers with high average power, Applied Physics B-Lasers and Optics, 2000, 70(1): S25~S31.
    [80] G. J. Spühler, T. Südmeyer, R.Paschotta, et al. Passively mode-locked high-power Nd:YAG lasers with multiple laser heads, Applied Physics B-Lasers and Optics, 2000, 71(1): 19~25.
    [81] L. Krainer, R. Paschotta, S. Lecomte, et al. Compact Nd:YVO4 Lasers With Pulse Repetition Rates up to 160 GHz, IEEE Journal of Selected Topics in Quantum Electronics, 2002, 38 (10): 1331~1338.
    [82] R. Paschotta and U.Keller, Passive mode locking with slow saturable absorbers, Applied Physics B-Lasers and Optics, 2001, 73(7): 653~662.
    [83] L. F. Johnson, A. A. Ballman, Coherent Emission from Rare Earth Ions in Electro-optic Crystals , Journal of Applied Physics, 1969, 40: 297~302.
    [84] V. G. Dmitriev, E. V. Raevskii, N. M. Rubina, et al., Simultaneous emission at the fundamental frequency and the second harmonic in an active nonlinear medium: neodymium-doped lithium metaniobate, Soviet Technical Physics Letters, 1979, 5: 590~591.
    [85] T. Y. Fan, A. Cordova-plaza, M. J. F. Digonnet, et al., Nd:MgO:LiNbO3 spectroscopy and laser devices, Journal of the Optical Society of America B-Optical Physics, 1986, 3(1): 140~148.
    [86] B. Lu, J. Wang, H. Pan, et al., Excited Mission and Self-frequency-doubling Effect of NdxY1-xAl3(BO3)4, Chinese Physics Letters, 1986, 3(9): 413~415.
    [87] R. E. Stone, R. C. Spitzer and S. C. Wang, A Q-switched diode-pumped neodymium yttrium aluminum borate laser, IEEE Photon Technol Letters, 1990, 2(11): 769~771.
    [88] P. Wang, J. Dawes, P. Dekker, et al., Growth and evaluation of ytterbium-doped yttrium aluminium borate as a potential self-doubling laser crystal, Journal of the Optical Society of America B-Optical Physics, 1999, 16(1): 63~69.
    [89] E. Montoya, J. A. Sana-Garcia, J. Capmany, et al., Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3, Journal of Applied Physics, 2000, 87(9): 4056~4062.
    [90] L. Shah, Q. Ye, J. Eichenholz, et al., Laser tunability in Yb3+:YCa4O(BO3)3 {Yb:YCOB}, Optics Communications, 1999, 167(1-6): 149~153.
    [91] F. Druon, F. Auge, F. Balembois, et al., Efficient, tunable, zero-line diode-pumped, continuous-wave Yb3+:Ca4LnO(BO3)3 (Ln=Gd,Y) lasers at room temperature and application to miniature lasers, Journal of the Optical Society of America B-Optical Physics, 2000, 17(1): 18~22.
    [92] 涂朝阳,李坚富,邱闽旺等,Nd:GdYAl3(BO3)4激光晶体的研究,人工晶体学报,2000,29(4): 311~314.
    [93] 王继扬,蒋树声,稀土四硼酸双盐体系晶体的探索和研究,自然科学进展:国家重点实验室通讯,1999,9(10): 887~897.
    [94] 李静,王继扬,赵守任等,Yb:GdYAl3(BO3)4 晶体的生长及性质研究,压电与声光,2005,27(5): 529~531。
    [95] B. Alain, Chaoyang Tu, Minwang Qiu, et al., Spectroscopic properties, self-frequency doubling, and self-sum frequency mixing in GdAl3(BO3)4:Nd3+, Journal of the Optical Society of America B-Optical Physics, 2001, 18(8): 1104~1110.
    [96] P. Dekker, Y. J. Huo, J. M. Dawes, et al., Continuous wave and Q-switched diode-pumped neodymium, lutetium: yttrium aluminium borate lasers, Optics Communications, 1998, 151(4-6): 406~412.
    [97] C.Y. Tu, Y.Y. Huang, M.W. Qiu, et al., Journal of Crystal Growth, 1999, 206(3): 249~251.
    [98] 李静,掺镱硼酸盐自倍频晶体的研究,山东大学,博士学位论文,2005年。
    [99] P. Wang, J.M. Dawes, P. Dekker, et al., Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser, Optics Communication, 2000, 174(5-6): 467~470.
    [100] R. G. Smith, Theory of Intracavity Optical Second-Harmonic Generation, IEEE Journal of Quantum Electronics, 1970, 6(4): 215~223.
    [101] P. Edson R. and R. Kaye, Dispersion of Air, Journal of the Optical Society of America B-Optical Physics, 1972, 62(8): 958~962.
    [102] G. Lucas-Leclin, F.Auge, S. C. Auzanneau, et al., Diode-pumped self-frequency-doubling Nd:GdCa4O(BO3)3 lasers: toward green microchip lasers, Journal of the Optical Society of America B-Optical Physics, 2000, 17(9): 1526~1530.
    [103] H. A. Haus, Parameter Ranges for CW Passive Mode Locking, IEEE Journal of Quantum Electronics, 1976, 12(3): 169~176.
    [104] C. H?nninger, R. Paschotta, M. Graf, et al, Ultrafast ytterbium-doped bulk lasers and laser amplifiers , Applied Physics B-Lasers and Optics, 1999, 69(1):3~17.
    [105] F. Druon, F. Balembois, P. Georges, et al, Generation of 90-fs pulses f rom a mode-locked diode-pumped Yb3+Ca4Gd(BO3)3 laser, Optics Letters, 2000, 25(6): 423~425.
    [106] F. Brunner, G. J. Spühler, J. Aus der Au, et al, Diode-pumped femtosecond YbKGd(WO4)2 laser with 1.1-W average power, Optics Letters, 2000, 25(15): 1119~1121.
    [107] Y.H. Xue, Q.Y. Wang, Z.G. Zhang, et al., Passive mode locking of an Yb:YAB laser with a low modulation depth SESAM, Chinese Optics Letters, 2004, 2(8): 466~467.
    [108] A. Lucca, M. Jacquemet, F. Druon, et al., High-power tunable diode-pumped Yb3+:CaF2 laser, Optics Letters, 2004, 29(16): 1879~1881.
    [109] P. P. Sorokin and M. J. Stevenson, Stimulated infrared emission from trivalent uranium, Physical Review Letters, 1960, 5(12): 557~559.
    [110] W. Kaiser, C. G. B. Garrett, and D. L. Wood, Fluorescence and Optical Maser Effects in CaF2: Sm2+, Physical Review, 1961, 123(3): 766~776.
    [111] C Labbe, Doualan J L, Camy P, et al., The 2.8μm laser properties of Er3+ doped CaF2 crystals, Optics Communications, 2002, 209(1-3): 193~199.
    [112] P. Camy, J.L. Doualan, S. Renard, et al., Tm3+:CaF2 for 1.9μm laser operation, Optics Communications, 2004, 236(4-6): 395~402.
    [113] V. Petit, J. L. Doualan, P. Camy, et al, CW and tunable laser operation of Yb3+ doped CaF2, Applied Physics B-Lasers and Optics, 2004, 78(6): 681~684.
    [114] 苏良碧,氟化钙及掺质氟化钙晶体的生长、光谱与激光性能研究,中国科学院上海光学精密机械研究所,博士毕业论文,2005年。
    [115] N. Guerassimovaa, b, N. Garniera, C. Dujardina, et al., X-ray-excited charge transfer luminescence in Yb:YAG and YbAG, Journal of Luminescence, 2001, 94-95: 11~14.
    [116] S. D. McLaughlan, Electron Paramagnetic Resonance of Trivalent-Rare- Earth-Monovalent-Alkaline-Earth Ion Pairs in CaF, Physical Review, 1967,160(2): 287~289.
    [117] V. A. Arkhangelskaya, A. A. Fedorov, and P. P. Feofilov, Tunable room-temperature laser action of colour centres in MeF2-Na, Optics Communications, 1979, 28(1): 87~90.
    [118] J. Kirton and S. D. Mclaughlan, Correlation of electron paramagnetic resonance and optical absorption spectra of CaF2:Yb3+, Physical Review, 1967, 155(2): 279~284.
    [119] L.B. Su, J. Xu, H.J. Li et al., Crystal growth and spectroscopic characterization of Yb-doped and Yb, Na-codoped CaF2 laser crystals by TGT, Journal of Crystal Growth, 2005, 277(1-4): 264~268.
    [120] D.S.Sumida and T.Y.Fan, Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media, Optics Letters, 1994, 19(17): 1343~1345.
    [121] Y. Guyot, H. Canibano, C. Goutaudier et al., Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: Concentration quenching analysis and laser optimization, Optical Materials, 2006, 28: 1~8.
    [122] G. Boulon, L. Laversenne, C. Goutaudier et al.,Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers, Journal of Luminescence, 2003, 102-103: 417~425.
    [123] P. H. Haumesser, R. Gaumé, B.Viana et al., Determination of laser parameters of ytterbium-doped oxide crystalline materials, Journal of the Optical Society of America B-Optical Physics, 2002, 19(10): 2365~2375.
    [124] R. J. Keyes and T. M. Quist, Injection luminescent pumping of CaF2:U3+ with GaAs diode Lasers, Applied Physics Letters, 1964, 4(3): 50~52.
    [125] D. P. Bour, D. B. Gilbert, K. B. Fabian, et al., Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers, IEEE Photonics Technology Letters, 1990, 2(3): 173~174.
    [126] A. R. Reinberg, L. A. Riseberg, R. M. Brown, et al., GaAs:Si LED pumped Yb-doped YAG laser, Applied Physics Letters, 1971, 19(1): 11~13.
    [127] M O Ram′?rez, L E Baus′a, D Jaque, et al., Spectroscopic study of Yb3+ centres in the YAl3(BO3)4 nonlinear laser crystal, Journal of Physics: Condensed Matter, 2003, 15: 7789~7801.
    [128] 王继扬,李静,蒋民华,激光自倍频晶体YbxY1-xAl3(BO3)4的研究进展,人工晶体学报,2002,31(3): 260~265。
    [129] 王继扬,田丽莉,魏景谦等,稀土四硼酸双盐体系晶体的探索和研究,自然科学进展, 1999 ,9(10) :887~897。
    [130] 李静,王继扬,张怀金等,大尺寸Yb:YAl3(BO3)4晶体的生长及其自倍频激光性能研究,人工晶体学报,2005,34(5): 778~781。
    [131] P. Dekker, J. M. Dawes and J. A. Piper, 2.27-W Q-switched self-doubling Yb:YAB laser with controllable pulse length, Journal of the Optical Society of America B-Optical Physics, 2005, 22(2): 378~384.
    [132] Y.R. Song and Q.Y. Wang, Polarized operation of Yb3+:YAl3(BO3)4 CW and mode-locked lasers, Chinese Optics Letters, 2005, 3(6): 339~341.
    [133] M. J. Lederer, M. Hildebrandt, V. Z. Kolev, et al., Passive mode locking of a self-frequency-doubling Yb:YAl3(BO3)4 laser, Optics Letters, 2002, 27(6): 436~438.
    [134] Q.Liu, M.Gong, F.Lu et al., 520-W continuous-wave diode corner-pumped composite Yb: YAG slab laser, Optics Letters, 2005, 30(7):726~728.
    [135] 徐晓东 赵志伟 赵广军等,提拉法与温梯法Yb:YAG晶体性能的比较,人工晶体学报,2003,32(4): 306~309。
    [136] 宋平新,赵志伟,徐晓东等,Yb:FAP晶体的生长及光谱性能,中国激光,2005,32(10):1433~1436。
    [137] 薛迎红,王清月,柴路等,LD抽运Yb:GSO实现1090nm低阈值激光运转,物理学报,2006,55(1): 456~459.
    [138] 路鑫超,柴路,张伟力等,补偿Yb:glass飞秒激光器色散的G-T干涉仪设计,光电子.激光,2003,14(5): 457~461.
    [139] G.F. Ju, L. Chai, Q.Y. Wang, et al., Stable mode-locking in an Yb:YAG laser with a fast SESAM, Chinese Optics Letters, 2003, 1(12): 695~697.
    [140] 张靖,张宽收,全固化单频Nd:YVO4环形激光器,中国激光,2000,27(8): 694~696.
    [141] H. Suzuki, O. Kuribayashi, F. Kannari, synchronous dual-wavelength operation of a self-injection-seeded narrow-linewidth flash-lamp-pumped Q-switched TiAl2O3 laser, Optics Letters, 1997, 22(22): 1710~1712.
    [142] R. Roy, P. A. Schulz, and A. Walther, Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser”, Optics Letters, 1987, 12(9): 672~674.
    [143] P. A. Schulz, Single-frequency Ti: Al2O3 ring laser, IEEE Journal of Quantum Electron, 1988, 24(2): 1039~1044.
    [144] N. Sarukura, Y. Ishida, H. Nakano, and Y. Yamamoto, cw passive mode locking of a Ti:sapphire laser, Applied Physics Letters, 1990, 56(9): 814~815.
    [145] N. Sarukura, Y. Ishida, T. Yanagawa, et al., All solid-state cw passively mode-locked Ti:sapphire laser using a colored glass filter, Applied Physics Letters, 1990, 57(3): 229~230.
    [146] E. Loh, Ultraviolet-absorption spectra of europium and ytterbium in alkaline earth fluorides, Physical Review, 1969, 184(2): 348~352.
    [147] A. A. Filimonov, N. I. Leonyuk, L. B. Meissner, et al., Nonlinear optical properties of an Isomorphic Family of Crystals with a Yttrium-Aluminum Borate (YAB) structure, Kristall und Technik ,1974, 9(1):63~66.
    [148] 李建萍,半导体可饱和吸收镜的研制及其在Yb3+光纤激光器的应用,天津大学,硕士学位论文,2006.
    [149] C. H?nninger, R. Paschotta, F. Morier-Genoud, et al. Q-switching stability limits of continuous-wave passive mode locking, Journal of the Optical Society of America B-Optical Physics, 2004, 16 (1): 46~56.
    [150] T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, 1960, 187: 493~494.
    [151] R. Newman, Excitation of the Nd3+ Fluorescence in CaWO4 by Recombination Radiation in GaAs, Journal of Applied Physics, 1963, 34(2): 437~437.
    [152] N. Guerassimova, N. Garnier., C. Dujardin, et al., X-ray-excited charge transfer luminescence in YAG:Yb and YbAG, Journal of Luminescence, 2001, 94-95: 11~14.
    [153] 郑权,钱龙生,我国中低功率LD泵浦全固体激光器的研制与开发,光机电信息,2001,1: 20~23。
    [154] L. F. Johnson, J.E. Geusic and L. G. Van Uitert, Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet, Applied Physics Letters, 1965, 7(5): 127~129.
    [155] 徐军,激光晶体材料的发展和思考,激光与光电子学进展,2006,43(9): 17~24。
    [156] C. H?nninger, R. Paschotta, M. Graf, et al., Ultrafast ytterbium-doped bulk lasers and laser amplifiers, Applied Physics B-Lasers and Optics, 1999, 69(1): 3~17.
    [157] K. I. Schaffers, L. D. DeLoach, and S. A. Payne, Crystal growth, frequency doubling, and infrared laser performance of Yb:BaCaBOF, IEEE J. Quantum Electron, 1996, 32(5): 741~748.
    [158] P. Wang, J. M. Dawes, P. Dekker, et al., Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser, Optics Communications, 2000, 174(5–6): 467~470.
    [159] B.Bleaney, Electron Spin Resonance of Point Defects in CaF2, Journal of Applied Physics Supplement, 1962, 33(1): 358~359.
    [160] J.Kirton and S.D.Mclaughlan, Correlation of Electron Paramagnetic Resonance and Optical Absorption Spectra of CaF2:Yb3+, Physical Review, 1967, 155(2): 279~284.
    [161] R. Grange, M. Haiml, R. Paschotta, et al., New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers, Applied Physics B-Lasers and Optics, 2005, 80(2): 151~158.
    [162] R. Paschotta and U.Keller, Passive mode locking with slow saturable absorbers, Applied Physics B-Lasers and Optics, 2001, 72(3): 653~662.
    [163] H. Zhang, X. Meng, P. Wang, et al., Slope efficiency of up to 73% for Yb:Ca4YO(BO3)3 crystal laser pumped by a laser diode , Applied Physics B-Lasers and Optics, 1999, 68(6): 1147~1149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700