微结构光纤中的模间干涉及光腔的模式耦合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包层微结构调整的灵活性,使得微结构光纤(Microstructure fiber, MF)的光学特性明显的不同于传统光纤。这些不同于传统光纤的显著特征使得微结构光纤成为光学领域的一个研究热点。本论文对微结构光纤的一些特性进行了初步的探讨。
     首先,对微结构光纤的研究概况进行了一般的综述。其中包括微结构光纤概念的提出,和传统光纤相比的异同,微结构光纤色散的多样性,微结构光纤中的偏振和双折射,微结构光纤在非线性光学中的应用以及微结构光纤制作材料和制作方法的多样性,微结构光纤中的模间干涉等。
     其次,简要介绍了用于研究微结构光纤模式及其模间干涉的几种方法。其中包括:等效折射率方法、局域化函数方法、全矢量平面波展开法、双正交基矢方法、多极化方法、Fourier展开法、有限微分方法和有限元方法等。这些方法各有优点和缺点,根据研究对象和精度的不同,在实际工作中可以灵活选取合适的研究方法。
     然后,利用等效折射率方法,对不同结构参数微结构光纤的不同模式的色散特性进行了研究。结果发现,微结构光纤的模式及其色散特性灵敏地依赖于它的结构参数。多模微结构光纤中不同模式的零色散点分布在一个波段上,使得在零色散点附近才能发生的一些非线性现象更加容易显现。例如多模微结构光纤中各种非线性联合效应产生的超连续光谱就是一个典型的例证。
     再然后,重点研究了微结构光纤中的模间干涉现象。利用等效折射率方法对仅仅支持两个导模的一种微结构光纤中的模间干涉现象进行了研究,理论计算和文献中报道的实验测量结果符合的比较好。它说明了这种计算方法的可行性,更为重要的是,理论计算还指出了微结构光纤中,频率域的双模干涉中存在精细结构,精细结构的出现是微结构包层灵活调整的结果。这些精细结构使干涉测量的精度提高了一个数量级。接下来解释了我们课题组制作的一种微结构光纤中的奇异现象:将钛蓝宝石飞秒激光脉冲耦合到一种微结构光纤中,在一定的波段产生连续的光谱之后,沿着光纤轴线方向,出现了某些颜色强度极大的一些谱线的准周期分布。在制作微结构光纤的早期阶段,曾经在空气孔无规则分布的多芯微结构光纤中观测到类似的现象,当时解释为光纤无规则空气孔不对称导致的与偏振相关的干涉现象。而这次拉制的光纤尺寸均匀性很好,对其产生的类似现象需要重新给出解释。数值计算表明,这根微结构光纤仅仅支持最低阶的四个导模,而这四个导模之间的模间干涉计算结果能够比较好的说明这种现象。最后把微结构光纤中的多模干涉特征和传统光波导中的多模干涉特征进行了对比,指出了微结构光纤中多模干涉现象的潜在应用领域。
     论文的最后一部分,研究了光腔间的模式耦合特性。对入射腔基横模到次级光腔基横模、一阶横模、二阶横模和三阶横模的功率耦合系数进行了研究,给出了这些耦合系数对光腔轴线间的平行移位、光腔轴线间的相对倾斜的依赖关系的解析表达式。最终给出了这些模式耦合系数达到最大值的条件。理论计算对光学腔体的调节有一定的指导作用。
Due to the tailoring flexibility of the cladding microstructure, the optical characteristics of microstructure fiber (hereinafter referred to as MF) are obviously different from those of the traditional fiber. The MF has become a heatedly discussed topic in the optical filed due to these characteristics. The thesis attempts to conduct an elementary research concerning some characteristics of MF.
     Firstly, a general review about the research situation on the area of MF has been given. The review includes the introduction of the concept of MF, the similarities and differences between the MF and the traditional fiber, variety of the dispersion characteristics of MF, polarization and birefringence in MF, MF application in nonlinear optics and the multiplicity of the MF fabrication materials and the fabrication methods, intermodal interference in MF, etc.
     Then, a number of methods for the study of mode and intermodal interference in MF have been introduced briefly. The methods include: the effective-index method, the localized function method, the full vector plane wave decomposition method, the biorthonormal-basis method, the multi-pole method, the Fourier decomposition method, the finite-difference method, and the finite element method, etc. Each method has its respective advantages and disadvantages. One can choose appropriate method with flexibility depending on the research object and the requirement of calculation accuracy in the actual research work.
     Further more, the different mode dispersion characteristics of various structure parameter MF have been studied using the effective-index method. The results indicate that the mode and dispersion characteristics of MF are determined by its structure parameter sensitively. The zero dispersion points of different modes in multi-mode MF distribute on one wavelength region. Some nonlinear effects, which can only take place in the vicinity of the zero dispersion point, take place more easily in the multi-mode MF. The supercontinuum spectrum generated by the combination of various nonlinear effects in the multi-mode MF is a typical example.
     Intermodal interference in MF has been studied intensively in the following section. The intermodal interference phenomenon in a MF which only supports two guided modes has been studied firstly by using the effective index method. The theoretic result coincides well with the experimental measurement reported in the reference. This coincidence confirms that the theoretical method chosen is a feasible one for the present research. More importantly, the fine structure in two-mode intermodal interference in frequency domain is predicted by the theoretical calculation. The fine structure is induced by the flexibility tailoring of the cladding microstructure. The fine structure has improved the interference measurement preciseness by one degree. Then, a novel phenomenon in the MF which is made by our group has been explained. A continuum spectral is generated in a certain wavelength region when a femtosecond pulse generated by the Ti:sapphire laser is coupled into a MF. Then, along the direction of the fiber core, a pseudo-periodic distribution of some colors intensively spectral line in some wavelength emerged. A similar phenomenon has been observed in a random distribution air hole multicore MF at the beginning stage of MF fabrication. At that time, the phenomenon was considered as the result of polarization-related interference induced by the asymmetry of the random air holes. But now, the MF is well symmetric, the phenomenon should be explained by other mechanism. Numerical calculation shows that the MF can only support four guided modes. The intermodal interference in the four mode MF can very well explain the phenomenon. Finally, a contrast and comparison of multi-mode intermodal interference between the MF and the traditional waveguide has been conducted. The potential application areas of multi-mode intermodal interference in MF have been shown.
     The characteristic of the mode coupling between cavities has been studied in the last section of the doctoral thesis. The fractions of power coupling between the injecting cavity's fundamental mode and the following cavity’s fundamental mode, the first transverse mode, second transverse mode, and third transverse mode have been studied. The dependence of these fractions of power coupling on the relative offset and tilting between the cavity axes are given in an analytical expression. The conditions that must be satisfied for these fractions of power coupling to get the maximum are given finally. This piece of theoretical work may be used as a guideline in the process of optical cavity adjustment.
引文
1 B.J. Eggleton, P.S. Westbrook, and R.S. Windeler. Grating Resonances in Air-Silica Microstructured Optical Fibers. Opt. Lett., 1999, 24(21):1460-1462
    2 T.M. Monro, D.J. Richardson, N.G.R. Broderick. Holey Optical Fibers: An Efficient Modal Model. J. Lightwave Technol., 1999, 17(6):1093-1102
    3 E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett., 1987, 58(20):2059-2062
    4 S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett., 1987, 58(23):2486-2489
    5 J.D. Joannopoulos, P.R. Villeneuve, and S. Fan. Photonic Crystals: Putting a New Twist on Light. Nature, 1997, 386(6621):143-149
    6 E. Yablonovitch. Photonic Crystals: Semiconductors of Light. Scientific American, 2001, 285(6):47-55
    7 A. Bjarklev, J. Broeny and A. S. Bjarklev. Photonic Crystal Fibres. Boston/Dordrecht/London: Kluwer Academic Publisher, 2003:20-37
    8黄昆,韩汝琦.固体物理学.北京:高等教育出版社, 1998:1-16
    9 T.A. Birks, J.C. Knight, and P.St.J. Russell. Endlessly Single-Mode Photonic Crystal Fiber. Opt. Lett., 1997, 22(13):961-963
    10 J.C. Knight, T.A. Birks, P.St.J. Russell, et. al. Properties of Photonic Crystal Fiber and the Effective Index Model. J. Opt. Soc. Am. A, 1998, 15(3):748-752
    11 J.C. Knight, T.A. Birks, P.St.J. and Russell. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding. Opt. Lett., 1996, 21(19):1547-1549
    12 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell. Highly Birefringent Photonic Crystal Fibers. Opt. Lett., 2000, 25(18):1325-1327
    13 J.C. Knight, J.Arriaga, T.A. Birks, A.Ortigosa-Blanch, W.J. Wadsworth, and P.S.Russell. Anomalous Dispersion in Photonic Crystal Fiber. IEEE Photon. Technol. Lett., 2000, 12(7):807-809
    14 W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts. Demonstration of Uultra-Flattened Dispersion in Photonic Crystal Fibers. Opt. Express, 2002, 10(14):609-613
    15 P. Russell. Photonic Crystal Fibers. Science, 2003, 299(5605):358-362
    16 P.R. Villeneuve, M. Piché. Photonic Band Gaps in Two-Dimensional Square and Hexagonal Lattices. Phys. Review B, 1992, 46(8):4969-4972
    17 T.A. Birks, P.J. Roberts, P.St.J. Russell, et. al., Full 2-D Photonic Bandgaps in Silica/Air Structures. Electron. Lett., 1995, 31(22):1941-1943
    18 J. Broeng, S.E. Barkou, A. Bjarklev, et. al. Highly Increased Photonic Band Gaps in Silica/Air Structures. Opt. Commmun., 1998, 156(4-6):240-244
    19 S.E. Barkou, J. Broeng, A. Bjarklev. Silica–Air Photonic Crystal Fiber Design That Permits Waveguiding by a True Photonic Bandgap Effect. Opt. Lett., 1999, 24(1):46-48
    20 J. Broeng, T. S?ndergaard, S.E. Barkou, et. al. Waveguidance by the Photonic Bandgap Effect in Optical Fibres. J. Opt. A, 1999, 1(4):477-482
    21 J.C. Knight, J. Broeng, T.A. Birks, et. al. Photonic Band Gap Guidance in Optical Fibers. Science, 1998, 282(5393):1476-1478
    22 R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. A. Allan. Single-Mode Photonic Band Gap Guidnce of Light in Air. Science, 1999, 285(5433):1537-1539
    23 F. Benabid, J.C. Knight, G. Antonopoulos G, P.S.J. Russell. Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Science, 2002, 298(5592):399-402
    24 N.A. Mortensen. Effective Area of Photonic Crystal Fibers. Opt. Express, 2002, 10(7):341-348
    25 J.R. Folkenberg, N.A. Mortensen, K.P. Hansen, et. al.. Experimental Investigation of Cutoff Phenomena in Nonlinear Photonic Crystal Fibers. Opt. Lett., 2003, 28(20):1882-1884
    26 D. Mogilevtsev, T. A. Birks, and P. S. J. Russell. Group-Velocity Dispersion in Photonic Crystal Fibers. Opt. Lett., 1998, 23(21):1662-1664
    27娄淑琴,任国斌,延凤平,简水生.类矩形芯光子晶体光纤的色散与偏振特性.物理学报, 2005, 54(03):244-249
    28 A.Ferrando, E.Silvestre, J. J.Miret, J. A.Monsoriu, M. V.Andres, and P. S. J.Russel. Deigning a Photonic Crystal Fibre with Flattened Chromatic Dispersion. Electron. Lett. ,1999, 35(4):325-327
    29 S. Kim, U. Paek, and K. Oh. New Defect Design in Index Guiding Holey Fiber for Uniform Birefringence and Negative Flat Dispersion over a Wide Spectral Range. Opt. Express, 2005, 13(16):6039-6050
    30 N. Florous, K. Saitoh, and M. Koshiba. The Role of Artificial Defects for Engineering Large Effective Mode Area, Flat Chromatic Dispersion, and Low Leakage Losses in Photonic Crystal Fibers: Towards High Speed Reconfigurable Transmission Platforms. Opt. Express, 2006, 14(2):901-913
    31 K.Saitoh, N.Florous, and M.Koshiba. Ultra-Flattened Chromatic Dispersion Controllability Using a Defected-Core Photonic Crystal Fiber with Low Confinement Losses. Opt. Express, 2005, 13(21):8365-8371
    32 S. Haxha, H. Ademgil. Novel Design of Photonic Crystal Fibres with Low Confinement Losses, Nearly Zero Ultra-Flatted Chromatic Dispersion, Negative Chromatic Dispersion and Improved Effective Mode Area. Opt. Commun., 2007, in press
    33刘兆伦,刘晓东,倪正华,李曙光,侯蓝田.高非线性色散平坦光子晶体光纤的研究.激光与红外, 2006, 36(01):50-53
    34陈泳竹,李玉忠,屈圭,徐文成.反常色散平坦光纤产生平坦宽带超连续谱的数值研究.物理学报, 2006, 55(02):234-239
    35 K. Saitoh, N. J. Florous, and M. Koshiba. Theoretical Realization of Holey Fiber with Flat Chromatic Dispersion and Large Mode Area: an Intriguing Defected Approach. Opt. Lett., 2006, 31(1):26-28
    36 C. K. Nielsen, K. G. Jespersen, and S. R. Keiding. A 158 fs 5.3 nJ Fiber-Laser System at 1μm Using Photonic Bandgap Fibers for Dispersion Control and Pulse Compression. Opt. Express, 2006, 14(13):6063-6068
    37 E. Silvestre, T. Pinheiro-Ortega, P. Andrés, J. J. Miret, andá. Coves. Differential Toolbox to Shape Dispersion Behavior in Photonic Crystal Fibers. Opt. Lett., 2006, 31(9):1190-1192
    38 A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht. Similariton Fiber Laser with a Hollow-Core Photonic Bandgap Fiber for Dispersion Control. Opt. Lett., 2007, 32(9):1084-1086
    39 K. Saitoh and M. Koshiba. Highly Nonlinear Dispersion-Flattened Photonic Crystal Fibers for Supercontinuum Generation in a Telecommunication Window. Opt. Express, 2004, 12(10):2027-2032
    40 A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor. Zero-Dispersion Wavelength Decreasing Photonic Crystal Fibers for Ultraviolet-Extended Supercontinuum Generation. Opt. Express, 2006, 14(12):5715-5722
    41 J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson. High-Nonlinearity Dispersion-Shifted Lead-Silicate Holey Fibers for Efficient 1-μm Pumped Supercontinuum Generation. J. Lightwave Technol., 2006, 24(1):183-190
    42 H. Zhang, S. Yu, J. Zhang, and W. Gu. Effect of Frequency Chirp on Supercontinuum Generation in Photonic Crystal Fibers with Two Zero-Dispersion Wavelengths. Opt. Express, 2007, 15(3):1147-1154
    43 J. Wang, M. Gao, C. Jiang, andW. Hu. Design and Parametric Amplification Analysis of Dispersion-Flat Photonic Crystal Fibers. Chinese Opt. Lett., 2005, 3(7):380-382
    44 K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee. Ultra-Flattened-Dispersion Selectively Liquid-Filled Photonic Crystal Fibers. Opt. Express, 2006, 14(15):6870-6878
    45 S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather. Dispersion-Based Beam Splitter in Photonic Crystals. Opt. Lett., 2004, 29(6):617-619
    46 Sigang Yang, Yejin Zhang, Xiaozhou Peng, Yang Lu, Shizhong Xie. Theoretical Study and Experimental Fabrication of High Negative Dispersion Photonic Crystal Fiber with Large Area Mode Field. Opt. Express, 2006, 14(7):3015-3023
    47 T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba. Chromatic Dispersion Profile Optimization of Dual-Concentric-Core Photonic Crystal Fibers for Broadband Dispersion Compensation. Opt. Express, 2006, 14(2):893-900
    48 T. Matsui, K. Nakajima, and I. Sankawa. Dispersion Compensation over All the Telecommunication Bands with Double-Cladding Photonic-Crystal Fiber. J. Lightwave Technol., 2007, 25(3):757-762
    49任国斌,王智,娄淑琴,简水生.椭圆孔光子晶体光纤的偏振特性.中国激光, 2004, 31(08):111-117
    50 J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, H. R. Simonsen. Polarization Maintaining Large Mode Area Photonic Crystal Fiber. Opt. Express, 2004, 12(5):956-960
    51 T. Ritari, T. Niemi, M. Wegmuller, N. Gisin, J.R. Folkenberg, A. Pettersson, and H. Ludvigsen. Polarization-Mode Dispersion of Large Mode-Area Photonic Crystal Fibers. Opt. Commun., 2003, 226(1-6):233-239
    52 J. Ju, W. Jin, and M. S. Demokan. Design of Single-Polarization Single-Mode Photonic CrystalFiber at 1.30 and 1.55μm. J. Lightwave Technol., 2006, 24(2):825-830
    53 F. Zhang, M. Zhang, X. Liu, and P. Ye. Design of Wideband Single-Polarization Single-Mode Photonic Crystal Fiber. J. Lightwave Technol., 2007, 25(5):1184-1189
    54 F. D. Teodoro and P. R. Hoffman. Tunable, Linearly Polarized, Intrinsically Single-Mode Fiber Laser Using a 40-μm Core-Diameter Yb-doped Photonic-Crystal Fiber. Opt. Commun., 2005, 252( 1-3):111-116
    55 L. Zhang and C. Yang. Polarization Splitter Based on Photonic Crystal Fibers. Opt. Express, 2003, 11(9):1015-1020
    56 L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri. Polarization Splitter Based on a Square-Lattice Photonic-Crystal Fiber. Opt. Lett., 2006, 31(4):441-443
    57 L. Wang and D. Yang. Highly Birefringent Elliptical-Hole Rectangular-Lattice Photonic Crystal Fibers with Modified Air Holes Near the Core. Opt. Express, 2007, 15(14):8892-8897
    58 Y. Yue, G. Y. Kai, Z. Wang, T. T. Sun, L. Jin, Y. F. Lu, C. S. Zhang, J. G. Liu, Y. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong. Highly Birefringent Elliptical-Hole Photonic Crystal Fiber with Squeezed Hexagonal Lattice. Opt. Lett., 2007, 32(5):469-471
    59 Y. C. Liu and Y. Lai. Optical Birefringence and Polarization Dependent Loss of Square- and Rectangular-Lattice Holey Fibers with Elliptical Air Holes: Numerical Analysis. Opt. Express, 2005, 13(1):225-235
    60 Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh. Versatile Control of Geometric Birefringence in Elliptical Hollow Optical Fiber. Opt. Lett., 2006, 31(18):2681-2683
    61 A. Michie, J. Canning, I. Bassett, J. Haywood, K. Digweed, M. ?slund, B. Ashton, M. Stevenson, J. Digweed, A. Lau, and D. Scandurra. Spun Elliptically Birefringent Photonic Crystal Fibre. Opt. Express, 2007, 15(4):1811-1816
    62 P. Song, L. Zhang, Z. Wang, Q. Hu, S. Zhao, S. Jiang, and S. Liu. Birefringence Characteristics of Squeezed Lattice Photonic Crystal Fibers. J. Lightwave Technol., 2007, 25(7):1771-1776
    63胡明列,王清月,栗岩峰,倪晓昌,张志刚,王专,柴路,侯蓝田,李曙光,周桂耀.非均匀微结构光纤中双折射现象的研究.物理学报, 2004, 53(12):228-232
    64 M. Chen and R. Yu. Design of Defect-Core in Highly Birefringent Photonic Crystal Fibers with Anisotropic Claddings. Opt. Commun., 2006, 258(2):164-169
    65 M. Eguchi and Y. Tsuji. Geometrical Birefringence in Square-Lattice Holey Fibers Having aCore Consisting of a Multiple Defect. J. Opt. Soc. Am. B, 2007, 24(4):750-755
    66 T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi. Supercontinuum Generation at 1.55 m in a Dispersion-Flattened Polarization-Maintaining Photonic Crystal Fiber. Opt. Express, 2003, 11(13):1537-1540
    67 Z. Zhu and T. Brown. Experimental Studies of Polarization Properties of Supercontinua Generated in a Birefringent Photonic Crystal Fiber. Opt. Express, 2004, 12(5):791-796
    68 T. Schreiber, F. R?ser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann. Stress-Induced Single-Polarization Single-Transverse Mode Photonic Crystal Fiber with Low Nonlinearity. Opt. Express, 2005, 13(19):7621-7630
    69 In-Kag Hwang, Yong-Jae Lee, and Yong-Hee Lee. Birefringence Induced by Irregular Structure in Photonic Crystal Fiber. Opt. Express, 2003, 11(22):2799-2806
    70 M. Szpulak, T. Martynkien, and W. Urbanczyk. Effects of Hydrostatic Pressure on Phase and Group Modal Birefringence in Microstructured Holey Fibers. Appl. Opt., 2004, 43(24):4739-4744
    71 G. Statkiewicz, T. Martynkien, W. Urbańczyk. Measurements of Modal Birefringence and Polarimetric Sensitivity of the Birefringent Holey Fiber to Hydrostatic Pressure and Strain. Opt. Commun., 2004, 241(4-6):339-348
    72 G. Statkiewicz, T. Martynkien, and W. Urba?czyk. Measurements of Birefringence and Its Sensitivity to Hydrostatic Pressure and Elongation in Photonic Hollow Core Fiber with Residual Core Ellipticity. Opt. Commun., 2005, 255(4-6):175-183
    73 K. P. Hansen, A. Petersson, J. R. Folkenberg, M. Albertsen, and A. Bjarklev. Birefringence-Induced Splitting of the Zero-Dispersion Wavelength in Nonlinear Photonic Crystal Fibers. Opt. Lett., 2004, 29(1):14-16
    74 A. Michie, J. Canning, K. Lyytik?inen, M. ?slund, and J. Digweed. Temperature Independent Highly Birefringent Photonic Crystal Fibre. Opt. Express, 2004, 12(21):5160-5165
    75 T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont. Temperature and Pressure Sensitivities of the Highly Birefringent Photonic Crystal Fiber with Core Asymmetry. Appl. Phys. B, 2005, 81(2-3):325-331
    76 C. Zhang, G. Kai, Z. Wang, Y. Liu, T. Sun, S. Yuan, and X. Dong. Tunable Highly BirefringentPhotonic Bandgap Fibers. Opt. Lett., 2005, 30(20):2703-2705
    77 D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis. Tunable Highly Birefringent Bandgap-Guiding Liquid-Crystal Microstructured Fibers. J. Lightwave Technol., 2006, 24(9):3427-3432
    78 M. W. Haakestad and H. E. Engan. Acoustooptic Characterization of a Birefringent Two-Mode Photonic Crystal Fiber. Opt. Express, 2006, 14(16):7319-7328
    79 P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. S. J. Russell. Design of Low-Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber. Opt. Express, 2006, 14(16):7329-7341
    80 X. Zhu, A. Schülzgen, L. Li, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian. Birefringent in-Phase Supermode Operation of a Multicore Microstructured Fiber Laser. Opt. Express, 2007, 15(16):10340-10345
    81张炜,李乙钢,闫培光,朱剑平,吕可诚.大模面积双包层掺Yb~(3+)光子晶体光纤激光器.光电子·激光, 2005, 16(04):36-38
    82 A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng. Large-Mode-Area Erbium-Ytterbium-Doped Photonic-Crystal Fiber Amplifier for High-Energy Femtosecond Pulses at 1.55μm. Opt. Express, 2005, 13(4):1221-1227
    83 S. Hilaire, D. Pagnoux, P. Roy, and S. Février. Numerical Study of Single Mode Er-Doped Microstructured Fibers: Influence of Geometrical Parameters on Amplifier Performances. Opt. Express, 2006, 14(22):10865-10877
    84 M. Moenster, P. Glas, G. Steinmeyer, R. Iliew, N. Lebedev, R. Wedell, and M. Bretschneider. Femtosecond Neodymium-Doped Microstructure Fiber Laser. Opt. Express, 2005, 13(21):8671-8677
    85阮双琛,杨冰,朱春艳,林浩佳,姚建铨. 2.2W掺Yb~(3+)双包层光子晶体光纤激光器.光子学报, 2004, 33(01):16-17
    86 A. Isom?ki and O. G. Okhotnikov. Femtosecond Soliton Mode-Locked Laser Based on Ytterbium-Doped Photonic Bandgap Fiber. Opt. Express, 2006, 14(20):9238-9243
    87 Y. Logvin, V. P. Kalosha, and H. Anis. Third-Order Dispersion Impact on Mode-Locking Regimes of Yb-Doped Fiber Laser with Photonic Bandgap Fiber for Dispersion Compensation. Opt. Express, 2007, 15(3):985-991
    88 A. Wang, A. K. George, and J. C. Knight. Three-Level Neodymium Fiber Laser Incorporating Photonic Bandgap Fiber. Opt. Lett., 2006, 31(10):1388-1390
    89闫培光,阮双琛,郭春雨,于永芹,郭媛,刘承香. 3.8W光子晶体光纤喇曼激光器.光子学报, 2006, 35(03):6
    90 C. J. S. de Matos, J. R. Taylor and K. P. Hansen. All-Fibre Brillouin Laser Based on Holey Fibre Yielding Comb-Like Spectra. Opt. Commun., 2004, 238(1-3):185-189
    91 J. C. Knight. Photonic Crystal Fibers and Fiber Lasers (Invited). J. Opt. Soc. Am. B, 2007, 24(8):1661-1668
    92邓元龙,姚建铨,阮双琛,王鹏.高功率光子晶体光纤激光器及其关键技术.激光技术, 2005, 29(06):38-40
    93 N.G.R. Broderick, T.M. Monro, P.J. Bennett, and D.J. Richardson. Nonlinearity in Holy Optical Fibers: Measurement and Future Opportunities. Opt. Lett., 1999, 24(20):1395-1397
    94王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展.中国激光, 2006, 33(01):60-69
    95 C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch. Silica-Glass Contribution to the Effective Nonlinearity of Hollow-Core Photonic Band-Gap Fibers. Opt. Express, 2007, 15(6):3507-3512
    96 T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann. Supercontinuum Generation by Femtosecond Single and Dual Wavelength Pumping in Photonic Crystal Fibers with Two Zero Dispersion Wavelengths. Opt. Express, 2005, 13(23):9556-9569
    97 Y. Zhang, Y. Zheng, X. Huang, Y. Wang, L. Wang, K. Zhou, X. Wang, Y. Guo, X. Yuan, G. Zhou, L. Hou, Z. Hou, G. Xing, and J. Yao. Supercontinuum Generation with 15-fs Pump Pulses in Microstructured Fiber with Combination Core and Random Cladding. Chin. Opt. Lett., 2004, 2(2):122-124
    98 Y. Vidne and M. Rosenbluh. Spatial Modes in a PCF Fiber Generated Continuum. Opt. Express, 2005, 13(24):9721-9728
    99 E.E. Serebryannikov and A.M. Zheltikov. Supercontinuum Generation Through Cascaded Four-Wave Mixing in Photonic-Crystal Fibers: When Picoseconds Do It Better. Opt. Commun., 2007, 274(2):433-440
    100 E. R?ikk?nen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter. Supercontinuum Generation by Nanosecond Dual-Wavelength Pumping in MicrostructuredOptical Fibers. Opt. Express, 2006, 14(17):7914-7923
    101 W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell. Supercontinuum and Four-Wave Mixing with Q-Switched Pulses in Endlessly Single-Mode Photonic Crystal Fibers. Opt. Express, 2004, 12(2):299-309
    102 A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre. Tailoring CW Supercontinuum Generation in Microstructured Fibers with Two-Zero Dispersion Wavelengths. Opt. Express, 2007, 15(18):11553-11563
    103 M. -L. Hu, C. -Y. Wang, Y. -F. Li, L. Chai, and A. M. Zheltikov. Tunable Supercontinuum Generation in a High-Index-Step Photonic-Crystal Fiber with a Comma-Shaped Core. Opt. Express, 2006, 14(5):1942-1950
    104 J. C. Travers, S. V. Popov, and J. R. Taylor. Extended Blue Supercontinuum Generation in Cascaded Holey Fibers. Opt. Lett., 2005, 30(23):3132-3134
    105 P. Yan, Y. Jia, H. Su, Y. Li, L. Ding, W. Zhang, K. Lv, T. Zhang, X. Zhu, Q. Guo, G. Zhou, and L. Hou. Broadband Continuum Generation in an Irregularly Multicore Microstructured Optical Fiber. Chin. Opt. Lett., 2005, 3(6):355-357
    106 G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter. Supercontinuum Generation System for Optical Coherence Tomography Based on Tapered Photonic Crystal Fibre. Opt. Express, 2006, 14(4):1596-1603
    107李曙光,周桂耀,邢光龙,侯蓝田,王清月,栗岩锋,胡明列.微结构光纤中超短激光脉冲传输的数值模拟.物理学报, 2005, 54(04):143-150
    108 R. Zhang, J. Teipel, and H. Giessen. Theoretical Design of a Liquid-Core Photonic Crystal Fiber for Supercontinuum Generation. Opt. Express, 2006, 14(15):6800-6812
    109 A. V. Husakou and J. Herrmann. Supercontinuum Generation, Four-Wave Mixing, and Fission of Higher-Order Solitons in Photonic-Crystal Fibers. J. Opt. Soc. Am. B, 2002, 19(9):2171-2182
    110 F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell. Spectrally Smooth Supercontinuum from 350 nm to 3μm in Sub-Centimeter Lengths of Soft-Glass Photonic Crystal Fibers. Opt. Express, 2006, 14(11):4928-4934
    111 C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P.Blandin, M. Hanna, and P. Georges. Visible Supercontinuum Generation Controlled by Intermodal Four-Wave mixing in Microstructured Fiber. Opt. Lett., 2007, 32(15):2173-2175
    112 J. Fan and A. Migdall. Phase-Sensitive Four-Wave Mixing and Raman Suppression in a Microstructure Fiber with Dual Laser Pumps. Opt. Lett., 2006, 31(18):2771-2773
    113 S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson. Towards Efficient and Broadband Four-Wave-Mixing Using Short-Length Dispersion Tailored Lead Silicate Holey Fibers. Opt. Express, 2007, 15(2):596-601
    114 J. Fan, A. Migdall, and L. J. Wang. Increased Cross-Correlation in Cascaded Four-Wave Mixing Processes. Opt. Express, 2007, 15(12):7146-7151
    115 M. Hu, C. -y. Wang, Y. Li, Z. Wang, L. Chai, and A. Zheltikov. Multiplex Frequency Conversion of Unamplified 30-fs Ti: Sapphire Laser Pulses by an Array of Waveguiding Wires in a Random-Hole Microstructure Fiber. Opt. Express, 2004, 12(25):6129-6134
    116 F. Lu and W. Knox. Low Noise Wavelength Conversion of Femtosecond Pulses with Dispersion Micro-Managed Holey Fibers. Opt. Express, 2005, 13(20):8172-8178
    117 J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey. Effect of Dispersion Fluctuations on Widely Tunable Optical Parametric Amplification in Photonic Crystal Fibers. Opt. Express, 2006, 14(20):9491-9501
    118 J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel. Octave-Spanning, High-Power Microstructure-Fiber-Based Optical Parametric Oscillators. Opt. Express, 2007, 15(4):1474-1479
    119 Ju Han Lee, Z. Yusoff, W. Belardi, M. Ibsen, T.M. Monro, and D.J. Richardson. A Tunable WDM Wavelength Converter Based on Cross-Phase Modulation Effects in Normal Dispersion Holey Fiber. IEEE Photon. Technol. Lett., 2003, 15(3):437-439
    120 S. O. Konorov, D. A. Akimov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, and M. Scalora. Tuning the Frequency of Ultrashort Laser Pulses by a Cross-Phase-Modulation-Induced Shift in a Photonic Crystal Fiber. Opt. Lett., 2005, 30(12):1548-1550
    121 J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight. Cross-Phase Modulation Instability in Photonic Crystal Fibers. Opt. Lett., 2006, 31(7):873-875
    122 A. T. Nguyen, K. Phan Huy, E. Brainis, P. Mergo, J. Wojcik, T. Nasilowski, J. Van Erps, H.Thienpont, and S. Massar. Enhanced Cross Phase Modulation Instability in Birefringent Photonic Crystal Fibers in the Anomalous Dispersion Regime. Opt. Express, 2006, 14(18):8290-8297
    123 S.K. Varshney, K. Saitoh, and M. Koshiba. A Novel Fiber Design for Dispersion Compensating Photonic Crystal Fiber Raman Amplifier. IEEE Photon. Technol. Lett., 2005, 17(10):2062-2065
    124 F. Poli, L. Rosa, M. Bottacini, M. Foroni, A. Cucinotta, and S. Selleri. Multipump Flattened-Gain Raman Amplifiers Based on Photonic Crystal Fibers. IEEE Photon. Technol. Lett., 2005, 17(12):2556-2558
    125 C. de Matos and J. Taylor. Chirped Pulse Raman Amplification with Compression in Air-Core Photonic Bandgap Fiber. Opt. Express, 2005, 13(8):2828-2834
    126 S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba. Novel Design of Inherently Gain-Flattened Discrete Highly Nonlinear Photonic Crystal Fiber Raman Amplifier and Dispersion Compensation Using a Single Pump in C-Band. Opt. Express, 2005, 13(23):9516-9526
    127 S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba. Design and Analysis of a Broadband Dispersion Compensating Photonic Crystal Fiber Raman Amplifier Operating in S-Band. Opt. Express, 2006, 14(8):3528-3540
    128 M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri. Modeling of Photonic Crystal Fiber Raman Amplifiers. J. Lightwave Technol., 2004, 22(7):1707-1713
    129 M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov. Frequency-Tunable Anti-Stokes Line Emission by Eigenmodes of a Birefringent Microstructure Fiber. Opt. Express, 2004, 12(9):1932-1937
    130 S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles. Phase-Matched Four-Wave Mixing and Sensing of Water Molecules by Coherent Anti-Stokes Raman Scattering in Large-Core-Area Hollow Photonic-Crystal Fibers. J. Opt. Soc. Am. B, 2005, 22(9):2049-2053
    131 S. O. Konorov, A. B. Fedotov, E. E. Serebryannikov, V. P. Mitrokhin, D. A. Sidorov-Biryukov and A. M. Zheltikov. Phase-Matched Coherent Anti-Stokes Raman Scattering in Isolated Air-Guided Modes of Hollow Photonic-Crystal Fibers. J. Raman Spectrosc., 2005, 36(2):129-133
    132 M. Hu, C.-Y. Wang, Y. Li, Z. Wang, L. Chai, Y.N. Kondratev, C. Sibilia, and A.M. Zheltikov. An Anti-Stokes-Shifted Doublet of Guided Modes in a Photonic-Crystal Fiber Selectively Generated and Controlled with Orthogonal Polarizations of the Pump Field. Appl. Phys. B, 2004, 79(7):805-809
    133 Minglie Hu, Ching-yue Wang,Yanfeng Li, Zhuan Wang, Lu Chai, and A.M. Zheltikov. Polarization- and Mode-Dependent Anti-Stokes Emission in a Birefringent Microstructure Fiber. IEEE Photon. Technol. Lett., 2005, 17(3):630-632
    134 S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. -L. Auguste, and J. -M. Blondy. Stimulated Raman Scattering in an Ethanol Core Microstructured Optical Fiber. Opt. Express, 2005, 13(12):4786-4791
    135 V. Mitrofanov, Y. M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov, and A. M. Zheltikov. Highly Birefringent Silicate Glass Photonic-Crystal Fiber with Polarization-Controlled Frequency-Shifted Output: A Promising Fiber Light Source for Nonlinear Raman Microspectroscopy. Opt. Express, 2006, 14(22):10645-10651
    136 S. Lebrun, P. Delaye, R. Frey, and G. Roosen. High-Efficiency Single-Mode Raman Generation in a Liquid-Filled Photonic Bandgap Fiber. Opt. Lett., 2007, 32(4):337-339
    137 K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson. Brillouin Characterization of Holey Optical Fibers. Opt. Lett., 2006, 31(17):2541-2543
    138 J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, V. Laude. Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers. Opt. Lett., 2007, 32(1):17-19
    139 W. Zhang, Y. Wang, Y. Pi, Y. Huang, and J. Peng. Influences of Pump Wavelength and Environment Temperature on the Dual-Peaked Brillouin Property of a Small-Core Microstructure Fiber. Opt. Lett., 2007, 32(16):2303-2305
    140 I. Cristiani, R. Tediosi, L. Tartara and V. Degiorgi. Dispersive Wave Generation by Solitons in Microstructured Optical Fibers. Opt. Express, 2004, 12(1):124-135
    141 D. V. Skryabin, F. Luan, J. C. Knight and P. St. J. Russell. Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers. Science, 2003, 301(5640):1705-1708
    142 K. S. Abedin and F. Kubota. Widely Tunable Femtosecond Soliton Pulse Generation at a 10-GHz Repetition Rate by Use of the Soliton Self-Frequency Shift in Photonic Crystal Fiber. Opt. Lett., 2003, 28(19):1760-1762
    143 L. Tartara, I. Cristiani, and V. Degiorgio. Blue Light and Infrared Continuum Generation by Soliton Fission in a Microstructured Fiber. Appl. Phys. B, 2003, 77(2-3):307-311
    144 M. G. Banaee and J. F. Young. High-Order Soliton Breakup and Soliton Self-Frequency Shifts ina Microstructured Optical Fiber. J. Opt. Soc. Am. B, 2006, 23(7):1484-1489
    145 Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian. Fabrication of Glass Photonic Crystal Fibers with a Die-Cast Process. Appl. Opt., 2006, 45(18):4433-4436
    146 Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, M. C. J. Large, and M. A. van Eijkelenborg. Casting Preforms for Microstructured Polymer Optical Fibre Fabrication. Opt. Express, 2006, 14(2):5541-5547
    147 T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson. Chalcogenide Holey Fibres. Electron. Lett., 2000, 36(24):1998-2000
    148 L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville. Fabrication of Complex Structures of Holey Fibers in Chalcogenide Glass. Opt. Express, 2006, 14(3):1280-1285
    149 V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, and H. Misawa. Fabrication and Properties of Metalo-Dielectric Photonic Crystal Structures for Infrared Spectral Region. Opt. Express, 2007, 15(13):8454-8464
    150 A. Cucinotta, F. Poli, and S. Selleri. Design of Erbium-Doped Triangular Photonic-Crystal-Fiber-Based Amplifiers. IEEE Photon. Tech. Lett., 2004, 16(9):2027-2029
    151 C. Li, Y. Huang, W. Zhang, Y. Ni, and J. Peng. Amplification Properties of Erbium-Doped Solid-Core Photonic Bandgap Fibers. IEEE Photon. Tech. Lett., 2005, 17(2):324-326
    152 V.L. Kalashnikov, E. Sorokin, S. Naumov, et. al.. Low-Threshold Supercontinuum Generation from an Extruded SF6 PCF Using a Compact Cr4+: YAG Laser, Appl. Phys. B, 2004, 79(5):591-596
    153 K.M. Kiang, K. Frampton, T.M. Monro, et. al.. Extruded Singlemode Non-Silica Glass Holey Optical Fibres, Electron. Lett., 2002, 38(12):546-547
    154 F. M. Cox, A. Argyros, and M. C. J. Large. Liquid-Filled Hollow Core Microstructured Polymer Optical Fiber. Opt. Express, 2006, 14(9):4135-4140
    155 A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett. Hollow-Core Microstructured Polymer Optical Fiber. Opt. Lett., 2006, 31(2):172-174
    156 Y. Zhang, L. Ren, K. Li, H. Wang, W. Zhao, L. Wang, R. Miao, M. C. J. Large, and M. A. V. Eijkelenborg. Guiding Mode in Elliptical Core Microstructured Polymer Optical Fiber, Chin. Opt. Lett., 2007, 5(4):194-196
    157 P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu. Microfluidic Tunable Photonic Band-Gap Device. Appl. Phys. Lett., 2004, 84(11):1838-1840
    158 Y. Huang, Y. Xu, and A.Yariv. Fabrication of Functional Microstructured Optical Fibers Through a Selective-Filling Technique. Appl. Phys. Lett., 2004, 85(22):5182-5184
    159 L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi. Continuously Tunable Devices Based on Electrical Control of Dual-Frequency Liquid Crystal Filled Photonic Bandgap Fibers. Opt. Express, 2005, 13(19):7483-7496
    160 L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao. Fabrication of Selective Injection Microstructured Optical Fibers with a Conventional Fusion Splicer. Opt. Express, 2005, 13(22):9014-9022
    161 C. Zhang, G. Kai, Z. Wang, T. Sun, C. Wang, Y. Liu, W. Zhang, J. Liu, S. Yuan, and X. Dong. Transformation of a Transmission Mechanism by Filling the Holes of Normal Silica-Guiding Microstructure Fibers with Nematic Liquid Crystal. Opt. Lett., 2005, 30(18):2372-2374
    162 D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis. Photonic Crystal-Liquid Crystal Fibers for Single-Polarization or High-Birefringence Guidance. Opt. Express, 2006, 14(2):914-925
    163杨广强,张霞,任晓敏,黄永清,陈雪.基于光子晶体光纤的全光开关实验研究.中国激光, 2005, 32(12):62-65
    164 N. J. Florous, K. Saitoh, T. Murao, and M. Koshiba. Non-Proximity Resonant Tunneling in Multi-Core Photonic Band Gap Fibers: An Efficient Mechanism for Engineering Highly-Selective Ultra-Narrow Band Pass Splitters. Opt. Express, 2006, 14(11):4861-4872
    165 T. Murao, K. Saitoh, N. J. Florous, and M. Koshiba. Design of Effectively Single-Mode Air-Core Photonic Bandgap Fiber with Improved Transmission Characteristics for the Realization of Ultimate Low Loss Waveguide. Opt. Express, 2007, 15(7):4268-4280
    166 P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif. Raman-Like Light Scattering from Acoustic Phonons in Photonic Crystal Fiber. Opt. Express, 2006, 14(9):4141-4150
    167 D. -I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim. Tunable Acoustic Gratings in Solid-Core Photonic Bandgap Fiber. Opt. Express, 2007, 15(6):3513-3518
    168 J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell. Photonic Crystal Fiber Source of Correlated Photon Pairs. Opt. Express, 2005, 13(2):534-544
    169 J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity. High Brightness Single Mode Source of Correlated Photon Pairs Using a Photonic Crystal Fiber. Opt. Express, 2005, 13(19):7572-7582
    170任国斌,娄淑琴,王智,简水生.等效折射率模型研究光子晶体光纤的色散特性.光学学报, 2004, 24(03):319-323
    171任国斌,王智,娄淑琴,简水生.应用等效折射率模型研究光子晶体光纤.中国激光, 2004, 31(06):84-88
    172栗岩锋,王清月,胡明列.光子晶体光纤的矢量有效折射率分析方法.中国激光, 2004, 31(11):1332-1336
    173张德生,董孝义,张伟刚,王志.用阶跃有效折射率模型研究光子晶体光纤色散特性.物理学报, 2005, 54(03):1235-1240
    174 Y. Li, C. Wang, N. Zhang, C. -y. Wang, and Q. Xing. Analysis and Design of Terahertz Photonic Crystal Fibers by an Effective-Index Method. Appl. Opt., 2006, 45(33):8462-8465
    175 V. Rastogi and K. S. Chiang. Holey Optical Fiber with Circularly Distributed Holes Analyzed by the Radial Effective-Index Method. Opt. Lett., 2003, 28(24):2449-2451
    176栗岩锋.光子晶体光纤色散特性的理论研究. [天津大学工学博士学位论文]. 2004:27-29
    177李曙光.微结构光纤中超短激光脉冲传输及色散特性研究. [燕山大学工学博士学位论文]. 2004:42-47
    178 M.Midrio, M.P.Singh, and C.G.Someda. The Space Filling Mode of Holey Fibers: An Fnalytical Vectorial Solution. IEEE J. of Lightwave Technol, 2000, 18(7):1031-1037
    179 A.W.Snyder, and J.D.Love. Optical Waveguide Theory. Chapmann and Hall, London, 1983, 595-606
    180 M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov. Comparison of Different Methods for Rigorous Modeling of Photonic Crystal Fibers. Opt. Express, 2006, 14(12):5699-5714
    181 K.Leung, and Y.Liu. Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media. Phys. Rev. Lett., 1990, 65(21):2646-2649
    182 Z.Zhang,and S.Satpathy. Electromagnetic Wave Propagation in Periodic Structures: Bloch Wave Solution of Maxwell’s Equations. Phys. Rev. Lett., 1990, 65(21):2650-2653
    183 E.Silvestre, M.V.Andrés, and P.Andrés. Biorthonormal-Basis Method for the VectorDescription of Optical-Fiber Modes. IEEE J. Lightwave Technol., 1998, 16(5):923-928
    184 A. Ferrando, E.Silvestre, J.J.Miret, P.Andrés, and M.V.Andrés. Full-Vector Analysis of a Realistic Photonic Crystal Fiber. Opt. Lett., 1999, 24(5):276-278
    185 T.P.White, R.C. McPhedran, L.C.Botten, G.H.Smith, and C.M. de Sterke. Calculations of Air-Guided Modes in Photonic Crystal Fibers Using the Multipole Method. Opt. Express, 2001, 9(13):721-732
    186 T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten. Multipole Method for Microstructured Optical Fibers. I Formulation. J. Opt. Soc. Am. B, 2002, 19(10):2322- 2330
    187 B.T.Kuhlmey, T.P.White, G.Renversez, D.Maystre, L.C.Botten, C.M. de Sterke, and R.McPhedran. Multipole Method for Microstructured Optical FibersⅡ. Implementation and Results. J. Opt. Soc. Am. B, 2002, 19(10):2331-2340
    188 B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran. Multipole Analysis of Photonic Crystal Fibers with Coated Inclusions. Opt. Express, 2006, 14(22):10851-10864
    189 L.Poladian, N.A.Issa, and T.M.Monro. Fourier Decomposition Algorithm for Leaky Modes of Fibres with Artibray Geometry. Opt. Express, 2002, 10(10):449-454
    190 M. Qin, and S. He. A Non-Orthogonal Finite-Difference Time-Domain Metod for Computing the Band Structure of a Two-Dimensional Photonic Crystal with Dielectric and Metallic Inclusions. J. Appl. Phys., 2000, 87(12):8268-8275
    191 Z. Zhu and T. Brown. Full-Vectorial Finite-Difference Analysis of Microstructured Optical Fibers. Opt. Express, 2002, 10(17):853-864
    192 V. Dangui, M. J. F. Digonnet, and G. S. Kino. A Fast and Accurate Numerical Tool to Model the Modal Properties of Photonic-Bandgap Fibers. Opt. Express, 2006, 14(7):2979-2993
    193 F.Brechet, J.Marcou, D.Pagnoux, and P.Roy. Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method. Opt. Fiber Technol., 2000, 6(2):181-191
    194 T. Fujisawa and M. Koshiba. Finite-Element Mode-Solver for Nonlinear Periodic Optical Waveguides and Its Application to Photonic Crystal Circuits. J. Lightwave Technol., 2005, 23(1):382-387
    195 W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng. Supercell Lattice Method for Photonic CrystalFibers. Opt. Express, 2003, 11(9):980-991
    196 A.Peyrilloux, S.Février, J.Marcou, L.Berthelot, D.Pagnoux, and P.Sansonetti. Comparison between the Finite Element Method, the Localized Function Method and a Novel Equivalent Averaged Index Method for Modeling Photonic Crystal Fibres. J. of Opt. A: Pure and applied optics, 2002, 4(3):257-262
    197 D.R. Chen, H. Fu, H. Ou and S. Qin. Wavelength-Spacing Continuously Tunable Multi-Wavelength SOA-Fiber Ring Laser Based on Mach–Zehnder Interferometer. Optics & Laser Technology, 2008, 40(2):278-281
    198 G. Srikanth. Measurement of Period of Interference Patterns with Sub-Micron Period. Optics & Laser Technology, 2007, 39(5):918-921
    199 A. Sharma and R. Posey. Transverse Stress Induced LP02–LP21 Modal Interference of Stimulated Raman Scattered Light in a Few-Mode Optical Fiber. Opt. Commun., 1996, 124(1-2):111-117
    200 A. Kumar, R. Jindal, R. K. Varshne, and S. K. Sharma. A Fiber-Optic Temperature Sensor Based on LP01–LP02 Mode Interference. Opt. Fiber Technol., 2000, 6(1):83-90
    201 P. Hlubina, T. Martynkien, W. Urbanczyk. Measurements of Birefringence Dispersion and Intermodal Dispersion in a Two-Mode Elliptical-Core Optical Fibre Using an Interferometric Method. Optik, 2004, 115(3):109-114
    202 P. Hlubina. Spectral-Domain Intermodal Interference under General Measurement Conditions. Opt. Commun., 2002, 210(3-6):225-232
    203 Martincek, D. Kacik, I. Turek, P. Peterka. The Determination of the Refractive Index Profile in a-Profile Optical Fibres by Intermodal Interference Investigation. Optik, 2004, 115(2):86-88
    204 Qun Li, Chien-Hung Lin, Pao-Yi Tseng, Henry P. Lee. Demonstration of High Extinction Ratio Modal Interference in a Two-Mode Fiber and Its Applications for All-Fiber Comb Filter and High-Temperature Sensor. Opt. Commun., 2005, 250(4-6):280-285
    205 Tien-Jung Chen. A Novel Two-Mode Fiber-Optic Interferometer Based on HE11-TE01 Modal Interference Utilizing a Liquid-Crystal-Clad Fiber Modal Filter. Opt. Commun., 2006, 261(1):43-50
    206 A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma. A Fiber-Optic Temperature Sensor Based on LP01–LP02 Mode Interference. Optical Fiber Technol., 2000, 6(1):83-90
    207 A. Kumar, R. K. Varshney, R. Kumar. SMS Fiber Optic Microbend Sensor Structures: Effect ofthe Modal Iinterference. Opt. Commun., 2004, 232(1-6):239-244
    208 Y. Lee and D.Y. Kim. Determination of the Differential Mode Delay of a Multimode Fiber Using Fourierdomain Intermodal Interference Analysis. Opt. Express, 2006, 14(20):9016-9021
    209 Z. Wang, J. Ju, W. Jin. Optimizing PCFs for Two-Mode Interference. Opt. Fiber Technol., 2006, 12(2):29-37
    210 D. Kacik et al. Intermodal Interference in a Photonic Crystal Fiber. Opt. Express, 2004, 12(15):3465-3471
    211 A. Ozcan, A.j.Tewary, Michel J.F. Digonnet, G. S. Kino. Observation of Mode Coupling in Bitapered Air-Core Photonic Bandgap Fibers. Opt. Commun., 2007, 271(2) 391-395
    212 Lucas B. Soldano and Erik C. M. Pennings. Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications. J. Lightwave Technol., 1995, 13(4):615-627
    213 B. R. West, D. V. Plant. Optimization of Non-Ideal Multimode Interference Devices. Opt. Commun., 2007, 279(1):72-78
    214 A. R. Gupta. Optimization of Access Waveguide Width of Multimode Interference (MMI) Couplers. Opt. Commun., 2003, 221 (1-3):99-103
    215 M. B?ahut, P. Karasi_nski, D. Kasprzak, R. Rogozi_nski. Visualization Method of Modal Interference in Multimode Interference Structures. Opt. Commun., 2002, 214 (1-6):47-53
    216 Y. Sugimoto, H. Nakamura, Y. Tanaka, N. Ikeda, K. Asakawa. High-Precision Optical Interference in Mach-Zehnder-Type Photonic Crystal Waveguide. 2005 , Opt. Express, 13(1):96-105
    217 P.P. Sahu. Compact Multimode Interference Coupler with Tapered Waveguide Geometry. Opt. Commun., 2007, 277(2):295-301
    218 C. Chang, S. Cheng, W. Hsieh. High-Efficiency Coupling between External and Photonic Crystal Waveguides by Longitudinally Shifting Waveguide Junctions. Opt. Commun., 2004, 242(4-6):517-524
    219 Y. Yang, J. Lee, K. Reichard, P. Ruffin, F. Liang, D. Ditto, S. Yin. Fabrication and Implementation of a Multi-to-Single Mode Converter Based on a Tapered Multimode Fiber. Opt. Commun., 2005, 249 (1-3):129-137
    220 Y. Chau, T. Yang, B. Gu, W. Lee. Efficient Mode Coupling Technique between Photonic Crystal Heterostructure Waveguide and Silica Waveguides. Opt. Commun., 2005, 253(4-6):308-314
    221 A.Fardad. High-Power Multi-Mode Laser to Single-Mode Pump Conversion. Opt. Commun., 2006, 259(2):631-635
    222 Kwang N. Park a, Turan Erdogan b, Kyung S. Lee. Cladding Mode Coupling in Long-Period Gratings Formed in Photonic Crystal Fibers. Opt. Commun., 2006, 266(2):541-545
    223 V. R. Daria, P. J. Rodrigo, J. Gluckstad. Programmable Complex Field Coupling to High-Order Guided Modes of Micro-Structured Fibres. Opt. Commun., 2004. 232(1-6):229-237
    224 M. Lazzaroni, F. E. Zocchi. Optical Coupling from Plane Wave to Step-Index Single-Mode Fiber. Opt. Commun., 2004, 237(1-3):37-43
    225 J. Lesgaard, A. Bjarklev. Reduction of Coupling Loss to Photonic Crystal Fibers by Controlled Hole Collapse: a Numerical Study. Opt. Commun., 2004, 237(4-6):431-435
    226 O.V. Ivanov. Coupling of Hybrid Modes in Strained and Heated Fibers. Opt. Commun., 2004, 239(4-6):311-321
    227 A.G. Fox and Tingye Li. Resonant Modes in a Maser Interferometer. Bell.Syst.Tech.J., 1961, 40(2):453-458
    228 G.D. Boyd and J. P. Gordon. Confocal Multimode Resonator for Millimeter Through Optical Wavelengty Masers. Bell.Syst.Tech.J., 1961, 40(2):489-508
    229 G.D. Boyd and H. Kogelnik. Generalized Confocal Resonator Theory. Bell.Syst.Tech.J., 1962, 41(4):1347-1370
    230 H.Kogelnik. Coupling and Conversion Coefficients for Optical Modes. Symposium on Quasi-Optics. 1964, J. Fox(Ed), America, Brooklyn, New York, 1964, 333-347.
    231 M.R.Sayeh, H.R.Bilger, and T.Habib. Optical Resonator with an External Source: Excitation of the Hermite-Gaussian Modes. Applied Opt., 1985, 24(22):3756-3761
    232 H.Abu-Safia, R.AI-Tahtamouni, I.Abu-Aljarayesh, and N.A. Yusuf. Transmission of a Gaussian Beam Through a Fabry-Perot Interferometer. Applied Opt., 1994, 33(18):3805-3811
    233 Enrico Nichelatti. Spatial and Spectral Response of a Fabry-Perot Interferometer Illuminated by Gaussian Beam. Applied Opt., 1995, 34(22):4703-4712
    234 X. Wang, Q. Xu, E. Liu. Angular Spectrum Theory to Calculate Coupling Effciency in Rectangular Waveguide Resonators. Opt. & Laser Technol., 2000, 32(3):177-181
    235 J. Sato , M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka. Simple Annular-Beam Generator with a Laser-Diode-Pumped Axially Off-Set Power Build-Up Cavity. Opt. Commun., 2007,277(2):342-348
    236 H. Dong, S. Shi, J. Li. Novel Unitary Optical Mode Converter. Opt. & Laser Technol., 2007, 39(2):282-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700