光子晶体光纤中的非线性光学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤可具有超宽带单模传输性、增强的模式限制特性、色散可调控等优点,在光通讯、光谱学、传感器等领域被广泛应用。光子晶体光纤中的非线性光学效应在近十年内成为研究热点,且促进了其他研究领域的发展。例如,光子晶体光纤中超连续光谱产生在光相干层析技术、高精密光学测量等领域有很重要应用价值。其他非线性频率转换过程如四波混频过程在纠缠光子对制备、光参量放大和振荡器方面有应用潜力;光子晶体光纤中的三次谐波过程可用以产生紫外光源。另外,光子晶体光纤中的部分非线性光学过程产生的物理机制并不十分清晰,有关这些问题的探究将丰富非线性光学的内容,具有很大的科学价值。
     本文采用掺钛蓝宝石飞秒激光系统,开展了飞秒激光脉冲在光子晶体光纤中的传输特性的实验研究。主要关注光子晶体光纤中的非线性光学效应,包括超连续光谱产生、四波混频过程、色散波产生,并探索其潜在的应用价值。全文的主要研究内容、结论与创新性如下:
     (1)利用有限元方法设计了具有高折射率复合纤芯的Bragg光纤,其零色散点在1.55μm附近,最大非线性系数可达40 W~(-1)Km~(-1)。
     (2)在双折射光子晶体光纤中实现了基于高阶孤子分裂的超连续光谱产生。经计算用脉冲俘获条件较合理地解释了高阶孤子分裂过程中产生的色散波和红移光孤子的波长关系,该工作对于研究孤子分裂及色散波产生的物理机制有一定价值。
     (3)在大占空比的光子晶体光纤的多个具有不同色散特性的次芯中实现了多重频率转换过程,所用次芯的尺寸比早期文献中的报道大并首次关注次芯的双折射特性。揭示了空气孔随机分布的多孔微结构光纤在频率调谐器、传感器的应用潜力。
     (4)利用亚纳焦量级的飞秒激光脉冲在光子晶体光纤中获得接近倍频的蓝光,经分析蓝光是参量四波混频过程产生的信号光,蓝光的转换效率高达15%。伴随信号光产生的闲置光可以处于太赫兹波段,实验也预示了通过四波混频过程在光纤内产生太赫兹波的可能性。
     (5)在实验上详细研究了光子晶体光纤次芯中的三种偏振调控的蓝移非孤子辐射产生。蓝移辐射的波长可在一定范围内调节,且具有优于早期报道的特性,如窄线宽性(小于10 nm)或具有空心光束模式等,在可调谐光源研制、光镊技术等领域有应用潜力。
Phontonic crystal fibers (PCFs) can have excelent properties shuc as single-mode propagation over broad wavelength ranges, enhanced modal confinement and the ability to engineer theirgroup velocity dispersion. Therefore, they were used generally in optical communication, sepectrscopy and sensors. Supercontinuum generation in PCFs has subsequently been widely applied in interdisciplinary fields such as optical coherence tomography and optical frequency metrology. Other nonlinear frequency conversion processes such as four-wave-mixing have applications in generation of correlated photon pairs, optical parametric amplifiers and oscillators. Another interesting class of nonlinearity reported in experiments involves multimode phase-matched harmonic generation. This has been applied to the case of UV generation. In addition, understanding the physics under some nonlinear optical process in PCFs will undoubtedly present many opportunities to discover even more surprises.
     Experimental investigations of femtosecond laser pulses propagation in PCFs were performed. Nonlinear optical effectes such as surpercontinuum spectrum generation, parametric four-wave mixing process, and blueshifted nonsolitonic radiation of femtosecond laser pulses in multiple PCFs were studied. The potential applications were discussed. The main contents, research conclusions and contributions to innovation are summarized as following:
     (1) A all-solid Bragg fiber with compound cores having high- refractive index was designed theoretically. The zero dispersion wavelengthλ_0 near 1.55μm can be obtained in the Bragg fiber, and the nonlinear coefficientγis about 40 W~(-1)km~(-1).
     (2) Super-continuum generation based high-order solitons fission was performend in a in a bi-refringent photonic crystal fiber in experiments. Pulse trapping condition explains well the relations between the solitons and dispersive waves in the experimental results.
     (3) Multiplex frequency conversion of sub-nanojoule Ti: sapphire femtosecondlaser pulses were performed in the trefoil and quatrefoil secondary cores in a holey fiber with high air fration. This suggests the holey fiber with random structure and large air-filling fraction can serve as an efficient multiplex frequency converter and sensor.
     (4) Efficient blue light with central wavelength near 0.4μm was obtained by Ti: Saphire femtosecond laser pules in a high-delta microstructure fiber. The blue light can take 15% of output power. The mechanisms for its generation is analyzed to be a degenerate parametric process, where frequency of the signal light is near twice the pump frequency and frequency of the idler light can lies in terahertz region. Our experiments may give the first demonstration of terahertz-wave generation in optical fibervia a FWM proces.
     (5) Three scenes of polarization-dependent blue-shifted emissions of femtosecond Ti:sapphire laser pulses were carried out in secondary cores of photonic crystal fibers. The blue-shifted emissions can be narrower than 10 nm or can lie in a hollow beam, and have potential use in design of tunable optical sources and optical tweezers.
引文
[1]沈元壤著,顾世杰译,非线性光学原理,科学技术出版社 1987
    [2]石顺祥,陈果夫,赵卫,非线性光学,西安电子科技大学出版社2003
    [3]P.A.Franken,A.E.Hill,C.W.Peters et al.Generation of Optical Harmonics.Physical Review Letters,1961,7(4):118-119
    [4]R.H.Stolen,E.P.Ippen,and A,H.Tynes.Raman Oscillation in Glass Optical Waveguide.Applied Physics Letters,1972,20(2):62
    [5]J.E.P.Lppen and R.H.Stolen.Stimulated Brillouin scattering in optical fibers.Applied Physics Letters,1972,21(11):539
    [6]R.G.Smith.Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering.Applied Optics,1972,11(11):2489-2494
    [7]R.H.Stolen and A.Ashkin,Optical Kerr effect in glass waveguide.Applied Physics Letters,1973,22(6):294-296
    [8]R.H.Stolen,J.E.Bjorkholm,and A.Ashkin.Phase-matched three-wave mixing in silica fiber optical waveguides.Applied Physics Letters,1974,24(7):308-310
    [9]R.H,Stolen and C.Lin.Self-phase-modulation in silica optical fibers.Physical Review A,1978 17(4):1448-1453
    [10]A.Hasegawa and E Tappert.Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.I.Anomalous dispersion.Applied Physics Letters,1973,23(2):142
    [11]L.E.Mollenauer,R.H.Stolen,and J.P.Gordon.Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,Physical Review Letters,1980,45(13):1095-1098
    [12]R.L.Fork,C.H.Brito Cruz,P.C.Beckey et al.Compression of optical pulses to six femtoseconds by using cubic phase compensation.Optics Letters,1987,12(7):483-485
    [13]C.J.Koester and E.Snitzer.Amplification in a Fiber Laser.Applied Optics,1964, 3(10):1182-1186
    [14]M.J.E Digonnet,Ed.,Rare-Earth Doped Fiber Lasers and Amplifiers(Dekker,New York,1993)
    [15]H.A.Haus and W.S.Wong.Solitons in optical communications.Reviews of Modern Physics,1996,68(2):423-444
    [16]N.J.Smith,E M.Knox,N.J.Domn et al.Enhanced power solitons in optical fibres with periodic dispersion management.Electronic Letters,1996,32(1):54-55
    [17]王清月,栗岩锋,胡明列等.光子晶体光纤非线性特性的研究.物理,34(1),43-49
    [18]廖延彪,光纤光学.清华大学出版社,2003,第一版
    [19]S.John.Strong localization of photons in certain disordered dielectric superlattices.Physical Review Letters,1987,58(23):2486-2489
    [20]E.Yablonovitch.Inhibited spontaneous emission in solid-state physics and electronics.Physical Review Letters,1987,58(20):2059-2061
    [21]E.Yablonovitch,Photonic band-gap structures.Journal of the Optical Society of America B,1993,10(2):283-295
    [22]P.R.Villeneuve,M.Piche.Photonic band gaps in two-dimensional square and hexagonal lattices.Physical Review B,1992,46(8):4969-4972
    [23]T.A.Birks,P.J.Roberts,P.St.J.Russell et al.Full 2-D photonic bandgaps in silica air structures.Electronic Letters,1995,31(22):1941-1943
    [24]P.St.J.Russell.Photonic crystal fibers.Science,2003,299:358-362
    [25]A.Bjarklev,J.Broeng,A.S.Bjarklev.Photonic crystal fibers.First Edition.London,Kluwer Academic Publishers,2003:183-284
    [26]J.C.Knight,T.A.Birks,P.St.J.Russell et al.All-silica single-mode optical fiber with photonic crystal cladding.Optics Letters,1996,21(19):1547-1549
    [27]T.A.Birks,J.C.Knight,P.St.J.Russell.Endlessly single-mode photonic crystal fiber.Optics Letters,1997,22(13):961-963
    [28]N.A.Mortensen,J.R.Folkenberg,M.D.Nielsen et al.Modal cutoff and the V parameter in photonic crystal fibers.Optics Letters,2003,28(20):1879-1881
    [29]J.C.Knight,J.Arriaga,T.A.Birks et al.Anomalous dispersion in photonic crystal fiber.IEEE Photonic Technology Letters,2000,12(7):807-809
    [30]M.D.Nielson,J.R.Folkenberg,N.A.Mortensen.Single-mode photonic crystal fiber with effective area of 600 μm~2 and low bending loss.Electronic Letters,2003,39(25):1802-1803
    [31]W.S.Wong,X.Peng,J.M.McLaughlin et al.Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers.Optics Letters,2005,30(21):2855-2857
    [32]M.Nielsen,C.Jacobsen,N.Mortensen et al.Low-loss photonic crystal fibers for transmission systems and their dispersion properties.Optics Express,2004,12(7):1372-1376
    [33]Y.Tsuchida,K.Saitoh,M.Koshiba.Design of single-moded holey fibers with large-mode-area and low bending losses:The significance of the ring-core region.Optics Express,2007,15(4):1794-1803
    [34]J.Limpert,A.Liem,M.Reich et al.Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier.Optics Express,2004,12(7):1313-1319
    [35]J.Limpert,N.Deguil-Robin,I.Manek-H(o|¨)nninger et al.High-power rod-type photonic crystal fiber laser.Optics Express,2005,13(4):1055-1058
    [36]J.Limpert,O.Schmidt,J.Rothhardt et al.Extended single-mode photonic crystal fiber lasers.Optics Express,2006,14(7):2715-2720
    [37]L.Li,A.Schülzgen,V.L.Temyanko et al.Short-length microstructured phosphate glass fiber lasers with large mode areas.Optics Letters,2005,30(10):1141-1143
    [38]CHEN Wei,LI Jin-Yan,LU Pei-Xiang et al.All-Fibre Ytterbium-Doped Photonic Crystal Fibre Laser with High Efficiency.Chinese Physics Letters,2008,25(3):960-962
    [39]T.P.Hansen,J.Broeng et al.Highly birefringent index-guiding photonic crystal fibers.IEEE Photonic Technology Letters,2001,13(3):588-590
    [40]A.Ortigosa-Blanch,J.C.Knight et al.Highly birefringent photonic crystal fibers.Optics Letters,2000,25(18):1325-1327
    [41]A.Ortigosa-Blanch,A.Diez,M.Delgado-Pinar et al.Ultrahigh birefringent nonlinear microstructured fiber. IEEE Photonic Technology Letters, 2004, 16(7): 1667-1669
    [42] H. Kubota, S. Kawanishi, S. Koyanagi et al. Absolutely single polarization photonic crystal fiber. IEEE Photonic Technology Letters, 2004,16(1): 182-184
    [43] T. Schreiber, F. Roser, O. Schmidt et al, Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. Optics Express, 2005, 13(19):7621-7630
    [44] A. Ferrando, E. Silvestre, J. J. Miret et al. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters, 2000,25(11):790-792
    [45] W. H. Reeves, J. C. Knight, P. St. J. Russell et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 2002,10(4):609-613
    [46] G. Renversez, B. Kuhlmey, R. McPhedran. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Optics Letters, 2003, 28(12):989-991
    [47] J. Y. Wang, C. Jiang, W. S. Hu et al. Modified design of photonic crystal fibers with flattened dispersion. Optics & Laser Technology, 2006, 38(3): 169-172
    [48] K. Saitoh, M Koshiba, T. Hasegawa et al. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express, 2003, 11(8):843-852
    [49] T. L. Wu, C. H. Chao. Anovel ultraflattened dispersion photonic crystal fiber. IEEE Photonic Technology Letters, 2005,17(1):67-69
    [50] F. Gerome, J. L. Auguste, J. M. Blondy. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber. Optics Letters, 2004, 29(23):2725-2727
    [51] Y. Ni, L. Zhang, L. An et al. Dual-core photonic crystal fiber for dispersion compensation. IEEE Photonic Technology Letters, 2004, 16(6):1516-1518
    [52] T. Fujisawa, K. Saitoh, K. Wada et al. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation. Optics Express, 2006,14(2):893-900
    [53] S. G. Yang, Y.J. Zhang, X. Z. Peng et al. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Optics Express, 2006,14 (7):3015-3023
    [54] S. K. Varshney, T. Fujisawa, K. Saitoh et al. Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band. Optics Express, 2006 14(8):3528-3540
    [55] A. Huttunen, P. Torma. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area. Optics Express, 2005,13(2):627-635 .
    [56] N. G. R. Brodcrick, T. M. Monro et al. Nonlincarity in holcy optical fibers: measurement andfuture opportunities. Optics Letters, 1999, 24(20): 1395-1397
    [57] G. P. Agrawal. Nonlinear Fiber Optics (Academic, San Diego), 2001
    [58] N. A. Mortensen. Effective area of photonic crystal fibers. Optics Express, 2002, 10(7):341-348
    [59] V. Finazzi, T. M. Monro, D. J. Richardson. The role of confinement loss in highly nonlinear silica holey fibers. IEEE Photonics Technology Letters, 2003, 15(9):1246~1248
    [60] H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis et al. Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004,12(21):5082-5087
    [61] X. Feng, T.M.Monro, V.Finazzi et al. Extruded singlemode, high-nonlinearity, tellurite glass holey fibre. Electronic Letters, 2005,41(15):835-836
    [62] K. Saitoh, M. K. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12(10):2027-2032
    [63] A. B. Fedotov, E. E. Serebryannikov, A. A. Ivanov et al.. Highly nonlinear photonic-crystal fibers for the spectral transformation of Cr: forsterite laser pulses. Optics Communication, 2006,267(2):505-510
    [64] B.J. Mangan, J.C. Knight, T.A. Birks et al. Experimental study of dual-core photonic crystal fibre. Electronic Letters, 2000, 36 (16):1538-1539
    [65] J. R. Salgueiro and Y. S. Kivshar. Nonlinear dual-core photonic crystal fiber couplers. Optics Letters, 2005, 30(14): 1858-1860
    [66] W. N. MacPherson, M. J. Gander et al. Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Optics Communication, 2001, 193(1):97-104
    [67] J. C. Knight, J. Broeng, T. A. Birks et al. Photonic Band Gap Guidance in Optical Fibers. Science, 1998, 282(5393): 1476-1478
    [68] R. F. Cregan, B. J. Mangan, J. C. Knight et al. Single-Mode Photonic Band Gap Guidance of Light in Air. Science, 1999,285(5433):1537-1539
    [69] M. Y. Chen, R.J. Yu. Analysis of photonic bandgaps in modified honeycomb structures. IEEE Photonic Technology Letters, 2004,16(3):819-821
    [70] T. Murao, K. Saitoh, M. Koshiba. Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation. Optics Express, 2006,14(6):2404-2412
    [71] M. Yan, P. Shum. Air guiding with honeycomb photonic bandgap fiber. IEEE Photonic Technology Letters, 2005,17(1):64-66
    [72] Y. F. Li, C. Y. Wang, M. L. Hu et al. Honeycomb photonic bandgap fibers with and without interstitial air holes. Optics Express, 2005,13(18):6856-6863
    [73] C. M. Smith, N. Venkataraman, M. T. Gallagher et al. Low-loss hollow-core silica/air photonic bandgap fibre. Nature, 2003,424(6949):657-659
    [74] T.P. Hansen, J. Broeng, C. Jakobsen et al. Air-guidance over 345 m large-core photonic bandgap fiber[C]. OFC, 2003,3:PD4-l-3
    [75] T. P. Hansen, J. Broeng, C. Jakobsen et al. Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and Practical Handling. Journal of Lightwave Technology, 2004,22(1): 11-15
    [76] K. Saitoh, N. A. Mortensen, M. Koshiba. Air-core photonic band-gap fibers: the impact of surface modes. Optics Express, 2004,12(3):394-400
    [77] H. K. Kim, J. H. Shin, S. H. Fan et al. Designing air-core photonic-bandgap fibers free of surface modes. IEEE Journal of Quantum Electronics, 2004,40(5):551-556
    [78] R. Amezcua-Correa, N. G. R.Broderick, M. N. Petrovich et al. Optimizing the usable bandwidth and loss through core designing realistic hollow-core photonic bandgap fibers. Optics Express, 2006,14(17):7974-7985
    [79]M.J.F.Digonnet,H.K.Kim,J.H.Shin et al.Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers.Optics Express,2004,12(9):1864-1872
    [80]B.J.Mangan,L.Farr,A.Langford et al.Low loss(1.7 dB/km) hollow core photonic bandgap fiber[C].OFC 2004,2:PDP24
    [81]P.J.Roberts,F.Couny,H.Sabert et al.Ultimate low loss of hollow-core photonic crystal Fibres.Optics Express,2004,13(1):236-244
    [82]F.Couny,F.Benabid,P.S.Light.Large-pitch kagome-structured hollow-core photonic crystal fiber.Optics Letters,2006,32(24):3574-3576
    [83]F.Luan,A.K.George,T.D.Hedley et al.All-solid photonic bandgap fiber.Optics Letters,2004,29(20):2369-2371
    [84]A.Argyros,T.A.Birks,S.G.Leon-Saval et al.Guidance properties of low-contrast photonic bandgap fibres.Optics Express,2005,13(7):2503-2511
    [85]T.Larsen,A,Bjarklev,D.Hermarm et al.Optical devices based on liquid crystal photonic bandgap fibres.Optics Express,2003,11(20):2589-2596
    [86]Guobin Ren,Ping Shum,Liren Zhang et al.Low-loss all-solid photonic bandgap fiber.Optics Letters,2007,32(9):1023-1025
    [87]S.G.Johnson,M.Ibanescu,M.Skorobogatiy et al.Low-loss asymptotically single-mode propagation in large-core Omni Guide fibers.Optics Express.,2001,9(13):748-779
    [88]G.Ouyang,Y.Xu,and A.Yariv.Theoretical study on dispersion compensation in air-core Bragg fibers.Optics Express,2002,10(17):899-908
    [89]王伟,侯蓝田.光子晶体光纤的现状和发展.激光与光电子学进展,2008,02:43-59
    [90]J.K.Ranka,R.S.Windeler,A.J.Stentz.Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm.Optics Letters 2000,25(1):25-27
    [91]I.G.Cormack,D.T.Reid,W.J.Wadsworth et al.Observation of solition self-frequency shift in photonic crystal fibre.Electronic Letters,2002,38(4):167-169
    [92] X. Liu, C. Xu, W. H. Knox et al. Soliton self-frequency shift in a short tapered air-silica microstructure fiber. Optics Letters, 2001,26(6):358-360
    [93] J. E. Sharping, M. Fiorentino, A. Coker et al. Four-wave mixing in microstructure fiber. Optics Letters, 2001,26(14): 1048-1050
    [94] M. Fiorentino, J. E. Sharping, P. Kumar et al. Soliton squeezing in microstructure fiber. Optics Letters, 2002,27(8):649-651
    [95] J. E. Sharping, M. Fiorentino, P. Kumar et al. Optical parametric oscillator based on four-wave mixing in microstructure fiber. Optics Letters, 2002, 27(19):1675-1677
    [96] S. Asimakis, P. Petropoulos, F. Poletti et al. Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers Optics Express, 2007,15(2):596-601
    [97] S. O. Konorov, A. B. Fedotov, A. M. Zheltikov. Enhanced four-wave mixing in a hollow-core photonic-crystal fiber. Optics Letters, 2003,28(16): 1448-1450
    [98] B. Fedotov, S. O. Konorov, V. P. Mitrokhin et al. Coherent anti-stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber. Physical Review A, 2004, 70(4):045802
    [99] F. Benabid, J. C. Knight, G Antonopoulos et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592):399-402
    [100] D. G. Ouzounov, F. R. Ahmad, D. Muller et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science, 2003, 301(564):1702-1704
    [101] Y. Wang, Y. Zhao, J. S. Nelson et al. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 2003,28(3): 182-184
    [102] G. Humbert, W. J. Wadsworth, S. G Leon-Saval et al. Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 2006,14(4): 1596-1603
    [103] I. Hartl, X. D. Li, C. Chudoba et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 2001,26(9):608-610
    [104] P. Petropoulos, T. M Monro et al. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber. Optics Letters, 2001, 26(16):1233-1235
    [105] J. Hansryd, P. A. Andrekson et al. Fiber-based optical parametric amplifiers and their applications. IEEE Journal of Selected Topics in Quantmn Electronics, 2002, 8:506-520
    [106] R. Tang, J. Lasri et al. Microstructure-fibre-based optical parametric amplifier with gain slope of similar to 200 dB/W/km in the telecom range. Electronics Letters, 2003, 39(2):195-196
    [107] K. Saitoh, Y. Sato et al. Polarization sputter in three-core photonic crystal fibers. Optics Express, 2004,12(17): 3940-3946
    [108] J. H. Lee, W. Belardi et al. Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. IEEE Photonics Technology Letters, 2003,15(3):440-442
    [109] Y. L. Hoo, W. Jin et al. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003,42(18):3509-3515
    [110] Y. L. Hoo, W. Jin et al. Evanescent-wave gas sensing using microstructure fiber. Optical Engineering, 2002,41(1):8-9
    [111] L. F. Zou, X. Y. Bao et al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Optics Letters, 2004, 29(13): 1485-1487
    [112] J. Limpert. T. Schreiber et al. High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express, 2003, 11(7):818-823
    [113] W. J. Wadsworth, J. C. Knight et al. Yb3~+ doped photonic crystal fibre laser. Electronics Letters, 2000, 36(17):1452-1454
    [114] P. Glas and D. Fischer. Cladding pumped large-mode-area Nd-doped holey fiber laser. Optics Express, 2002,10(6):286-290
    [115] D. J. Jones, S. A. Diddams, J. K. Ranka et al. Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis. Science, 2000,288:635-639
    [116] R. Holzwarth, T. Udem, T. W. Hansch et al. Optical frequency synthesizer for precision spectroscopy. Physical Review Letters 2000, 85(11): 2264-2267
    [117] T. Udem , R. Holzwarth , T. W. Hansch. Optical frequency metrology. Nature, 2002,416:233-237
    [118] C. Stophane et al. White-light supercontinuum generation with 60- ps pump pulses in a photonic crystal fiber. Optics Letters, 2001,26 (17):1356-1358
    [119] L. Provino, J. M. Dudley, H. Maillotte et al. Compact broadband continuum source based on microchip laser pumped microstructured fibre. Electronic Letters, 2001, 37(9):558-560
    [120] J. M. Dudley, Genty G et al. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, 78:1135-1184
    [121] W. J. Wadsworth, B. A. Ortigosa, J. C. Knight et al. Soliton effects in photonic crystal fibres at 850 nm. Electronic Letters, 2000 , 36 (1):53-55
    [122] N. Nishizawa et al. 0.78-0.90 urn wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber. Photonics Technology Letters, 2002, 14 (7):986-988
    [123] B.R. Washburn et al. Tunable near-infrared femtosecond soliton generation in photonic crystal fibres. Electrronics Letters, 2001, 37(25): 1510-1512
    [124] D. T. Reid, I. G. Cormack, W. J. Wadsworth et al. Soliton self-frequency shift effects in photonic crystal fibre. Journal of Modern Optics, 2002 , 49 (5 ,6):757-767
    [125] X. Liu et al. Soliton self- frequency shift in a short tapered air-silica microstmcture fiber. Optics Letters, 2001,26(6):358-360
    [126] S. E. Sharping, M. Fiorentino, A. Coker et al. Four-wave mixing in microstructure fiber. Optics Letters, 2001 , 26(14):1048-1050
    [127] M. L. Hu, C. Y. Wang et al. Frequency-tunable anti-Stokes Line emission by eigemnodes of a birefringent microstructure fiber. Optics Express, 2004, 12(9): 1932-1937
    [128] F. G. Omenetto, A. J. Taylor et al. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber.Optics Letters,2001,26(15):1158-1160
    [129]A.Efimov,A.J.Taylor et al.Phase-matched third harrnonc generation in microstructured fibers.Optics Express,2003,11(20):2567-2576
    [130]Y.Fujii,B.S.Kawasaki,K.O.Hill et al.Sum-frequency light generation in optical fibers.Optics Letters,1980,5(2):48-50
    [131]U.(O|¨)sterberg and W.Margulis.Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber.Optics Letters,1986,11(8):516-518
    [132]R.L.MacDonald and N.M.Lawandy.Efficient second-harmonic generation into the UV by using optically encoded silicate glasses.Optics Letters,1993,18(8):595-597
    [133]J.K.Ranka,R.S.Windeler,and A.J.Stentz.Optical properties of high-delta air-silica microstructure optical fibers.Optics Letters,2000,25(11):796-798
    [134]M.Koshiba,Y.Tsuji.Curvilinear Hybrid Edge/Nodal Elements Triangular Shape for Guided-Wave Problems.IEEE Journal of Lightwave Technology,2000,18(5):737-743
    [135]K.Saitoh,M.Koshiba.Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme:Application to Photonic Crystal Fibers.IEEE Journal of Quntum Electronics,2002,38:927-933
    [136]N.Guan,S.Habu,K.Takenaga et al.Boundary Element Method for Analysis of Holey Optical Fibers.Journal of Lightwave Technology,2003,21(8):1787-1789
    [137]A.Cucinotta,S.Selleri,L.Vincetti et al.Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method.Journal of Lightwave Technology,2002,20(8):1433-1442
    [138]F.Brechet,J.Marcou,D.Pagnoux et al.Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers by the Finite Element Method.Optical Fiber Technology,2000,6(2):181-191
    [139]张方迪,刘小毅,张民等.全矢量有限元模型及其在光波导和光子晶体光纤中的应用.光子学报,2007,36(2):209-215
    [140]J.A.Monsoriu,E.Silvestre,A.Ferrando et al.High-index-core Bragg fibers: dispersion properties.Optics Express,2003,11(12):1400-1405
    [141]Y.Ni,L.Zhang,C.Gu et al.A novel design for all-solid silica Bragg fiber with zero-dispersion wavelength at 1550 nm.Optics Express,2004,12(19):4602-4607
    [142]A.Argyros.Guided modes and loss in Bragg fibres.Optics Express,2002,10(24)1411-1417
    [143]任国斌,王智,娄淑琴等.高折射率芯Bragg光纤的色散特性研究.物理学报2004,53(6):1862-1867
    [144]P.Dupriez,F.Poletti,P.Horak et al.Efficient white light generation in secondary cores of holey fibers.Optics Express,2007,15(7):3729-3736.
    [145]N.I.Nikolov,T.Sorensen.Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing.Journal of the Optical Society of America B,2003,11(20):2329-2337
    [146]X.Fang,N.Karasawa,R.Morita et al.Nonlinear Propagation of a-Few-Optical-Cycle Pulses in a Photonic Crystal Fiber-Experimental and Theoretical Studies Beyond the Slowly Varying-Envelope Approximation.IEEE Photonic Technology Letters,2003,15(2):233-235
    [147]T.Schreiber,J.Limpert,H.Zellmer.High average power supercontinuum generation in photonic crystal fibers.Optics Communication,2003,228(1):71-78
    [148]D.V.Skryabin and A.V.Yulin.Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers.Physical Review E,2005,72(1):016619
    [149]A.V.Yulin,D.V.Skryabin,P.St.J.Russell.Four-wave mixing of linear waves and solitons in fibres with higher order dispersion.Optics Letters,2004,29(20):2411-2413
    [150]N.Akhmediev,M.Karlsson.Cherenkov radiation emitted by solitons in optical fibers.Physical Review A,1995,51(3):2602-2607
    [151]I.Cristiani,R.Tediosi,L.Tartara et al.Dispersive wave generation by solitons in microstructured optical fibers.Optics Express,2004,12(1):124-135
    [152]J.Herrmann,U.Griebner,N.Zhavoronkov et al.Experimental evidence for supercontinuum generation by Fission of higher-order solitons in photonic fibers. Physical Review Letters,2002,88(17):173901
    [153]A.Apolonski,B.Povazay,A.Unterhuber et al.Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses.Journal of the Optical Society of America B,2002,19(9):2165-2170
    [154]胡明列,王清月,栗岩峰等.飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究.物理学报,2004,53(12):4243-4247
    [155]A.Efimov,A.V.Yulin,D.V.Skryabin et al.Interaction of an Optical Soliton with a DispersiveWave.Physical Review Letters,2005,95(21):213902
    [156]H.G Choi,C.S.Kee,J.H.Sung,et al.Supercontinuum generation in irregularly microstructured elliptic core fibers.Physical Review A 2008 77:035804
    [157]A.V.Husakou,J.Herrmann.Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers.Physical Review Letters,200187(20):203901
    [158]J.N.Elgin.Soliton propagation in an optical fiber with third-order dispersion.Optics Letters,1992,17(20):1409-1411
    [159]I.Tartara,I.Cristiani,V.Degiorgio.Blue light and infrared continuum generation by soliton fission in a microstructured fiber.Applied Physics B,2003,77(3):307-313
    [160]N.Nishizawa,T.Goto.Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength.Optics Express,2002,10(21):1151-1160
    [161]A.V.Gorbach,D.V.Skryabin.Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres.Nature Photonics,2007,1:653-657
    [162]J.M.Stone,J.C.Knight.Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser.Optics Express,2008,16(4):2670-2675
    [163]J.H.V.Price,T.M.Monro,K.Furusawa,et al.UV generation in a pure-silica holey fiber.Applied Physics B,2003,77(3):291-298
    [164]A.B.Fedotov,S.O.Konorov,E.E.Serebryannikov et al.Assorted non-linear optics in microchannel waveguides of photonic-crystal fibers. Optics Communication 2005,255(4-6):218-224
    [165] L. Ji, P. Lu, N. Dai et al. Multiplex frequency conversion of femtosecond laser pulses in trefoil and quatrefoil channels of a holey fiber. Applied Physics B, 2008, 91(3):295-298
    [166] P. A. Wai, C. R. Menyuk, Y. C. Lee et al. Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Optics Letters, 1986, 11(7):464-466
    [167] P. A.Wai, H. H. Chen, Y. C. Lee. Radiations by "solitons" at the zero group-dispersion wavelength of single-mode optical fibers. Physical Review A,1990,41(1): 426-439
    [168] N. Akhmediev, and M. Karlsson. Cherenkov radiation emitted by solitons in optical fibers. Physical Review A, 1995, 51(3): 2602-2607
    [169] D. A. Akimov, M. Schmitt, R. Maksimenka et al. Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes. Applied Physics B 2003, 77(3):299-301
    [170] P. Radi and A. Zheltikov, et al. Nonlinear Raman spectroscopy and related techniques. Journal of Raman Spectroscopy, 2002, 33: 841-976
    [171] S. O. Konorov, D. A. Akimov, E. E. Serebryannikov et al. Crosscorrelation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers. Physical Review E, 2004, 70(5):057601
    [172] C. L. Evans, E. O. Potma, M. Puoris'haag et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:16807-16812
    [173] A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov. wavelength-tunable ultrashort-pulse output of a photonic-crystal fiber designed to resolve ultrafast molecular dynamics. Optics Letters, 2006, 33(22):3330-3332
    [174] S. O. Konorov and A. M. Zheltikov. Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation. Optics Express, 2003,11(19): 2440-2445
    [175] D. Akimov, T. Siebert, W. Kiefer, A. Zheltikov. Optical parametric amplification of a blueshifted output of a photonic-crystal fiber. Journal of the Optical Society of America B, 2006,23(9): 1988-1993
    [176] L. L. Ji, P. X. Lu, W. Chen, et al. Efficient generation of blue light in high-delta microstructure fibers. Journal of the Optical Society of America B, 2008, 25(4):513-517
    [177] A.B. Fedotov, I. Bugar, D.A. Sidorov-biryukov et al. Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers. Applied Physics B, 2003,77:313-317
    [178] D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov et al. Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber. Optics Letters, 2003,28 (20): 1948-1950
    [179] S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov et al. Generation of femtosecond anti-Stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fiber. Optics Letters, 2003,29(13):1545-1547
    [180] A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov et al. Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber. Physical Review E, 2007, 75:016614
    [181] A. A. Ivanov, D. A. Sidorov-Biryukov, A. B. Fedotov et al. Wavelength-tunable parametric third-harmonic generation in a photonic-crystal fiber. Journal of the Optical Society of America B, 2007, 24:571-575
    [182] A. Efimov, A. J. Taylor, F. G Omenetto et al. nonlinear generation of very high-order UV modes in microstructured fibers. Optics Express, 2003, 11:910-918
    [183] S. Coen, A. Chau, R. Leonhardt et al. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America B, 2002,19(4) :753-764
    [184] K. Suizu, K. Kawase. Terahertz-wave generation in a conventional optical fiber. Optics Letters, 2007, 32(20): 2990-2992
    [185]胡明列,王清月,栗岩峰等.飞秒激光在双折射光子晶体光纤中模式控制的四波混频效应的实验研究.物理学报,2005,54(9):4411-4415
    [186]Stolen R H and Leibolt WN.Optical fiber modes using stimulated four photon mixing.Applied Optics,1976,15(1):239-243
    [187]Hu M L,Wang QY,Chai L et al.Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent mierostrueture fiber.Optics Express,2004,12(9):1932-1937
    [188]Tonello A,Pitois S,Wabnitz S et al.Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber.Optics Express,2006,14(1):397-404
    [189]Kruhlak R J,Wong G K L,Chen J S Y et al.Polarization modulation instability in photonic crystal fibers.Optics Letters,2006 31(10):1379-1381
    [190]季玲玲 陆培祥 陈伟等.光子晶体光纤次芯中的四波混频过程.物理学报,2008,57(9):5973-5977
    [191]A.Fuerbach,P.Steinvurzel,J.A.Bolger et al.Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers.Optics Express,2005,13(8):2977-2987
    [192]R.H.Stolen,M.A.Bosch,C.Lin.Phase matching in birefringent fibers.Optics Letters,1981,6(5):213-215
    [193]P.N.Morgon and J.M.Liu,Parametric four-photon mixing followed by stimulated Raman scattering with optical pulses in bireffingent optical fibers.IEEE Journal of Quantum Electronics,1991,27(4):1011-1021
    [194]A.Ashkin.Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.Biophysics,1992,61(4):569-582
    [195]D.Mehta,M.Rief,J.A.Spudich,et al.Single-molecule biomechanics with optical methods.Science,1999,283:1689-1695
    [196]N.Simpson,K.Dholakia,L.Allen et al.Mechanical equivalence of spin and orbital angular momentum of light:an optical spanner.Optics Letters,1997,22(1):52-54
    [197]L.Paterson,M.MacDonald,J.Arlt et al.Controlled rotation of optically trapped microscopic particles.Science,2001,292:912-914
    [198]M.Hammes,D.Rychtarik,V.Druzhinina et al.Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap.Journal of Modern Optics,2000,47(14-15):2755-2767
    [199]J.Yin,Y.Zhu and Y.Wang.Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling.Physics Letters A,1998,248(5-6):309-318
    [200]Ming-Lie Hu,Ching-Yue Wang,You-Jian Song et al.A hollow beam from a holey fiber.Optics Express,2006,14(9):4128-4134
    [201]Ming-Lie Hu,Ching-Yue Wang,Yan-Feng Li et al.Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers.Optics Express,2005,13(16):5947-5952

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700