从线粒体细胞色素b基因推测雪鸡属的系统进化关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用雪鸡属(Tetraogallus)及其5个近缘种属的线粒体细胞色素b(mtDNA cyto-b)基因并通过邻接(NJ)法构建了它们的系统进化树,以马鸡属(Crossoptilon)为外群(Out group),研究了雪鸡属在近缘属中的进化位置和关系,以及它的进化历程。结果表明:日本鹌鹑(Coturnix Japonica)和蓝胸鹌鹑(Coturnix Chinensis)的BP(bootstrap percentage)值为92%,阿尔泰雪鸡(T.altaicus)和喜玛拉雅雪鸡(T.himalayensis)的BP值为100%,(阿尔泰雪鸡、喜玛拉雅雪鸡)和藏雪鸡(T.tibetanus)的BP值为100%;石鸡属(Alectoris)、鹌鹑属(Coturnix)、雪鸡属和勺鸡属(Pucrasia)组成一个单系群;石鸡属和鹌鹑属的共同祖先与雪鸡属的祖先是姐妹群。各属总的平均遗传距离为0.112,雪鸡属的平均遗传距离为0.042。雪鸡属各种间的遗传距离依次为:阿尔泰雪鸡到喜玛拉雅雪鸡为0.012,喜玛拉雅雪鸡到藏雪鸡为0.067,阿尔泰雪鸡到藏雪鸡为0.068。结合雪鸡属各品种间的遗传距离、分布特征和形态特征,推测藏雪鸡很可能是这三种雪鸡品种中最为原始的品种,并且在1.7百万年前,栖息在新疆西南部和西藏中西部的体色较深的藏雪鸡亚种tibetanus向西进入喜玛拉雅山区,逐步演变成喜玛拉雅雪鸡。后来,常出现在阿尔泰山区和东昆仑山的体色较浅的喜玛拉雅雪鸡亚种koslowi进化成了阿尔泰雪鸡。
     里海雪鸡(T.caspius)和高加索雪鸡(T.caucasicus)的采样受地域限制,所以本课题未涉及它们的系统进化地位。因此,要完全明白所有雪鸡品种的分类地位则需要更为进一步的调查和研究。但同时,我们能根据雪鸡属成员的分布范围和形态特征给出这样一个假说,藏雪鸡是雪鸡属所有成员中最为原始的品种,高加索雪鸡起源于阿尔泰雪鸡,里海雪鸡则起源于喜玛拉雅雪鸡。
A phylogenetic tree of Neighbor-joining (NJ) distance matrix calculated with Kimura 2-parameter was performed and Crossoptilon auritum was used as outgroup to study the phylogenetic position of the genus Tetraogallus, to understand the phylogenetic relationships, and to infer the evolutionary process of Tetraogallus. Numbers near the branches were bootstrap probability (BP) values coming from 1000 replications. Some bootstrap probability values were 92% (Coturnix chinensis/ Coturnix japonica), 100% (Tetraogallus altaicus/ Tetraogallus himalayensis), and 100% ((Tetraogallus altaicus/ Tetraogallus himalayensis)/ Tetraogallus tibetanus). The overall average distance was 0.112, and average genetic distance among Tetralgallus was 0.042. The genera Alectoris, Coturnix, Tetrao-gallus and Pucrasia formed a monophyletic group. The two genera, Alectoris and Coturnix, should have a common ancestor, which was the sister taxon of the ancestor of the genus Tetraogallus.The interspecific genetic distances of the genus Tetraogallus were 0.012 (T.altaicus vs T. himalayensis), 0.067 (T. himalayensis vs T.tibetanus) and 0.068 (T.altaicus vs T.tibetanus) respectively. It was possible that Tibetan snow cocks were the primitive species among the three breeds, and, 1.7 million years ago, that one subspecies holding a deep body color, tibetanus distributing in the southwest of xinjiang and the Midwest of Tibet, of Tibetan snow cocks migrated towards the West and entered the Himalayan Mountain to become the present Himalayan snow cocks. Later, another subspecies of Himalayan snow cocks, koslowi, owning a light body color, often emerge in the Altai Mountain and the east of Kunlun Mountain to evolve into Altai snow cocks according to the witness of geographical distribution pattern and morphological character combing the genetic distances among them.
     As to Caspian snowcocks and Caucasian snowcocks, we consider our sample of Tetraogallus taxa insufficient to resolve this issue, and solid conclusions on the status of the total Tetraogallus awaited inclusion of additional related taxa, and require further investigation. But, we can give a hypothesis that, according to the geographical distribution range and morphological character, Tibetan snowcocks may be the most primitive breed among the five snowcock species, and Caucasian snowcock derived from Altai snowcocks. As to Caspian snowcocks, they might derive from Himalayan snowcocks. Of course, this hypothesis needs further investigation and study.
引文
1. Albuquerque, L.G.,et al. (1998). Variances of direct genetic effects, maternal genetic effects, & cytoplasmic inheritance effects for milk yield, and fat percentage. J.Da.Sci.81(2): 544-549.
    2. Andersson, S.G.E. (1998). Detection of Point Mutations in rpoB Gene of Rifampin- Resistant Rickettsia typhi. Ibid. 396, 133.
    3. Ausubel, F.M., et al. (1995). Short protocols in molecular biology (3rd edition). John Wiley & Sons, Inc. 30-35.
    4. Beale, G.H., et al. (1984). Extranuclear [M]. Science Publishing House.9-55.
    5. Bendich, A.J. (1993). Circular-mapping mitochondrial genomes may actually exist as multimeric linear molecules in vivo. Curr. Genet. 24, 279.
    6. Bibb, M.J., et al. (1981). Sequence and gene organization of mouse mitochondrial DNA [J]. Cell. 26: 167-180.
    7. Brow, W.M. (1983). Evolution of animal mitochondrial DNA In:Nei,Kocher R K. Evolution of genes and proteins. Sunderland: Sinauer Associates Ins. 162-851.
    8. Brown, W.M. (1981). Mechanism of evolution in animal mitochondrial DNA [J]. Ann N.Y. Acad. Sci. 361:119-134.
    9. Byre, W.A., et al. (1999). How clonal are human mitochondria? Proc R Soc Lond B Biol Sci. 266(1418): 477-483.
    10. Caetano, A. (1991). DNA amplification fingerprinting using very short arbitrary oligo- nucleotide primers. Biotechnology. 9: 553-557.
    11. Cann, R.L., et al. (1987). Mitochondrial DNA and human evolution [J]. Nature. 325: 31-36.
    12. Chen, X.F., et al. (2003). Sequence Variation of Mitochondrial Cyto-b Gene and Phylogenetic Relationships among. Acta Genetica Sinica. 30(5): 419-424.
    13. Dai, J.SH., et al. (1998). RAPD accidence analysis of five sheep breeds. Herbivorous Livestock. 98(1):11-13.
    14. Danan, C., et al. (1999). Evolution of parental mitochondrial inher-itance in neonates born after intracytoplasmic sperm injection. Am J Hum Genet. 65(2): 463-473.
    15. Den, W.G. (1994). The development of methods of genetic diversity research [J]. Aviso Biology. 29(1):17-9.
    16. Desjardins, P., et al. (1990). Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 212(4): 599-634.
    17. Desjardins, P., et al. (1991). Nucleotide sequence and evolution of coding and noncoding regions of a quail mitochondrial genome [J]. Jmol Evol. 32:153-161.
    18. Dietrich, A.J., et al. (1992). A coiled-coil related protein specific for synapsed regions ofmeiotic prophase chromosomes. Annu. Rev. Cell Biol. 8, 115.
    19. Fauna in XinJiang. (1985). XinJiang domatic. XinJiang People’s Publishing House.
    20. Fitch, W., et al. (1967). Construction of phylogenetic trees [J]. Science. 155: 279-284.
    21. Fu, Y., et al. (2002). Studies on Genetic Relationship Between Silky Chicken and Other Breeds. Journal of animal husbandry of china. 38(1): 5-6.
    22. Fu, Y., et al. (2001). Studies of genetic diversity of zhejiang native chicken breeds. Acta genetica sinica. 28(7): 606-613.
    23. Fumihito, A., et al. (1994). One subspecies of the red jungle fowl suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci U.S.A. 20; 91(26): 12505-9.
    24. Fumihito, A., et al. (1996). Monophyletic origin and unique dispersal patterns of domestic fowls. Proc Natl Acad Sci U.S.A. 93(13):6792-5.
    25. Gao, T.X., et al. (2000). Study on Mitochondrial DNA Sequences of Japanese Mitten Crab, Eriocheir japonica. 16SrRNA. Journal of ocean university of qiang-dao. 30(3): 482-486.
    26. Gong, Y.F., et al. (2002). Studies of random amplified polymorphic DNA (RAPD) of main indigenous sheep breeds in China. Hereditas (Beijng). 24(4): 423-426.
    27. Gray, M.W., et al. (1998). Genome structure and gene content in protist mitochondrial DNAs. Trends Microbiol. 6, 1.
    28. Gray, M.W. (1998). Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res. 26, 865.
    29. Gray, M.W., et al. (1999). Mitochondrial evolution. Science. 283:1476-1481.
    30. Gupta, M., et al. (1994). Amplification of DNA markers from evolutionary diverse genomes using single primers of simple – sequence repeats. Theory Appl Genet. 89: 998-1006.
    31. Gyllensten, U., et al. (1991). Paternal inheritance of mitochondrial DNA in mice. Nature. 352(6332): 255-257.
    32. Gyllensten, U., et al. (1985). Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice [J]. The Journal of Heredity. 76: 321-324.
    33. Hagelberg, E., et al. (1999). Evolution for mitochondrial DNA recombination in hominid mitochondrial DNA. Science. 286: 2524-2525.
    34. Hiendleder, S., et al. (1998). The complete mitochondrial DNA sequence of the domestic sheep and comparison with the other major ovine haplotype. J Mol Evol.47(4): 441-448.
    35. Hilis, D., et al. (1990). Molecular Systematics[M]. Sinauer Associates, Sunderland, Massachusetts.
    36. Hu, W.P. (1999). Genetic diversity of yunnan local chicken breeds and its relationshipwith origin of Chinese domestic chicken. Chinese biodiversity. 7(4): 285-290.
    37. Huang, Y. (1998). Molecular Systematics-principle, methods and application [M]. Agricultural Publishing House of China. 6(5): 275-270.
    38. Hutchison, C.A., et al. (1974). Material inheritance of mammalian mitochondrial DNA. Nature. 251: 536-538.
    39. Irwin, D.M., et al. (1991). Evolution of the cytochrome b gene of mammals. J Mol Evol. 32: 128-1441.
    40. Jia, B., et al. (2003). Icrosatellite Analysis of genetic Diversity and Phylogenetic Relationshio of Eight Sheep Breeds in Xinjiang. CtaGenetic Sinica. 30(9): 847-854.
    41. Jia, J.Z. (1996). Idioplasm identification an ebreed with Molecular markers. Scientia Agricultura Sinica. 29(4): 1-10.
    42. Jiang, D., et al. (1999). HB polymorphism and genetic diversity between four breeds of wugu chicken. Developing Animal husbandry. 3: 37-38.
    43. Jiang, H.Y., et al. (2000). Study of the Relationship Among Five Species of Muscicapidae by mtDNA Sequence. Hereditas. 22(1): 21-24.
    44. Jones, C.J., et al. (1997). Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European Labs. Molecular Breeding. 3: 381-390.
    45. Kimball, R.T., et al. (1999). A molecular phylogeny of the pheasants and partridges suggests that these lineages are not monophyletic. Mol Phylogenet Evol. 11(1): 38-54.
    46. Kimura, M. (1968). Evolutionary rate at the molecular level [J]. Nature. 217: 624-626.
    47. Kimura, M. (1989). The neutral theory of molecular evolution and the world view of the neutralists. Gnome. 31: 24-31.
    48. Kimura, M. (1990). Some models of neutral evolution, compensatory evolution, and the shifting balance process. Theoretical Population Biology, 37: 150-158.
    49. Kondo, R., et al. (1992). Further observation of paternal transmission of Droso-phila mitochondrial DNA by PCR selective amplification method. Genet Res. 59(2): 81-84.
    50. Krajewski, C., et al. (1994). Phylogeny of cranes (Gruiformes: Graidae) based on cytochrome b gene sequence. Auk, 111(2): 351-365.
    51. Kumar, S., et al. (2001). MEGA: molecular evolutionary genetics analysis software [J]. Bioinformatics.17: 1244-1245.
    52. Li, J.J., et al. (1997). Mitochondrial DNA Analyses of Domestic Fowls,Common Pheasant and Helmet Guinea fowl. Journal of sunyatsen University. (1): 16-20.
    53. Li, J.Q. (2002). Conservation biology. Plantation of China Press.
    54. Li, Q.W., et al. (1998). Diversity of mitochondrial DNA in eight species of strigiformes. Acta Zoologica Sinica. 44(1): 94-101.
    55. Litt, M., et al. (1989). Preservation of coronary flow reserve in stunned myocardium.Amer J Human Genet. 44: 397-401.
    56. Liu, K.F., et al. (1997). Study on Genetic Relationship Betwe en Red Jungle Fowl and Native Fowl Breeds of Yunnan. Scientia A gricultura Sinica. 30(2): 77-80.
    57. Liu, SH.R., et al. (1998). Studies of random amplified polymorphic DNA (RAPD) of different Chinese Merino sheep lines. Herbivorous Livestock . 101(4): 1-3.
    58. Lu, G.G., et al. (1998). Advances in the study and application of fish mitochondrial DNA Polymorphism. Journal of fishery science of china. 5(3): 94-103.
    59. Lu, G.Q., et al. (1998). Advances in the study and application of fish mitochondrial DNA polymorphism [J]. Journal of fishery sciences of china. 5(3): 94-103.
    60. Lu, X., et al. (1998). A preliminary investigation on taxonomy, distribution and evolutionary relationship of the eared pheasants, crossoptiolon. Acta Zoologica Sinica. 44(2): 131-137.
    61. Mac-Kay, S.L.D., et al. (1986). Template directed arrest of mammalian mitochonfrial DNA synthesis. Mol.cell Biol. 6:1261-1276.
    62. Marshall, H.D., et al. (1997). Structual variation and conservation in the mitochondrial control region of fringilline finches and the greenfinch. J Mol Biol Evol. 323: 132-487.
    63. Meyer, A., et al. (1991). Monophyletic origin of Lake Victoria cichild fishes suggested by mitochondrial DNA sequences. Nature. 347: 5550-5561.
    64. Mindell, D.P. (1997). Avian molecular evolution and systematics [M]. San Diego, California, Academic Press.
    65. Nagata, J., et al. (1995). Nucleotide sequences of the Cytchrome b and the 12SrRNA genes in the Japanese Sika Deer Cervus Nippon [J]. J Mamm Soc Japan. 20(1):1-8.
    66. Nei, M., et al. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases [J]. Proc.Natl.Acad.Sci.USA. 76: 5269-5273.
    67. Owen, J.L. (1991). Uyed CM. Single primer amplification of avian genomic DNA detects polymorphic loci. Ann Biotechnol. 2: 107-122.
    68. Paabo, S., et al. (1988). Mitochondrial DNA sequences from a 7000 - year old brain [J]. Nucl Acids Res. 16(20): 9775 -9787.
    69. Paquin, B. (1997). Origin and evolution of group I introns in cyanobacterial tRNA genes. Curr. Genet. 31, 380.
    70. Pavel, L.I., et al. (1996). Mito-DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II [J]. Nature Genetics. 12: 417-420.
    71. Price, D.H. et al. (1998). Modification and Editing of RNA, H. Grosjean and R. Benne, Eds. ASM Press, Washington, DC. 289-305.
    72. Quinn, M.T.W. (1997). Molecular evolution of the mitochondrial genome [M]. AvianMolecular Evolution and Systematics. 3-28.
    73. Rafalski, J.A., et al. (1993). Genetic diagnostics in plant breeding: Rapds, microsatellites and maclcines. Trends Genet. 9: 275-279.
    74. Randi, E., et al. (2001). Evolution of mito-DNA control region and cyto-b gene and the inference of phylogenetic relationships in Lophura. Mol Phy Evol. 19(2): 187-201.
    75. Ren, J., et al. (2001). Study on Population Genetic Relationships among Jiangxi Native Chicken Breeds by RAPD Analysis. Hereditas. 23(4): 301-305.
    76. Schatz, G. et al. (1996). The Protein Import System of Mitochondria. Science. 271, 1519.
    77. Shields, G.F., et al. (1987). Calibration of mitochondrial DNA evolution in geese [J]. Journal Of Molecular Evolution. 24:212-217.
    78. Takeda, K., et al. (1995). SSCP analysis of pig mitochondrial DNA D-loop region polymorphism. Animal Genetics. 26: 321-326.
    79. Tan, B.J. (1992). Class of mammal. Medi scie and tech of china Publishing House. 4,431.
    80. TSAM, CH.D.M., et al. (2003). Taxonomics tatus of crossoptilon harmani and aphylo- genetic study of the genus crossoptilon. Acta Zootaxonomica Sinica. 28(2):173 –179.
    81. Tzagoloff, A., et al. (1986). Characterization of the structural gene, COR1, for the 44-kDa core protein of yeast coenzyme QH2-cyto-reductase. J. Biol. Chem.261:17163-17169.
    82. Upholt, W.B. (1977). Estimation of DNA sequence divergence from restriction endonuclease digests [J]. Nucleic Acids Res. 4: 1,257-1,265.
    83. Upholt, W.B., et al. (1997). Mapping of mitochomdrial DNA of individual sheep and goat: Rapid evolution in the D - loop region [J]. Cell.11: 571-583.
    84. Vawter, L., et al. (1986). Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock [J]. Science. 234: 194-196.
    85. Vigilant, L., et al. (1991). African populations and the evolution of human mitochondrial DNA [J]. Science. 253: 1503-1507.
    86. Wallace, D.C. (1999). Mitochondrial diseases in man and mouse.Science.283: 1482-1488.
    87. Wang, D.Q., et al. (2003). The genetic relationship analsis among Chinese native chicken breeds by microsatellites. Journal of yangzhou university. (24)2: 1-6.
    88. Wang, W. (1994). The study of mtDNA polymorphism of Drosophila albomicans in Natural population. Genetic. 21(4): 263-274.
    89. Welsh, J. (1990). Finger printing genomes using PCR with arbitrary primers [J]. Nucleic Acids Research. 18(24): 7213-7218.
    90. Welsh, J., et al. (1990). Fingerprinting genomes Using PCR with arbitrary primers. Nucleic Acids Res, 18: 7213-7218.
    91. Welsh, J., et al. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218.
    92. William, J., et al. (2000). Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup [J]. J Mol Evol. 51: 48-63.
    93. Williams, J.G.K., et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.
    94. Wilson, E.O. (1992). The Diversity of Life. W.V.Norton & Company, New York.
    95. Wu, K.S. (1993). A bandance polymorphism and genetic mapping of micro satellite in rice [J]. M GG. 241: 226-235.
    96. Xiang, Y.J.G., et al. (2000). Sequence Divergence between Chrysolophus amherstiae and Chrysolophus pictus. Hereditas. 22(4): 225-228.
    97. Yu, N., et al. (2000). Molecular systematics of Pikas (Genus Ochotona) inferred from mitochondrial DNA sequences [J]. Mol Phyl Evol. 16(1): 85-95.
    98. Yu, N., et al. (1998). The correlation between the environmental changes and the evolution of the two sibling species of pika. [J]. Acta Theriologica Sinica.18(2): 127-130.
    99. Zabeau, M. (1993). Selective restriction fragment amplication: a general method for DNA finger printing [P]. European Pattern Application. 0534858.
    100.Zardoya, R., et al. (1995). Nucleotide sequence of the sheep mitochondrial DNA D-Loop and its flanking tRNA genes. Curr Genet. 28(1): 94-96.
    101.Zhang, J. (1998). Biology evolution. Peking University Press.
    102.Zhao, B. (2002). Introduction to Biodiversity information management. Si Chuan Education Publishing House.
    103.Zhao, Z.SH., et al. (2002). The analysis of cross likehood between Chicken and other geuns with RAPD method. Heilongjiang J Of Ani Sci And Vteri Medicine. 12: 11-12.
    104.Zheng, G.M. (2002). A checklist on the classification and Distribution of the Birds of the world [M]. Beijing. Science Press. 1153-1159.
    105.Zheng, P.L. (1983). Livestock species of china and ecological character. Agricultural Publishing House.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700