用户名: 密码: 验证码:
安徽省繁昌县桃冲铁矿成矿流体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃冲铁矿地处长江中下游多金属成矿带铜陵-繁昌铁-铜矿区的东北部。矿体严格受地层控制,并与矽卡岩伴生,在本区具有典型意义。本文对不同成矿阶段和不同层位矽卡岩和矿石中的流体包裹体进行了岩相学、测温学、地球化学和同位素特征研究,初步探讨了该矿床成矿流体的演化规律和成矿机制。
     通过上述研究,得到以下主要认识:
     1.桃冲矿区流体包裹体类型多样,包括富气相包裹体、富液相包裹体、含子晶包裹体,但以富液相包裹体和含子晶包裹体为主。
     2.桃冲铁矿成矿流体以NaCl-H_2O体系为主,其中气相成分主要为H_2O,液相成分中阴离子为Cl~-、SO_4~(2-)、F~-等,阳离子为K~+、Na~+、Ca~(2+)、Mg~(2+)等,但以Na~+和Cl~-为主。流体包裹体均一温度集中于260~460℃之间,密度集中于0.92~1.11 g/cm3之间,lgfO_2为-19.3~-10.3,pH值为3.0~6.4,反映出桃冲铁矿主要形成于中高温、弱酸性、强氧化环境中。
     3.从时间上看,从矽卡岩阶段到成矿阶段,再到碳酸盐阶段,富液相包裹体数量逐渐增加,温度、盐度、氧逸度逐渐降低,pH值逐渐升高,密度、压力、气相成分基本保持不变,液相成分由富Na~+、Ca~(2+)、Cl~-、SO_4~(2-)变为富Na~+、Cl~-;从空间上看,由深到浅富气相包裹体和富液相包裹体含量及氧逸度稍有增高,其它特征基本保持一致。上述变化表明桃冲矿区成矿作用主要受温度、盐度、pH值和Cl-浓度等参数制约。此外,成矿早期以高温高盐度流体为主,显示出岩浆流体的特征;成矿晚期流体可分为高盐度(NaCl equiv > 30%)和低盐度(NaCl equiv≤23.8%)两种,反映出不同来源的两种流体的混合。流体氢氧同位素数据显示桃冲铁矿成矿流体由岩浆水和气降水混合而成,但以岩浆水为主;同时,随着成矿作用的进行气降水的含量逐渐增加。
     4.桃冲矿区矽卡岩为岩浆成因。桃冲铁矿是由矽卡岩冷却产生的富铁气成热液在上升过程中与气降水混合后发生沉淀形成的;在成矿过程中,铁主要以氯的络合物的形式迁移,气水与岩浆水混合可能是导致矿质沉淀的主要因素。
The Taochong iron deposit is located in the northeast of the Tongling-Fanchang Fe-Cu district of the Middle-Lower Yangtze River metallogenic belt. The most pronounced feature of the iron deposit is that skarns associated with iron orebodies occur as tabular bodies along the bedding-slip fault between the carbonate strata of the Lower Permian Qixia and Middle Carboniferous Huanglong Formations, with occurrence of evident boundaries between the skarn bodies and strata of two sides and no outcrops of pluton. A detailed study has been carried out on the fluid inclusions in the Taochong iron deposit, with a focus on the origin of the deposit.
     The following are major achievements obtained in this thesis.
     1. The petrographical study shows that there are many kinds of fluid inclusions, but the main types are liquid-rich and daughter mineral-bearing ones.
     2. The geochemical study of fluid inclusions indicates that the ore-forming fluids mostly
     belong to NaCl-H_2O system, with H_2O as a major component of gas facies, and Cl~- and Na~+ as main anion and cation of liquid facies, respectively. The homogenization temperatures, densities, lgfO_2 and pH values of the ore-forming fluids are defined mainly in the ranges of 260~460℃, 0.92~1.11 g/cm3, -19.3~-10.3, and 3.0~6.4, respectively, indicating formation of the Taochong iron deposit mainly in the high temperature, weak acidic and strong oxidizing environment.
     3. From early to late, increasing in number of liquid-rich inclusions with decreasing in homogenization temperature, salinity, lgfO_2, increasing in pH, and no evident varying in density and pressure occurs, associated with increasing in Na~+ and Cl~- and decreasing in Ca~(2+) and SO_4~(2-) in the liquid facies and no evident changing in component of the gas facies. In contrast, from deep to shallow, no evident variation in most of parameters occurs except little increasing in number of gas and liquid-rich inclusions and value of lgfO_2. The data mentioned above suggest mineralization in the Taochong iron deposit might be mainly affected by temperature, salinity, pH, and Cl-concentration. The ore-forming fluid with salinity ranging from 34~48 wt.% NaCl equiv at the stages of skarnization and early mineralization is simple in composition, indicating its origin of magmatic evolution. In contrast with this, The ore-forming fluid having two ends with high salinity (NaCl equiv > 30%) and low salinity (NaCl equiv≤23.8%) at the stage of late mineralization is complex, indicating its mixing origin of magmatic water with meteoric water. The hydrogen and oxygen isotopic analyses of the ore-forming fluids also support involving the magmatic fluid at the stages of skarnization and early mineralization and the magmatic–meteoric mixed fluid predominated by magmatic fluid at the stage of late mineralization. Evidently, the ratio of magmatic water to meteoric water in the ore-forming fluids is gradually reduced from the early stage to the later stage.
     4. The petrographic, microthermometric and geochimecal data of fluid inclusions presented in this thesis indicate an origin of the skarn in the Taochong iron deposit by injection and crystallization of skarn magma, and a genesis of the associated iron orebodies possibly by precipitation of the mixed fluids of magmatic water with meteoric water. Fe in the fluids was transported mainly in the form of chloride complexes and precipitated owing to the mixing of magmatic water with meteoric water.
引文
Barker A J. 1995. Post-entrapmentmodification of fluid inclusions due to overp ressure: Evidence from natural samples. Journal of Metamorphic Geology, 1995, 13: 737-750
    Krüger Y, Stoller P R, Frenz JM. 2007. Femtosecond lasers in fluid inclusion analysis: Overcoming metastable phase states. European Journal of Mineralogy, 19: 693-706
    Kwak T A P, Brown W M, Abeysinghe P B, Tan T H. 1986. Fe Solubilities in Very Saline Hydrothermal Fluids: Their Relation to Zoning in Some Ore Deposits. Economic Geology, 81: 447-465
    Habermann D, Gotze J, Neuser R D. 1999. The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite. Zentralblatt fü-Geologie und Palaeontologie, 12: 1275-1284
    Goldstein R H. 2003. Petrographic analysis of fluid inclusions. Fluid inclusions analysis and interpretation. Mineralogical Association of Canada, Short Course Series, 32: 9-53
    Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol, 83: 197-202
    Olsen S N, Frry J M. 1995. A comparative fluid inclusion study of the Waterville and Sangerille formation, South-central Maine. Contributions toM ineralogy and Petrology, 118: 396-413
    Roedder E. 1967. Immiscibility in Granitic Melts, Indicated by Fluid Inclusions in Ejected Granitic Blocks from Ascension Island. Journal of Petrology, 8(3): 417-451
    Roedder E.. 1971. Fluid inclusion studies of the porphyry type ore deposits at Bingham,Utah,abautte, Montana, and Climax, Colorado. Econ.Geol, 66: 98-120
    Roedder E. 1972. Composition of fluid inclusions. USGS Prof. Pap. 440JJ
    Roedder E. 1979. Fluid inclusions as samples of ore fluids. In: Barnes, H.L(Ed), Geochemistry of Hydrothermal Ore Deposits. 2nd edn. Wiley, New York, 684-737
    Sterner S M, Bodnar R J. 1989. Synthetic fluid inclusions. VII. Re-equilibration of fluid inclusions in quartz during laboratory-simulated metamorphic burial and up lift. Journal of Metamorphic Geology, 7: 243-260
    Van den Kerkhof , F H. 2001. Fluid inclusion petrography. L ithos, 55: 27-47
    Xu and Lin. 2000. Geology and geochemistry of the Changlongshan skarn iron deposit, Anhui Province, China. Ore Geology Reviews, 16: 91-106
    安徽省冶金工业厅第一地质勘探队. 1960.安徽繁昌县长龙山铁矿地质勘探总结报告. 103页
    安徽省重工业厅地质勘探队. 1963.安徽繁昌县长龙山铁矿地质勘探补充报告. 75页
    冶金工业部华东冶金地质勘探公司八零三队. 1986.安徽省繁昌县桃冲铁矿补充地质工作报告. 37页
    冶金工业部华东冶金地质勘探公司八零三队. 1988.安徽省繁昌县桃冲铁矿90米水平以下矿量升级补充勘探地质报告. 66页
    巴切尔德J. 1976.美国内华达州科珀—卡尼翁斑岩铜矿床的轻稳定同位素和流体包裹体研究,见:矿物中的包裹体(陈安福、卢焕章、余铁阶等译),科学出版社,1989年,232~242
    曹剑,姚素平,胡文等. 2006.油气包裹体中水的检出及其意义.科学通报,51(13):1583-1588
    常印佛,刘学圭. 1983.关于层控式矽卡岩型矿床——以安徽省内下扬子坳陷中一些矿床为例.矿床地质,2(1):11-20
    常印佛,刘湘培,吴言昌. 1991.长江中下游铜铁成矿带.北京:地质出版社. 379页
    陈红汉,董伟良,张树林等. 2002.流体包裹体在古压力模拟研究中的应用.石油与天然气地质,23(3):207-211
    池国祥,周义明,卢焕章. 2003.当前流体包裹体研究和应用概况(英文).岩石学报,19(2):201-212
    池国祥,卢焕章. 2008.流体包裹体组合对测温数据有效性的制约及数据表达方法.岩石学报,24(9):1945-1953.
    李兆麟,翟伟,杨荣勇,黄栋林,全亚荣,赵文霞,李文. 2000.韧性剪切带金矿床中熔融包裹体及矿床成因.矿物岩石地球化学通报,19(4):286-289
    李兆麟,翟伟,李文,石贵勇,文拥军. 2000.河南韧性剪切带金矿床成矿物理化学条件研究及熔融包裹体的发现.岩石学报, 16(4):513-520
    梁祥济. 2000.中国矽卡岩和矽卡岩矿床形成机理的实验研究.学苑出版社,365页
    刘斌,沈昆.1999.液包体包裹体热力学原理.地质出版社,290页
    刘洪,邱检生,罗清华,等.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学,2002,31(2): 129-140
    卢焕章. 1977.南岭地区各种类型钨矿床的气液包裹体特征和形成温度的研究.地球化学,(3):179-193
    卢焕章. 2000.高盐度、高温和高成矿金属的岩浆成矿流体—以格拉斯伯格Cu-Au矿为例.岩石学报,16(4):465-472
    卢焕章. 2000.一种寻找石油的新方法—流体包裹体法.桂林工学院学报,(1):82-83
    马钢(集团)控股有限公司桃冲矿业公司,华东冶金地质勘查局综合地质队. 2007.安徽省繁昌县长龙山铁矿床生产补充勘探地质报告. 43页
    毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰. 2005.中国北方中生代规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-198
    毛景文,邵拥军,谢桂青,张建东,陈毓川. 2009.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质,28(2): 109-119
    纳什JH,1971.流体包裹体岩石学:斑岩铜矿床的资料及其在勘探中的应用,见:矿物中的包裹体(陈安福、卢焕章、余铁阶等译),科学出版社,1989年,290-306
    倪若水,王道华. 1983.繁昌桃冲铁矿成因探讨.矿床地质,2(3):16-23
    卜保全,洪东良,刘晓明. 2002.皖南桃冲铁矿床成因探讨.昆明冶金高等专科学校学报,18(3):23-25
    任启江,王德滋,刘孝善,等.安徽庐枞地区巴家滩和矾山-石马滩岩体的时代和岩浆物质来源.科学通报,1991,36(10):771-773
    单秀琴,钱玲,胡国艺等. 2006.塔中奥陶系碳酸盐岩中流体包裹体特征及其在油气成藏中的应用.矿物岩石地球化学通报,25(1):37-41
    申文峰,莫苇. 2007.流体包裹体在地学中的应用.西部探矿工程,(5): 45-46
    孙冶东,杨荣勇,任启江,等.安徽庐枞中生代火山岩系的特征及其形成的构造北京.岩石学报,1994,10(1):94-103
    唐永成,吴言昌,储国正,邢凤鸣,王永敏,曹奋扬,常印佛. 1998.安徽沿江地区铜多金属矿床地质. 北京:地质出版社. 351页
    王玉林,李中樱,王允. 2007.繁昌地区富铁矿成矿特征分析.矿业快报,(10):75-77
    邢凤鸣,徐祥.安徽两条A型花岗岩带.岩石学报,1994,10(4):357-369
    许国建,林新多. 1990.安徽长龙山矽卡岩浆型铁矿床成因探讨.地球科学,15(6):649-656
    冶金工业部华东勘察基础工程总公司三公司. 2002.安徽省繁昌县桃冲铁矿-7米以下矿量升级补充勘探地质报告. 52页
    翟裕生,姚书振,林新多,周珣若,万天丰,金福全,周宗桂. 1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社. 235页
    张文淮,吕万军,焦养全,李思甜. 2000.广东长坑金银矿床成矿流体成分及来源探讨.岩石学报, 16(4):521-527
    张振亮,吕新彪,饶冰. 2003.流体包裹体的合成方法及其对矿床学研究的意义.矿产与地质,17(2):166-169
    张德会. 1997.成矿流体中金属淀机制研究综述.地质科技情报,16(3):53-58
    赵振华,涂光炽.中国超型矿床(Ⅱ).北京:科学出版社,2003
    赵斌,赵劲松,张重泽. 1993.岩浆矽卡岩的实验依据.科学通报,38(21):1986-1988
    朱光,牛漫兰,刘国生,王勇生,谢成龙,李长城.郯庐断裂带肥东段走滑运动的40Ar/39Ar法定年.地质学报,79(3):308-316
    周涛发,宋明义,范裕,袁峰,刘珺,吴明安,钱存超,陆三明. 2007.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义.岩石学报,23(10):2379-2386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700