矿井重大灾害动态机理与救援技术信息支持系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井重大灾害(水灾、火灾、爆炸)后果严重,灾变信息的匮乏对救灾产生致命影响,本文以灾变信息为研究对象,运用爆炸学理论、水灾灾变理论、传热学和矿井通风学理论,对矿井重大灾害动态机理与灾害救援技术信息支持系统进行了深入研究。论文主要内容包括:全矿范围内冲击波超压计算的微段迭代理论,基于火源增温与风网解算迭代的整体烟流动态模拟理论,建立于节点容量、水位割集概念之上的突水水位与巷道被淹范围的计算理论,数字矿井制作维护与信息集成技术理论,矿井重大灾害动态模拟显示技术理论。
     论文根据CAD基本图元数据模型的构造、属性与运算算法,提出了三维数字矿井巷道实体的制作模型。根据三维巷道实体所需巷道断面形状(矩形、梯形和拱形)、断面大小(巷高和巷宽)、巷道长度和巷道方位(包括巷道水平角和巷道垂直角)等参数,通过参数化编程,对话框录入参数,程序自动完成三维巷道实体的制作,所制巷道实体可严格按照实际巷道形状和窄间姿态,具有真三维按比例、可任意视角观看、任意比例出图、色彩丰富真实感强、制图容易修改方便等特点。利用三维巷道实体制作技术,可快速完成真三维数字矿井通风系统的制作,适于现场普通工程技术人员掌握使用。
     通过对三维巷道实体与巷道信息的一体化处理,使可视化矿井中的各类巷道均可携带所需信息,亦可与各类数据库进行数据传输,可实现井下测点瓦斯浓度的动态显示,具有信息与巷道集成一体、所带参数可隐可显、巷道信息点之即来等特点。通过对数字矿井通风系统的信息提取与巷道坐标信息的提取,根据矿井巷道三维实体间的拓扑关系,实现通风网络的自动生成与管理。
     通过不同传播环境下瓦斯(煤尘)爆炸冲击波超压计算,获得独头巷道与贯通巷道爆炸冲击波超压传播规律,使用巷道分岔超压衰减系数,获得经过不同角度的分岔巷道后冲击波超压的剩余量,根据冲击波超压、爆炸气体体积(传播范围)、冲击波传播速度三者的依赖关系,采用微段定值迭代法,将微小时间段内冲击波的传播速度视为定值,计算微小时间段内冲击波的传播距离,及微小时间段末爆炸气体体积,从而计算出微小时间段末爆炸冲击波超压,然后根据超压计算微段末冲击波的传播速度,并作为下一微段的始冲击波传播速度,继续计算下一微段末冲击波超压,最终完成沿途冲击波超压的分布计算。只要时间微段足够小,便能够保证计算精度。
     根据瓦斯煤尘爆炸冲击波对人体伤害的严重程度和对井下通风构筑物的破坏程度,将井下灾区分为死亡区、重伤区(45.5cm的砖墙破坏)和轻伤区(风门、风桥、临时密闭失效),并对三区边界的爆炸冲击波超压极限进行了取值,为人员伤亡区的实际计算提供了依据。
     根据爆炸后矿井通风构筑物的损坏范围,确定失效通风构筑物位置,通过网络解算,获得瓦斯煤尘爆炸后有害气体滞留区,根据瓦斯煤尘爆炸后井下的分区(有害气体滞留区、有害气体侵袭区和正常风流区)情况,按避灾人员的位置,通过不同区域避灾路线的计算,获得以地面井口为目标的最佳避灾路线。
     使用增加辅助节点的方法,将数字矿井通风系统中的巷道分成若干直线段,使用“巷道节点坐标与风速录入系统”,将所增加的节点坐标、节点编号录入系统,根据新增辅助节点与主节点的关系及其在风网中的位置,形成与数字矿井通风系统具有相同拓扑关系,且具有节点坐标的网络系统,通过该网络计算机能够较容易地找到数字矿井中与之对应的结构与节点坐标,为矿井风流的动态模拟显示奠定了基础,成为动态模拟显示灾变过程与避灾路线的辅助系统。
     根据木板(材)的燃点200℃~290℃,选取200℃为作为木质通风构筑物耐受高温烟流的临界值,参照通风构筑物的耐火极限时间,根据烟流温度计算,给出火灾时烟流温度大于临界值的范围,根据火灾持续时间,判定高温区木质通风构筑物失效,同时更新风网结构。
     对井下不同巷道,采用不同的不稳定传热系数,根据烟流进入巷道的初始温度计算巷道中烟流温度的分布和各段巷道的火风压,从常温开始逐步提高火源温度,重复进行火源增温、火风压计算与风网解算的迭代循环,获得不断变化的矿井风量分布,当高温烟流(温度大于木质通风构筑物耐受的临界温度)区持续时间等于通风构筑物的耐火极限时间时,报废高温区的木质通风构筑物,更新风网结构,继续火源增温与风网解算的循环,直到火源温度达到预定值。从而完成烟流随时空变化的动态模拟,利用可视化技术将烟流动态变化反映在数字矿井上,形成火灾时期巷道烟流侵袭范围的动态模拟显示系统,为矿井火灾救灾提供信息支持。
     根据矿井火灾特点,将矿井通风网络分成两个子网:烟区子网和无烟区子网,根据两子网的边界节点,计算烟区内避灾路线和烟区外避灾路线,获得井下任意位置最佳火灾避灾路线。
     利用可视化三维数字矿井通风系统,通过矿井巷道可视化辅助系统,获得巷道坐标、巷道名称、风速和风流方向等参数,根据矿井火灾的动态模拟数据结果,通过火源点的识别与标注,利用最短路计算程序,计算从火源点到各回风节点间的最短时间,以确定该节点后各巷道分支中模拟烟流的启动时间,模拟烟流速度可以按烟流的真实速度,也可以设置显示倍数,以加快模拟烟流的流动,减少等待时间,根据巷道长度、风速、显示倍数,计算模拟烟流每流动一个步长所需时间,根据各巷道烟流块的坐标按到达时间显示于数字矿井之上,形成火灾灾变过程的动态模拟显示。
     为便于突水范围与突水水位的计算,运用增加节点的方法重构巷道连通图,将有上下起伏的巷道分成若干直线段,按连通关系将与目前巷道系统有水力联系的采空区和废弃巷道加入巷道系统,根据各巷道段实际标高,将连通图中的巷道段全部转化为单向倾斜巷道段。
     为获得巷道中突水水位的变化规律,提出了节点容量、水位割集的概念,通过节点容量、水位割集的计算,得出井下任意地点突水后,给定突水量条件下的巷道被淹范围,和一定突水强度下巷道淹没范围随时间的变化规律,完成水灾时期巷道被淹范围的模拟,为水灾时期巷道淹没范围的计算提供了理论依据。
     根据不同涌水量下巷道淹没范围的计算,可按不同颜色表示不同涌水量下的淹没范围,根据涌水量与涌水时间的关系,得到不同涌水时间下的巷道淹没范围,实现了水灾淹没(巷道)范围在数字矿井上的适时动态显示。
     根据巷道淹没范围,可将矿井巷道网络划分成淹没子网和未淹子网,通过未淹子网中最短路的求解,找到从避灾者所在巷道到地面井口的最佳避灾路线,并可将其动态显示于数字矿井之上。
The mine heavy disasters (flood, fire and explosion) could cause a grave result. The deficient disaster message caused the fatal effect for the relief of disaster. The dissertation took the catastrophe message as research target. Using the explosion theory, the flood theory, the conduction theory and the mine ventilation theory, it is focus on the heavy disasters dynamic mechanism and rescue technology message support system in mine. The main content includes five parts: The tiny length iteration calculation theory of shock wave super pressure in the all mine limit, the entire fume flow dynamic imitation theory based on the iteration between gaining the fire brand temperature and solving ventilation networks, the calculation theory of the inrushing-water level and drowned tunnels limit setting up the node capacity and the water level cuts conceptions, The technique theory of a digital mine manufacture and maintenance and message integration, The technique theory of the heavy disasters dynamic simulation display in a mine.
     According to CAD basic graph element model structure, property and operation algorithms, the dissertation gave the manufacture model of the three dimensions digital mine tunnel entity. Using a tunnel's section form shape (Rectangle and Trapezium and arch), Length and bearing (Consist of the vertical horn of tunnel and horizontal angle tunnel) etc. parameters, it made a three dimensions tunnel entity. Using parameterization programming and the dialog writing down parameters, the order completed voluntarily a three dimensions tunnel entity. The tunnel entity could be rigorously made in accordance actual tunnel form shape and the room posture. It was truly in three dimensions and proportion. We could observe it at arbitrary visual angle and print a picture at any proportion. Its color was rich. Its real feeling was powerful. It was easily making a drawing. It was conveniently for mending a drawing. Using the manufacture technique in three dimensions tunnels entity, the truly three dimensions digital mine ventilation system was speedily manufactured. It fitted the ordinary engineers and technicians of field to master and use.
     By means of integrating tunnel messages with three dimensions tunnel entities, every type tunnel in the visualization mine could all take along the message required. The data transmission could be carried on against different type of data bank. The point of measurement gas concentration dynamic display may be achieved under the shaft. The message together with tunnel was integrated. The parameter brought could be concealed or shown. The tunnel information could immediately arise by point and click it. By means of collecting the digital mine ventilation system message and tunnel coordinate message, on the basis of the topology relationship between the three dimensions tunnel entity in a mine, the ventilation network was voluntarily generated and administrated.
     By means of calculating the gas (coal dust) explosion shock wave super pressure in the difference environment, it was obtained the explosion shock wave super pressure propagation regular in a blind heading or cut through tunnel. Employing the super pressure damping factor at the tunnel branching, the remainder amount of shock wave super pressure was obtained when the shock wave go through the distinct angles branches. On the basis of relationship being dependent on the shock wave super pressure and explosion gas volume (propagation limit) and shock wave propagation velocity, using settled value in a tiny section tunnel and superimpose rule, the shock wave propagation velocity in a little time quantum was looked upon settled value. Calculating shock wave propagation distance and explosion gas volume in a tiny time piece, thereby the explosion shock wave super pressure was gotten. Afterwards on the basis of super pressure to be calculating the shock wave propagation velocity in a tiny time tip, and making this tiny length shock wave propagation velocity as next one, going on calculation shock wave super pressure next tiny time tip, finally the distributed computing of shock wave super pressure was completed. The calculating accuracy could be guaranteed when you keep the tiny time piece enough little.
     On the basis of grave damage degree of human body and ventilation structures by a gas (or coal dust) explosion shock wave under the shaft, under the shaft the disaster area was divided into the doom district, severe injury district (the 45.5cm brick wall has be damaged) and slight wound district (air door, air-bridge and air brattice had failed). Moreover the maximums of explosion shock wave super pressure in the three districts borders were given. The foundation of the actual calculation personnel staff casualty districts was supplied.
     On the basis of the breakdown limits of mine ventilation structures after the explosion, the failure ventilation structures places was fixed. By means of solving a network, the district was obtained where pernicious gas of gas (coal dust) explosion was held up. On the basis of the partition situation after gas (coal dust) explosion under the shaft (the district where pernicious gas was held up, the district where are invaded by pernicious gas and regular district), according to the place to evade disaster personnel staff, calculating evade disaster course of through distinct areas, it was obtained the optimum evade disaster course that takes the shaft mouth on surface of the earth as the target.
     Using means increasing the assist node, the tunnel in the digital mine ventilation system was separated into several right lines length. Using the register system about the tunnel node coordinate and the wind velocity, the node coordinate added and the node number was written down into the system. On the basis of the relationship between the host node and assisting node newly reaches and the place that such was living in the ventilation network, the network system was taken shape that had a same topology relationship against the digital mine ventilation system and had same node coordinate as the digital mine ventilation system. By means of this network the computer could easily find the correspondence composition in the digital mine against the network and the node coordinate. This had settled the base for air flow dynamic simulation displays in a mine. It was become the assisting system of the dynamic simulation displays that the disaster changes process and the evading disaster course.
     On the basis of board (timber) set fire to 200℃~290℃, selecting 200℃regarded as the critical value of high temperature fume flow for timber ventilation structures. Consults and follow the refractory maximums time of ventilation structures, on the basis of the fume flow temperature calculated, the dissertation gave out the limit that the fume flow temperature was more than the critical value during the mine fire. On the basis of the fire duration, the lose effectiveness of a ventilation structures made of wood was decided in the high temperature district. At the same time the ventilation network composition was replaced.
     Using the difference convection heat-transfer coefficient in the distinct tunnels, according to calculating the fume flow temperature distribute and the flow pressure of heated air, adding the fire source temperature gradually from normal atmospheric temperature, repeatedly carrying on the cycle of calculating the flow pressure of heated air and the ventilation network, continuously changing the air volume distributes was obtained. When high temperature fame flow (The temperature was more than the fume flow critical temperature that the wood ventilation structures could stand) duration equals to the refractory maximums of ventilation structures, we reported the wood ventilation structures in high temperature district as worthless, replace air network structure, and went on the iteration adding the fire brand temperature and solving ventilation networks. Until the fire brand temperature attained the index value. Thereby the dynamic simulation of fume flows following time and space was completed. Utilizing the visualization technique the dynamic change of fume flows was reflected on the digital mine. The dynamic simulation limit of fume flows in tunnel to invade and attack was displayed during the mine fire. This supplied a message support for relief of disaster in a mine fire.
     On the basis of the mine fire feature, the mine ventilation network was separated into two subnets: one subnet was polluted by smoke and other was not polluted by smoke. On the basis of the boundary node between two subnets, the evading disaster course of inside and outside the smoke district was calculated. The optimum evading disaster course was obtained during the mine fire.
     Utilizing the visualization three dimensions digital mine ventilation systems, By means of the mine tunnel visualization assisting system, such as the coordinate in tunnel, tunnel name, wind velocity and wind orientation etc. parameters was obtained. On the basis of the dynamic simulation data, through discriminating and marking the fire brand, utilizing the calculator program of the shortest course, the most short time was calculated from the fire brand to each return air node. In order to the starting times of simulation fume flows was fixed in each tunnel branch after the node. The imitation fume flow velocity may run according to real velocity. Also may put up the displays multiple. For decreasing the wait time, we speeded up simulation fume flow from place to place. On the basis of tunnel length, wind velocity, display multiple, the needing time was calculated that the simulating fume flow moved one step. According to the coordinates of fume flow blocks in every tunnel and arrival time, the fume flow was displayed on the digital mine. This became the dynamic simulation display of the fire process.
     For calculating the inrushing-water level and inrushing-water limit, the dissertation gave out the tunnel connected graph of reconfiguration: using to add the node means, the old and young undulate tunnel separated into several right lines length. According to the connected component, the collecting space area and the discarded tunnel was acceded to the tunnel system that it had the hydraulic touch with the tunnel system. On the basis of the actual tunnel length, all tunnels were transformed into the monoclinic tunnel lengths in the tunnel connected graph.
     For obtaining the alternation law of the inrushing-water level in tunnels, the dissertation proposed the conception of the node capacity and the water level cut set. by means of calculating the node capacity and the water level cut set, the drowned limit was obtained at inrushing-water amount when the inrushing-water happen at any place in a mine. The alternation law of the mine drowned limit following time was obtained in surely inrushing-water intensity. The imitation was completed about the drowned tunnels limit during the mine flood. This supplied the theory foundation for calculating the drowned tunnels limit during the mine flood.
     On the basis of calculating the drowned tunnels limit at the difference inrushing-water amount, using difference color, the drowned limit could be expressed in the difference pouring water amount. On the basis of the relationship between the pouring water amount and the pouring water time. The drowned tunnels limit was obtained at the difference pouring water time. This was achieved that the dynamic drowned tunnels limit was timely displayed on the digital mine.
     On the basis of the drowned tunnels limit, the mine tunnel network may be divided into the drowned subnet and the no water subnet. By means of the resolution of the shortest circuit in the no water subnet, the optimum evading disaster course was found from any place in the mine to surface of the earth. Moreover it could be dynamically displayed on the digital mine.
引文
1、张兴凯.矿井火灾严重程度评价[J].中国安全科学学报,2005(4):25~28
    2、徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001(6):36~40
    3、张甫仁,景国勋.矿山重大危险源评价及瓦斯爆炸事故伤害模型建立的若干研究[J].工业安全与环保,2002(1):42~45
    4、何朝远.矿井瓦斯煤尘爆炸后果严重度的模糊综合评价[J].矿业安全与环保,2000(6):31~32,34
    5、王德明,王省身,郭晋云.矿井火灾救灾决策支持系统研究[J].煤炭学报,96(6)
    6、吴立新,殷作如,邓智毅.论21世纪的矿山——数字矿山[J].煤炭学报,2000(4):337~342
    7、孙森,刘泽功.大断面掘进煤巷中间充填实现全负压通风试验研究[J].矿业安全与环保,2002(6)
    8、张自成.提高回采率问题综采放顶煤技术存在的主要问题探析[J].煤矿开采,2002年增刊
    9、程根银,杨立兴.晋普山煤矿通风系统优化[J].煤炭科学技术,2001(2)
    10、李孜军.矿井通风系统技术经济效果评价的密切值法[J].中国矿业,2000(2)
    11、李舒伶,任惠玲,王玉学等.矿井火灾时期风流控制系统的研究[J].辽宁工程技术大学学报,99(2)
    12、朱红清,谢洪,黄元平.普通火灾初期应用通路法控制风流[J].煤炭工程师,96(4)
    13、刘维庸,戚宜欣.专家系统技术在矿井火灾救灾中的应用[J].煤炭学报,94(3)
    14、蒋军成,王德明,王省身.矿井火灾救灾决策支持系统的研究与设计[J].中南工业大学学报,97(3)
    15、赵以惠,王省身.处理重大灾害事故提高指挥决策能力[J].中国安全科学学报,94(1)
    16、沈斐敏.矿井安全决策支持系统的建造[J].中国煤炭,95(4)
    17、肖全兴.矿井通风安全管理预警系统的研究[J].矿业安全与环保,1999(3):4~5,7
    18、张英琦,景国勋.煤矿安全信息计算机管理系统的设计[J].煤矿自动化,1999(2):28~29
    19、杨源林.瓦斯煤尘爆炸的超压计算与预防[J].煤炭工程师,1996(2):33~37,48
    20、周心权,吴兵,徐景德.煤矿井下瓦斯爆炸的基本特性[J].中国煤炭,2002(9):8~11
    21、谭允祯,李春华,杨德玉等.矿井(煤矿)通风系统安全度[J].中国安全科学学报,1999(1):20~23
    22、李兴东,任大伟,孙友霞.矿井火灾救灾信息可视化管理系统研究[J].中国矿业,2004(2):66~67
    23、凌标灿.煤矿水灾安全评价内容探讨[J].中国安全科学学报,2004(7):64~67
    24、韩程辉,刘文生.地下水模拟系统(GMS)与矿井防治水.矿业安全与环保 2005(1):25~26,
    25、Chengqing Wu, Hong Hao. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions. International Journal of Impact Engineering, 2005 (31): 699~717
    26、周心权,吴兵.矿井火灾救灾理论与实践[M].北京:煤炭工业出版社,1996年11月第1版:26,309~318
    27、刘剑,贾进章,郑丹.流体网络理论[M].北京:煤炭工业出版社,2002
    28、周志强.矿井通风系统安全性、稳定性与可靠性评价及应用研究.硕士学位论文,辽宁阜新:辽宁工程技术大学,2003年12月
    29、王洪德.基于粗集——神经网络的通风系统可靠性理论与方法研究.博士学位论文,辽宁阜新:辽宁工程技术大学,2004年
    30、李湖生.矿井火灾时期风流状态模拟与优化控制技术.博士学位论文,北京:中国矿业大学研究生部,1995年
    31、王德明,李永生.矿井火灾救灾决策支持系统[M].北京:煤炭工业出版社,1996年
    32、汪箭,聂小林,季辉等.虚拟现实技术在火灾领域中的应用[J].计算机仿真,2002(2):28~31
    33、陈福,傅贵,李东玉.虚拟现实技术在矿井瓦斯爆炸模拟中的应用[J].煤炭科学技术,2003(3):33~35
    34、陈学习,韩玉春,邹恒义等.基于虚拟现实的矿井瓦斯爆炸模拟关键技术研究[J].华北科技学院学报,2004(2):1~6
    35、邢玉忠,张四伟,邢存恩.矿井可视化及其信息集成与传输系统的研究[J].太原理工大学学报,2006(3):320~322
    36、贾进章,马恒,刘剑.矿井火灾时期温度分布数值模拟[J].辽宁工程技术大学学报,2003(4):460~462
    37、桂晓宏,林伯泉.火焰速度与超压关系[J].淮南工业学院学报.1999(4):14~17,54
    38、徐景德.矿井瓦斯爆炸冲击波传播规律及影响因素的研究.博士学位论文,北京:中国矿业大学(北京校区),2002年11月
    39、杨科之,杨秀敏.坑道内化爆冲击波的传播规律[J].爆炸与冲击,2003(1):37~40
    40、庞伟宾,何翔,李茂生等.空气冲击波在坑道内走时规律的实验研究[J].爆炸与冲击,2003(6):573~576
    41、张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究.博士学位论文,山东泰安:山东科技大学,2003
    42、韩程辉,刘文生.地下水模拟系统(GMS)与矿井防治水[J].矿业安全与环保,2005(1):25~26,41
    43、徐星宽.矿井充水机理、水害成因与治理[J].山东科技大学学报(自然科学版),2003(4):21~23
    44、林道兴.煤矿水害及防治方法探讨[J].焦作工学院学报(自然科学版),2003(2):157~158
    45、赵苏启.煤矿突水灾害快速治理的配套技术[J].煤炭科学技术,2002(2):26~28
    46、李兴东.矿井火灾救灾案例库系统的研制[J].中国矿业,2002(5):69~70
    47、周心权,朱红青.从救灾决策两难性探讨矿井应急救援决策过程[J].煤炭科学技术,2005(1):1~3,68
    48、李学来,胡敬东.煤矿应急救援技术的研究及应用现状[J].炭工程,2005(4):62~64
    49、Lin Baiquan. The influence of barriers on flame and explosion wave in gas explosion. Journal of coal science and eugnieering, 1998, 4(2): 53-57.
    50、胡学义.煤矿瓦斯爆炸计算机模拟研究.硕士学位论文,北京:北京理工大学,2000年
    51、弗·巴尔特克纳西特.爆炸过程和防护措施[M].北京:化学工业出版社,1985.
    52、李翼棋,马素贞.爆炸力学[M].北京:科学出版社,1992.
    53、H·泡拉契克,R·J·西格.激波的相互作用[M].北京:科学出版社,1988.
    54、W·D·黑斯.气体动力突跃的基本理论[M].北京:科学出版社,1988.
    55、J·亨利.爆炸动力学及其应用[M].北京:科学出版社,1987.
    56、赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996
    57、王从银.瓦斯爆炸火焰高内聚力与火焰传播机理研究.博士学位论文,徐州:中国矿业大学,2001年
    58、R·A·Cortese, M·J·Sapko.Flame-Powered Trigger Device for Activating Explosion Suppression Barrier. RI9375, Department of the Interior in U. S..
    59、C·K·萨文科,A·A·古林等.井下空气冲击波[M].北京:冶金工业出版社,1979.
    60、Joseph, M.Kuchta.Investigation of Fire and Explosion Accidents in the Chemical, Mining, and Fuel-Related Industries-A Manual Pressed By US Department of the Interior Bureau of Mines, 1985.
    61、煤科院抚顺分院.“八五”国家科技攻关项目报告(项目编号85-202-01-02-5).
    62、煤科院重庆分院.“八五”国家科技攻关项目报告.自动隔爆装置限制煤尘爆炸传播的研究,1987.
    63、徐瑞龙.通风网路理论[M].北京:煤炭工业出版社,1993
    64、王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990
    65、王树刚,王继仁,洪林.矿井正常和灾变时期通风网络解算的数学模[J].辽宁工程技术大学学报.2003(4):P436~438
    66、陈建宏.可视化集成采矿CAD系统研究.博士学位论文,长沙:中南大学,2004年9月
    67、倪景峰.矿井通风仿真系统可视化研究.博士学位论文,辽宁阜新:辽宁工程技术大学,2004年
    68、王志荣.受限空间气体爆炸传播及其动力学过程研究.博士学位论文,南京:南京工业大学,2005年
    69、王志荣,蒋军成.预测管道中气体爆炸超压的改进ME法[J].化工学报,2004,55(9):1510~1514
    70、王洪德.基于网络流理论的火灾时期风流控制系统研究[J].大连铁道学院学报,2005(3):59~63
    71、戚宜欣,王省身.矿井火灾时期风流流动及通风系统变化的动态模拟[J].中国矿业大学学报,1995(3):19~23
    72、王德明,王省身.矿井火灾计算机模拟研究[J].中国安全科学学报,1996(2):1~4
    73、范隆声,鲍杰,娄海关.矿井火灾期间风流状态模拟方法分析[J].中国煤炭,2001(12):40~42
    74、魏学勇,武强,赵树贤.FLAC~(3D)在矿井防治水中的应用[J].煤炭学报,2004(6):704~707
    75、韩程辉,刘文生.地下水模拟系统(GMS)与矿井防治水[J].矿业安全与环保,2005(1):25-26,41
    76、武强,董东林,石占华.可视化地下水模拟评价新型软件系统(Visual Modflow)与矿井防治水[J].煤炭科学技术,2000(2):18~20
    77、张文泉,刘伟韬,王振安.煤矿底板突水灾害地下三维空间分布特征[J].中国地质灾害与防治学报,1997(1):39~45
    78、林道兴.煤矿水害及防治方法探讨[J].焦作工学院学报(自然科学版),2000(2):157~158
    79、赵苏启.煤矿突水灾害快速治理的配套技术[J].煤炭科学技术,2001(2):26~28
    80、俞志新,丛振,朱学军.矿井防治水安全技术探讨[J].辽宁工程技术大学学报(自然科学版),2002(3):284~285
    81、李印龙.煤矿生产建设中水灾事故的预防与治理[J].煤炭技术,2003(8)
    82、徐星宽.矿井充水机理、水害成因与治理[J].山东科技大学学报(自然科学版),2003(4):21~23
    83、刘伟韬,张文泉,李庆忠.水文地质信息可视化管理系统的开发及其在矿井水灾防治中的应用[J].中国地质灾害与防治学报,2000(2):78~80
    84、孙佳,孙殿阁,蒋仲安.矿井应急救援中最佳避灾路线的改进Dijkstra算法实现[J].中国矿业,2005(6):46~48
    85、宋元明,刘志军,王万生.快速钻孔技术在煤矿应急救援中的实践[J].中国安全科学学报,2004(6):63~65
    86、李兴东,耿炜伟.矿井火灾避灾应急途径的探讨[J].矿业安全与环保,2001(4):28~30
    87、李舒伶,曹坤,彭连会等.井下最佳避灾路线确定[J].辽宁工程技术大学学报(自然科学版),1999(1):27~29
    88、J.K.沃尔斯基(美国).有助于选择最佳救灾方案的矿井火灾实时模拟器.Proceeding of 5th US Mine Ventilation Symposium,82~87
    89、王德明,王省身.计算机选择矿井火灾时期最佳避灾路线的研究[J].中国矿业大学学报,1994(3):27~32
    90、宇德明,冯长根,曾庆轩等.爆炸的破坏作用与伤害分区[J].中国安全科学学报,1995增刊:13~17
    91、马云东.矿井通风系统可靠性分析理论研究.阜新矿业学院学报,1995,14(3):5~14
    92、贾进章.矿井火灾时期通风系统可靠性研究.辽宁工程技术大学博士学位论文.2004年
    93、金星,洪延姬.工程系统可靠性数值分析方法[M].国防工业出版社,2002.7
    94、郭永基.可靠性工程原理[M].清华大学出版社,2002:62-76
    95、程磊,杨运良,熊亚选.矿井通风系统评价指标体系的研究.中国安全科学学报, 2005(3):91~94
    96、李龙清,吴奉亮.基于ObjectARX的通风设计参数组织方法研究[J].煤炭学报.2004,29(5):576~580.
    97、徐俊明.图论及其应用[M].中国科学技术大学出版社,1998年
    98、周利华.矿井通风网络最小割集不交和可靠度的计算[J].湘潭矿业学院学报 2003,18(1):10~12.
    99. Xing Yuzhong, Kang Lixun. Based on Three Dimension Tunnels Entitys the Great Calamity Dynamic Simulation Research of Coal Mine. The 3rd China International Fornm on Work Safety Proceedings, Sept. 19-21,2006 Beijing, P.R.China, Pages: 653~661
    100. Xinquan Zhou, Haiyan Wang, Hongze Zhao. Rollback Law of Reverse Smoke Flow in a Horizontal Airway during Mine Fire. Univ. Sci. Technol. Beijing(in Chinese), 26(2004), p.118.
    101. Xing Yuzhong. Research on Figure Mine and Conflagration Message Support System. 13th International Conference on Coal Research, 26-29 October, 2004 Shanghai China. 254~259
    102. Christopher B. Jones, Alia I. Abdelmoty, Gaihua Fu Maintaining Ontologies for Geographical Information Retrieval on the Web Lecture Notes in Computer Science Volume: Volume 2888/2003 Date: October 2003 Pages:934~951
    103. Marie K. Svensson, Sofia Thorsson, Sven Lindqvist geographical information system model for creating bioclimatic maps-examples from a high, mid-latitude International Journal of Biometeorology Issue: Volume 47, Number 2 Date:March city 2003 Pages: 102~112
    104. S. Levachkin M. Torres M. Moreno, R. Quintero Simultaneous Segmentation-Recognition-Vectorization of Meaningful Geographical Objects in Geo-Images Lecture Notes in Computer Science Volume: Volume 2905/2003 Date: November 2003 Pages: 63~642
    105. Vieri Del Bianco, Luigi Lavazza, Marco Mauri, Giuseppe Occorso, Towards UML-Based Formal Specifications of Component-Based Reai-Time Software, Lecture Notes in Computer Science, Volume: Volume 2621 1 2003. Date: January 2003, Pages: 118-1340
    
    106. E. Marcos, B. Vela, J.M. Cavero, Extending UML for Object-Relational Database Design, Lecture Notes in Computer Science, Volume: Volume 2185/2001, Date: January 2001, Page: 225
    
    107. Sahay, N., Ray, S.K., Ahmed, I. etc., Improvement in ventilation in a fire affected mine, Journal of The South African Institute of Mining and Metallurgy 2003 (8): 465-475
    
    108. Zhong, M., Xing, W., Weicheng, F. etc., Airflow optimizing control research based on genetic algorithm during mine fire period, Journal of Fire Sciences 2003 (2): 131-153
    
    109. Qin, B.-T., Wang, D.-M., Chen, J.-H. etc.,Experimental investigation of high- performance three-phase foam for mine fire control, Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology 2005 (1): 11-15
    
    110. Zhou, F.-B., Wang, D.-M., Numerical analysis of backflow distance of smoke in mine fire, Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology 2004 (5): 499-503
    
    111. Michalski, S.R., The Jharia mine fire control technical assistance project: An analysis, International Journal of Coal Geology 2004 (1-2): 83-90
    
    112. Wang, H.-Y., Zhou, X.-Q., Fire buoyant plume model and characteristic parameters of a reverse smoke in a horizontal airway during mine fire, Meitan Xuebao/Journal of the China Coal Society 2004(2): 190
    
    113. Wang, D.-M., Zhou, F.-B., Zhou, Y., Fire resistance and its effect on fire-throttling during mine fire, Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining & Technology 2001(4), 328-331
    
    114. Struminski, A., Madeja-Struminska, B., The evaluation of fire hazard in underground coal mines, Mining Science and Technology '99 , 2002: 87-92
    
    115. Shi, Shiliang, Li, Husheng, Theory and application of developing escaping way selection system during fire in coal mine, Journal of Xiangtan Mining Institute 1998 (3), 8-13
    
    116. Danko, G., Mousset-Jones, P., High-temperature mine climate simulation model for predicting the effect of mine fire, Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology 100 , 1991, 51-58
    
    117. Wolski, Jan K., Mine fire real-time simulator can help in selecting the best fire fighting strategies, Proceedings of the US Mine Ventilation Symposium , 1991: 82-87
    
    118. Sahay, N., Ray, S.K., Ahmed, I., Improvement in ventilation in a fire affected mine, Journal of The South African Institute of Mining and Metallurgy 2003 (8), 465-475
    
    119. Lea, C.J., Computational modelling of mine fires, Mining Engineer London 1994 (394): 17-21
    
    120. Zhongli, Wu., Husheng, Li, Simulation of mine ventilation under the influence of mine fires, Proceedings of the US Mine Ventilation Symposium , 1993: 359-363
    
    121. Ren, T.X., Richards, M.J., Diagnostics of sealed coal mine fires with a knowledge based expert system, Proceedings of the US Mine Ventilation Symposium , 1993: 583-588
    
    122. Jia, J.-Z., Ma, H., Liu, J., Numerical simulation for temperature distribution during mine fire period, Journal of Liaoning Technical University (Natural Science Edition) 2003 (4), 460
    
    123. Jiang, Juncheng, Wang, Xingshen, Field-network model for mine fire smoke movement, Transactions of Nonferrous Metals Society of China 1997 (4): 164-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700