矿用钢丝在腐蚀环境中应力与腐蚀的交互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井提升用钢丝绳作为一种承载部件,连接着提升机和提升容器,担负着提升煤炭、矸石,下放材料、升降人员和设备的任务。在矿井提升过程中,钢丝绳承受着反复地拉伸、弯曲和扭转载荷;同时矿井的淋水作用使提升钢丝绳长期处于高湿和酸碱浸蚀的恶劣环境中,这导致提升钢丝绳的腐蚀现象十分严重。钢丝绳在服役过程中承受着外加应力与腐蚀的共同作用,其内部钢丝会产生极其危险的低应力破坏形式,在恒定应力或者慢速率应变状况下会产生应力腐蚀开裂;而在循环交变拉应力与腐蚀的共同作用下,钢丝又极易发生腐蚀疲劳断裂。针对这些存在问题,本文主要对矿用钢丝在特定矿井腐蚀环境中的电化学腐蚀行为、应力腐蚀行为及腐蚀疲劳行为进行研究,同时对钢丝腐蚀与应力之间的交互作用对钢丝寿命影响进行系统研究,开展的研究内容及获得的主要结论如下:
     (1)通过对不同表面处理方式的钢丝在不同腐蚀溶液中的极化曲线进行分析,获得了钢丝在不同条件下的阴、阳极反应过程,发现钢丝腐蚀过程中表面有腐蚀产物膜生成,膜对钢丝基体的保护作用与溶液的腐蚀性及浸泡时间有关。使用Tafel直线外推法对极化曲线进行分析,获得了钢丝在不同阶段的腐蚀电位及腐蚀电流密度的变化规律,发现裸钢丝在酸性溶液中的腐蚀速度最快,不同条件下钢丝的耐蚀性与浸泡时间有关。对钢丝在不同条件下的电化学阻抗谱(EIS)进行了测量,并通过Zsimpwin软件对Nyquist图进行拟合获得了钢丝在不同条件下的等效电路,对了解钢丝电化学腐蚀过程提供了理论依据。
     (2)采用光滑无缺口钢丝进行慢应变拉伸试验(SSRT),探讨不同外加电位、不同腐蚀溶液对钢丝应力腐蚀开裂(SCC)敏感性的影响,结果表明钢丝在三种溶液中均有SCC敏感性,其中酸性溶液中在外加Ecorr+400mV电位时,钢丝的抗拉强度最低,约1673MPa,平均延伸率也最低,约为14.71%。腐蚀溶液中拉伸断口形貌与空气中拉伸相似,以韧窝形貌为主,在SCC敏感区伴随有少量脆性断裂特征。酸性溶液中随着外加阳极电位的增大,由阳极溶解作用导致的SCC倾向降低,在开路电位下钢丝产生的SCC倾向较弱,而中性及碱性溶液中钢丝随着外加阳极电位的增大,由阳极溶解作用导致的SCC倾向增大;在外加阴极电位时,三种溶液中钢丝SCC机制均完全受氢脆机制影响,随外加阴极电位的负移,析氢反应剧烈导致氢含量明显增大,SCC敏感性增强。
     研制了一种钢丝恒应力腐蚀试验机,通过钢丝在不同溶液中、不同外加恒定应力下的应力腐蚀试验,获得了腐蚀电位与Nyquist图随时间的变化曲线,结果表明,外加应力会造成钢丝腐蚀电位的降低,这一规律受溶液腐蚀强弱影响,同时外加应力对钢丝的Nyquist图影响剧烈,其中试验1h后,酸性溶液中在外加1125MPa时低频容抗弧半径最大。
     (3)开展了钢丝的腐蚀疲劳试验,对比分析了钢丝在空气及不同腐蚀溶液中的S-N曲线,发现钢丝在酸性溶液中的腐蚀疲劳寿命最短,碱性次之,中性最大,应力与腐蚀对腐蚀疲劳寿命的降低有相互促进的作用。通过不同应力比、不同频率下钢丝的腐蚀疲劳试验结果发现,应力比越小、频率越高时,腐蚀疲劳寿命越小,裂纹萌生主要与钢丝本身缺陷及形变活化有关,而应力比越大,频率越小时,钢丝腐蚀疲劳寿命越大,裂纹萌生主要受阳极溶解机制控制。通过对不同外加电位下钢丝的腐蚀疲劳行为研究发现,阳极极化作用能大大降低钢丝的腐蚀疲劳寿命,钢丝断口疲劳源处有明显韧窝形貌,韧窝区面积随着外加阳极电位的增大而增加;外加阴极极化电位时,阴极反应生成的氢无法进入钢丝基体,腐蚀疲劳寿命由于对阳极溶解反应的有效阻碍而大大增大,钢丝断口较为平滑,显示明显的脆性断裂机制。
     (4)通过有限元建模探讨了不同大小点蚀坑、不同外加应力对钢丝点蚀坑内部应力分布的影响规律,发现外加拉应力越大,点蚀坑底部应力集中越明显,等效应力越大,应力集中处有沿垂直于外加拉应力的方向向外扩展的趋势(主裂纹扩展方向),而当外加拉应力相同时,腐蚀程度越严重,点蚀坑半径越大,等效应力越大,主裂纹向垂直于外加拉应力的方向扩展的趋势越明显。分析了复杂应力状态(包括应力比及加载频率)对钢丝点蚀坑内应力分布的影响,发现不同应力条件下钢丝点蚀坑附近等效应力分布相差不大,各点的等效应力与距离点蚀坑底部的位置有关。通过理论计算了在不同外加应力下,不同直径的点蚀坑底部阳极腐蚀电流密度(iσ)的大小,结果发现提高外加拉应力或增大点蚀坑半径均能增大iσ。
As a load bearing member to connect the hoist and lifting container, wire ropefor mine hoisting has the mission of promotion of coal and gangue, decentralization ofmateirals, movement of personnel and equipment. During mine hoisting, the ropes aresubjected to externally applied tensile load, cyclic axial load and cyclic bending load.While the corrosion phenomenon of steel wire is very serious for the harshenvrionment of high humidity and acid erosion. Furthermore, wire rope will enduregreat applied stress in the process of servicethat produce extremelydangerous low-stress damage form under the combined action of stress and corrosion,therefore, constant stress or slow rate of strain conditions will result in stresscorrosion cracking. In the joint action of cyclic tensile stress, steel wire is prone toproduce corrosion fatigue fracture. In view of this situation, the paper focuses onimprove electrochemical corrosion behavior, stress corrosion behavior and corrosionfatigue behavior of steel wire for hoisting under specific mine corrosive environmentas well as systematically investigate the impacts of corrosion-stress interaction onlifetime of steel wire. The main research contents and the resulting conclusions are asfollows:
     (1) Through analysis of polarization curves of the steel wire in different corrosivesolutions with different surface treatments to obtain the anode and cathode reactionprocess of wire under different conditions. The results showed that corrosion productfilm was generated in the corrosion process of steel wire. The protection of the film tosteel substrate was related to the solution of corrosive and soaking time. The variationof corrosion potential and corrosion current density in different stages was acquiredby the analysis of the polarization curve using Tafel linear extrapolation. The resultssuggest that the corrosion rate of bare wire is the fastest during the whole process ofsoaking in acid solution, and the corrosion resistance of steel wire under differentconditions was associated with immersion time. Electrochemical impedancespectroscopy (EIS) of steel wire under different conditions were measured. Theequivalent circuit of steel wire under different conditions was acquired by usingZsimpwin software to fit the Nyquist diagram, which provided a theoretical basis tostudy the electrochemical corrosion process.
     (2) Slow strain rate tensile test (SSRT) was conducted with smooth wirewithout gap to investigate the influence of different applied potentials and different corrosion solutions on the sensitivity of stress corrosion crack. The result suggestedthat the steel wires in three different solutions had SCC susceptibility. The steel wirein acid solution under Ecorr+400mV had the minimum tentile strength of about1673MPa, and the minimum average elongation of about14.71%. The fracturemorphologies of steel wires in corrosion solutions were similar to the morphology inair, which were mainly the dimple pattern. The SCC sensitive area was accompaniedby minor brittle fracture characteristics. The tendency of SCC caused by anodicdissolution will decrease with the raise of the anode potential in acid solution. And theSCC sensitivity under the open circuit potential was weaker. However, the tendencyof SCC created by anodic dissolution will increase with the raise of additional anodepotential in neutral and alkaline solution. The steel wire SCC mechanisms arecompletely influenced by hydrogen embrittlement mechanism in these three solutionswhen they are couple with cathode potential. Vigorous hydrogen evolution reactioncontribute to obvious hydrogen content increase and enhancement of SCC sensitivityalong with the negative shift of applied cathode potential.
     A constant stress corrosion testing machine of steel wire is developed to acquirethe corrosion potential and Nyquist curves over time through stress corrosion test ofthe steel wire in different solutions and different applied constant stress. It turned outthat the applied stress may reduce steel corrosion potential which is influenced bysolution corrosion strength. The influnce of applied stresses on the Nyquist diagram ofsteel wire is violent. The radius of low-frequency capacitive when applied1125MPain acid solution is the biggest after1h.
     (3) Corrosion fatigue tests of steel wires were conducted to compare the S-Ncurves in the air and different corrosive solutions. The findings showed that the wirehad shortest corrosion fatigue lifetime in acidic solution with alkaline take the secondplace, and then followed by neutral solution. Moreover, stress and corrosion had amutual promotion relationship on reduction of fatigue lifetime. The results of steelcorrosion fatigue test under different stress ratio and different frequency showed thatthe smaller of the stress ratio and higher of the frequency had a shorter corrosionfatigue lifetime of steel wire. The initiation of crack is mainly controlled by anodicdissolution mechanism. The corrosion fatigue behavior of steel wire under differentapplied potential study showed that anode polarization effect could significantlyreduce the corrosion fatigue lifetime of the wire and obvious fracture morphologymay occurred at wire fracture fatigue source. The area of dimple region may increase with the raise of applied anode potential. When applied with cathodic polarizationpotential, the hydrogen produced by cathodic reaction of hydrogen was not able toenter into the steel substrate and the corrosion fatigue lifetime may significantlyprolonged as a result of effective obstruction of anodic dissolution reaction. Therelatively more smooth fracture suggested a clear and definite brittle fracturemechanism.
     (4) The effect of different pits sizes and different applied stress on internal stressdistribution of pit was investigated through finite element model. And the findingsindicated that the greater of the external tensile stress, the tendency of stressconcentration at the bottom of pits were more obvious with which accompanied byhigher equivalent stress. The stress concentration area was likely to extend out alongby the direction of applied stress vertical line (main crack propagation direction). Thelarger radius of pits and stronger equivalent stress were also visible for the severecorrosion tend when the external stress is the same.The extension tendency was moreobvious for main crack vertical to the applied stress. The effect of complex stress state(including stress ratio and loading frequency) on steel wire pits stress distribution wasanalyzed to find that different conditions may lead to similar equivalent stressdistribution around the pits and equivalent stress of each point was relevant to thedistance from the bottom of the pits. The magnitude of anodic corrosion currentdensity (iσ) at the bottom of the pits of different diameter was calculated underdifferent applied stress by theoretical calculation to find that improved external tensilestress and increased pits radius was able to increase iσ.
引文
[1]任建华,王伟,魏效玲,等.矿用钢丝绳的管理和维护[J].矿山机械,2005,33(8):52-54.
    [2] Oh K T, Hwang C J, Park Y S, et al. In vitro corrosion resistance of orthodontic superstainless steel wire [J]. Journal of The Electrochemical Society,2002,149(9): B387-B392.
    [3] Mirjalili M, Momeni M, Ebrahimi N, et al. Comparative study on corrosion behaviour ofNitinol and stainless steel orthodontic wires in simulated saliva solution in presence offluoride ions [J]. Material Science and Engineering: C,2013,33:2084-2093.
    [4] Suzumura K, Nakamura S. Environmental factors affecting corrosion of galvanized steelwires [J]. Journal of materials in civil engineering,2004,16(1):1-7.
    [5]张杰,王秀通,侯保荣,李焰.几种热浸镀层钢丝在青岛海水中腐蚀行为的对比研究[J].海洋科学,2005,29(7):12-16.
    [6]张杰,于振花,李焰. Zn-55%Al-Si合金镀层钢丝在海水中的耐蚀性能[J].材料研究学报.2008,22(4):347-352.
    [7]杨栋,陈建设,韩庆,刘奎仁.钢丝热镀Zn-Al-Mg合金层及其电化学腐蚀行为[J].材料保护,2008,41(11):1-4.
    [8]黄跃进. Zn-5%Al-RE合金镀层钢丝的形貌与耐腐蚀分析[J].热处理,2003,18(4):28-31.
    [9]孙海燕,范永哲,马瑞娜,杜安,刘海.钢丝热浸镀纯Zn与单镀Galfan合金的对比[J].腐蚀科学与防护技术,2008,20(1):41-43.
    [10]周海军,宗永.1Cr18Ni9不锈钢丝耐腐蚀性能检测方法探讨[J].金属制品,2011,37(4):79-81.
    [11]赵永韬,刘昌飞,高晓健,等.电化学方法检测混凝土横梁中高强钢丝的腐蚀[J].中国腐蚀与防护学报,2003,23(6):362-366.
    [12] Yang W J, Yang P, Li X M, et al. Influence of tensile stress on corrosion behaviour ofhigh-strength galvanized steel bridge wires in simulated acid rain [J]. Materials andCorrosion-Werkstoffe und Korrosion,2012,63(5):401-407.
    [13]徐伟,张敏.受腐蚀桥梁钢丝的力学性能和剩余强度[J].世界桥梁,2006,2:54-58.
    [14]马莹,叶见曙,邹黎琼,等.悬索桥主缆钢丝腐蚀及力学性质变化分析[J].中外公路,2008,28(4):144-149.
    [15]胡坚石.预应力钢丝的应力腐蚀[J].金属制品,2002,28(2):5-8.
    [16] Vu N A, Castel A, Fran ois R. Effect of stress corrosion cracking on stress-strain response ofsteel wires used in prestressed concrete beams [J]. Corrosion Science,2009,51(6):1453-1459.
    [17] Toribio J, Ovejero E. Failure analysis of cold drawn prestressing steel wires subjected tostress corrosion cracking [J]. Engineering Failure Analysis,2005,12(5):654-661.
    [18]黎学明,陈大华,陈建文,等.模拟酸雨溶液中温度对桥梁索缆镀锌钢丝腐蚀行为影响[J].腐蚀科学与防护技术,2010,22(1):14-17.
    [19] Díaz B, Freire L, Nóvoa X R, et al. Electrochemical behaviour of high strength steel wires inthe presence of chlorides [J]. Electrochimica Acta,2009,54(22):5190-5198.
    [20] Jiang J H, Ma A B, Weng W F, et al. Corrosion fatigue performance of pre-split steel wiresfor high strength bridge cables [J]. Fatigue&Fracture of Engineering Materials&Structures,2009,32(9):769-779.
    [21] Topic M, Allen C, Tait R. The effect of cold work and heat treatment on the fatiguebehaviour of3Cr12corrosion resistant steel wire [J]. International Journal of Fatigue,2007,29(1):49-56.
    [22] Ma Y, Ye J S, Ge W G, et al. Hydrogen embrittlement and corrosion fatigue performance ofgalvanized steel wires for high strength bridge cables [J]. Advanced Materials Research,2011,146:134-142.
    [23] Alvar E N, Mohandesi J A. Fatigue damage accumulation in cold-drawn patented steel wireunder variable loading [J]. Materials&Design,2010,31(4):2018-2024.
    [24] Brighenti R, Carpinteri A, Vantadori S. Influence of residual stresses on fatigue crackpropagation in pearlitic cold-drawn steel wires [J]. Materials Science Forum,2011,681:229-235.
    [25] Lambrighs K, Verpoest I, Verlinden B, et al. Influence of non-metallic inclusions on thefatigue propoerties of heavily cold drawn steel wires [J]. Procedia Engineering,2010,2(1):173-181.
    [26] Suliga M, Muskalski Z, Wiewiorowska S. The influence of drawing speed on fatiguestrength TRIP steel wires [J]. Archives of Civil and Mechanical Engineering,2009,9(3):97-107.
    [27] Toribio J, Gonzalez B, Matos J C, et al. Micro-and macro-approach to the fatigue crackpropagation in high-strength pearlitic steel wires [J]. K ey Engineering Materials,2007,348:681-684.
    [28]张德坤.钢丝的微动磨损及损伤疲劳行为研究[D].徐州:中国矿业大学出版社,2005.
    [29] Wang D G, Zhang D K, Ge S R. Fretting-fatigue behavior of steel wires in low cycle fatigue[J]. Materials&Design,2011,32(10):4986-4993.
    [30] Zhang D K, Ge S R, Qiang Y H. Research on the fatigue and fracture behavior due to thefretting wear of steel wire in hoisting rope [J]. Wear,2003,255(7):1233-1237.
    [31] Ahmad S, Bhattacharjee B. A simple arrangement and procedure for in-situ measurement ofcorrosion rate of rebar embedded in concrete [J]. Corrosion science,1995,37(5):781-791.
    [32] Millard S G, Law D, Bungey J H, et al. Environmental influences on linear polarisationcorrosion rate measurement in reinforced concrete [J]. NDT&E International,2001,34(6):409-417.
    [33]姜丽娜,杜敏,杜林.弱极化技术用于海水中金属腐蚀监测的初探[J].腐蚀科学与防护技术,2005,17(3):192-194.
    [34]冯业铭,耿小兰,郑立群.弱极化法腐蚀速度测试仪的研制[J].传感器技术,1999,18(5):38-40.
    [35]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004,139.
    [36] Flitt H J, Schweinsberg D P. A guide to polarization curve interpretation: deconstruction ofexperimental curves typical of the Fe/H2O/H+/O2corrosion system [J]. Corrosion Science,2005,47(9):2125-2156.
    [37]曹楚南,张鉴清.电化学阻抗谱导论[M],北京,科学出版社,2002.
    [38] Stern M, Geary A L. Electrochemical polarization I. A theoretical analysis of the shape ofpolarization curves [J]. Journal of the Electrochemical Society,1957,104(1):56-63.
    [39]杨熙珍,杨武.金属腐蚀电化学热力学—电位-pH图极其应用[M],北京:化学工业出版社,1991,1.
    [40] Gerischer H, Mehl W. Zum Mechanismus der Kathodischen Wasserstoffabscheidung anQuecksilber, Silber und Kupfer [J]. Zeitschrift für Elektrochemie, Berichte derBunsengesellschaft für physikalische Chemie,1955,59(10):1049-1059.
    [41] Gerischer H. Elektrodenpolarisation bei berlagerung von Wechselstrom und Gleichstrom[J]. Z. Elektrochem.,1954,58:9.
    [42] Epelboin I, Gabrielli C, Keddam M, et al. A model of the anodic behaviour of ironinsulphuric acid medium [J]. Electrochimica Acta.1975,20(11):913-916.
    [43] Epelboin I, Keddam M, Mattos O R, et al. The dissolution and passivation of fe and fe-cralloys in acidified sulphate medium: influences of ph and cr content [J]. Corrosion Science,1979,19(12):1105-1112.
    [44] Schweickert H, Lorenz W J, Friedburg H. Impedance Measurements of the Anodic IronDissolution [J]. Journal of the Electrochemical Society.1980,127(8):1693-1701.
    [45] Epelboin I, Keddam M, Mottos O R, et al. The dissolution and passivation of Fe and Fe-Cralloys in acidified sulphate medium: Influences of pH and Cr content [J]. Corrosion Science,1979,19(12):1105-1112.
    [46] Keddam M, Mattos O R, Takenouti H. Mechanism of anodic dissolution of iron-chromiumalloys investigated by electrode impedances—I. Experimental results and reaction model [J].Electrochimica Acta.1986,31(9):1147-1158.
    [47] Armstrong R D, Henderson M. Thirsk H R. The impedance of chromium in theactive-passive transition [J]. Electranal. Chem.1972,35(1):119-128.
    [48] Armstrong R D, Henderson M. Impedance plane display of a reaction with an adsorbedintermediate [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1972,39(1):81-90.
    [49] Armstrong R D, Firman R E. Impedance of titanium in the active-passive transition [J].Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1972,34(2):391-397.
    [50] Chavarin J U. Electrochemical investigations of the activation mechanism of aluminum [J].Corrosion,1991,47(6):472-479.
    [51] Uruchurtu J C, Dawson J L. Noise analysis of pure aluminum under different pittingconditions [J]. Corrosion,1987,43(1):19-26.
    [52] Krakowiak S, Darowicki K, lepski P. Impedance of metastable pitting corrosion [J]. Journalof Electroanalytical Chemistry,2005,575(1):33-38.
    [53] Robinson M J, Jackson N C. Exfoliation corrosion of high strength Al–Cu–Mg alloys: effectof grain structure [J]. British Corrosion Journal,1999,34(1):45-49.
    [54] De Damborenea J J, Conde A. Intergranular corrosion of8090Al–Li: interpretation byelectrochemical impedance spectroscopy [J]. British Corrosion Journal,2000,35(1):48-53.
    [55] Keddam M, Kuntz C, Takenouti H, et al. Exfoliation corrosion of aluminium alloysexamined by electrode impedance [J]. Electrochimica Acta,1997,42(1):87-97.
    [56] Kwok C T, Cheng F T, Man H C. Synergistic effect of cavitation erosion and corrosion ofvarious engineering alloys in3.5%NaCl solution [J]. Materials Science and Engineering: A,2000,290(1):145-154.
    [57] Tomlinson W J, Moule R T, Blount G N. Cavitation erosion of pure iron in distilled watercontaining chloride and chromates [J]. Tribology international,1988,21(1):21-25.
    [58]林翠,陈三娟,何文,赵立才.酸雨对低碳钢腐蚀行为的影响[J].钢铁研究学报,2011,23(6):18-23.
    [59] Huang C A, Chang Y Z, Chen S C. The electrochemical behavior of austenitic steel withdifferent degrees of sensitization in the transpassive potential region in1mol/L H2SO4containing chloride [J]. Corrosion Science,2004,46(6):1501-1513.
    [60]钟庆东,王超,鲁雄刚.304不锈钢钝化膜在不同溶液中的半导体导电行为[J].中国腐蚀与防护学报,2008,28(6):341-344.
    [61] Cheng Y F, Wilmott M, Luo J L. Analysis of the role of electrode capacitance on theinitiation of pits for A516carbon steel by electrochemical noise measurements [J]. CorrosionScience,1999,41(7):1245-1256.
    [62] Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater [J]. Corrosion Science,2005,47(7):1678-1693.
    [63] Melchers R E. Mathematical modeling of the diffusion controlled phase in marine immersioncorrosion of mild steel [J]. Corrosion Science,2003,45(5):923-940.
    [64] Melchers R E. Modelling of marine immersion corrosion for copper-bearing steels [J].Corrosion Science,2003,45(10):2307-2323.
    [65] Jeffrey R, Melchers R E. Bacteriological influence in the development of iron sulphidespecies in marine immersion environments [J]. Corrosion Science,2003,45(4):693-714.
    [66] Melchers R E. Effect of small compositional changes on marine immersion corrosion of lowalloy steels [J]. Corrosion Science,2004,46(7):1669-1691.
    [67] Albarran J L, Aguilar A, Martinez L, et al. Corrosion and cracking behavior in an API X-80steel exposed to sour gas environment [J]. Corrosion,2002,58(9):783-792.
    [68] Koh S U, Kim J S, Yang B Y, et al. Effect of line pipe steel microstructure on susceptibilityto sulfide stress cracking [J]. Corrosion,2004,60(3):244-253.
    [69] Eadie R L, Szklarz K E, Sutherby R L. Corrosion fatigue and near-neutral pH stresscorrosion cracking of pipeline steel and the effect of hydrogen sulfide [J]. Corrosion,2005,61(2):167-173.
    [70] Zhao M C, Yang K. Strengthening and improvement of sulfide stress cracking resistance inacicular ferrite pipeline steels by nano-sized carbonitrides [J]. Scripta Materialia,2005,52(9):881-886.
    [71] Hoar T P, Hinse J G. The stress corrosion cracking of austenitic stainless steel [J]. J IronSteel Inst,1956,182:124.
    [72] Rhodes P R. Mechanism of chloride stress corrosion cracking of austenitic stainless steels [J].Corrosion,1969,25(11):462-472.
    [73] Hoar T P, Scully J C. Mechanochemical Anodic Dissolution of Austenitic Stainless Steel inHot Chloride Solution at Controlled Electrode Potential [J]. Journal of the ElectrochemicalSociety,1964,111(3):348-352.
    [74]褚武扬.氢损伤和滞后断裂[M].冶金工业出版社,1988.
    [75] Galvele J R. Comments on “Notes on the surface mobility mechanism of stress-corrosioncracking”, by K. Sieradzki and FJ Friedersdorf [J]. Corrosion science,1994,36(5):901-910.
    [76] Newman R C, Shahrabi T, Sieradzki K. Film-induced cleavage of alpha-brass [J]. Scriptametallurgica,1989,23(1):71-74.
    [77] Lépinoux J, Magnin T. Stress corrosion microcleavage in a ductile fcc alloy [J]. MaterialsScience and Engineering: A,1993,164(1):266-269.
    [78] Galvele J R. A stress corrosion cracking mechanism based on surface mobility [J]. CorrosionScience,1987,27(1):1-33.
    [79] Jones D A. A unified mechanism of stress corrosion and corrosion fatigue cracking [J].Metallurgical Transaction A,1985,16(6):1133-1141.
    [80]曹楚南.新材料研究—第二节中国材料研讨会论文集[K],上册,武汉,1988:238.
    [81]褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂[M].北京科学出版社,2000:211.
    [82] Hoar T P. Stress-corrosion cracking [J]. Corrosion,1963,19(10):33lt-338t.
    [83] Hehemann R F. Stress corrosion cracking of stainless steels [J]. Metallurgical Transaction A,1985,16(11):1909-1923.
    [84] Haruyama S.Asawa S.Mechano-electrochemical dissolution of copper at reversibleelectrode potential [J]. Corrosion Science,1973,13:395-407.
    [85] Tanno K, Yashiro H, Kawamura Y, Umegal K, Kumagai N. Intergranular stress corrosioncracking of sensitized type304stainless steel in sodium sulfate at approximately100°C [J].Corrosion,1993,49(4):319-326.
    [86] Maier I, Galvele J R. Straining metal electrode technique as a SCC test-type304stainlesssteel in NaCl plus H2SO4solution [J]. Corrosion,1980,36(2):60-66.
    [87] Congleton J, Yang W. Effect of applied potential on the stress corrosion cracking ofsensitized type316stainless steel in high temperature water [J]. Corrosion Science,1995,37(3):429-444.
    [88] Mafredi C, Maler I A, Galvele J R. The susceptibility of type AISI304stainless steel totransgranular and intergranular SCC in40%MgCl2solution at100°C [J]. Corrosion Science,1987,27(9):887-903.
    [89] Parkins R N. Predictive approaches to stress corrosion cracking failure [J]. CorrosionScience,1980,20(2):147-66.
    [90]张耀丰,丁毅,陆晓峰.304不锈钢在H2S介质条件下的应力腐蚀[J].中国腐蚀与防护学报,2007,27(2):101-103.
    [91]郭浩,李光福,蔡珣,杨武. X70管线钢在不同温度近中性pH溶液中的应力腐蚀破裂行为[J].金属学报,2004,40(9):967-971.
    [92]刘智勇,翟国丽,杜翠薇,李晓刚. X70钢在酸性土壤模拟溶液中的应力腐蚀行为[J].金属学报,2008,44(2):209-214.
    [93]牛林,曹楚南,林海潮.1Cr18Ni9Ti不锈钢应力腐蚀开裂的电位扰动极化效应[J].金属学报,1998,34(9):959-965.
    [94] Trethewey K R, Paton M. Electrochemical impedance behaviour of type304L stainless steelunder tensile loading [J]. Materials Letters2004,58(27):3381-3384.
    [95] Oltra R, Keddam M. Application of impedance technique to localized corrosion [J].Corrosion Science,1988,28(1):1-5.
    [96] M C Petit, M Cid, M Puiggali, et al. An impedance study of the passivity breakdown duringstress corrosion cracking phenomena [J]. Corrosion Science,1990,31:491-496.
    [97] Park J J, Pyun S I, Na K H, et al. Effect of pasivity of the oxide film on low-pH SCC of API5L X-65pipeline steel in bicarbonate solution [J]. Corrosion,2002,58(4):329-336.
    [98] Bosch R W, Moons F, Zheng J H, et al. Application of electrochemical impedancespectroscopy for monitoring stress corrosion cracking [J]. Corrosion,2001,57(6):532-539.
    [99] Bosch R W. Electrochemical impedance spectroscopy for the detection of stress corrosioncracks in aqueous corrosion systems at ambient and high temperature [J]. Corrosion Science,2005,47(1):125-143.
    [100] Darowicki K. Theoretical description of the measuring method of instantaneous impedancespectra [J]. Journal of Electroanalytical Chemistry,2000,486(2):101-105.
    [101] Darowicki K, Orlikowski J, Lentka G. Instantaneous impedance spectra of a non-stationarymodel electrical system [J]. Journal of Electroanalytical Chemistry,2000,486(2):106-110.
    [102] Darowicki K, lepski P. Dynamic electrochemical impedance spectroscopy of the firstorder electrode reaction [J]. Journal of Electroanalytical Chemistry,2003,547(1):1-8.
    [103] Darowicki K, Orlikowski J, Arutunow A. Investigations of the passive layer cracking bymeans of dynamic electrochemical impedance spectroscopy [J]. Electrochimica acta,2003,48(28):4189-4196.
    [104] Loto C A, Cottis R A. Electrochemical Noise Generation During Stress Corrosion Crackingof the High-Strength Aluminum AA7075-T6Alloy [J]. Corrosion,1989,45(2):136-141.
    [105]乔利杰,高克玮.数学统计方法在应力腐蚀噪声中的应用[J].中国腐蚀与防护学报,1998,18(4):263-268.
    [106] Pessal N, Liu C. Determination of critical pitting potentials of stainless steel in aqueouschloride environments [J]. Electrochima Acta,1971,16(11):1987-2003.
    [107] Hickling J, Taylor D F, Andresen P L. Use of electrochemical noise to detect stresscorrosion crack initiation in simulated BWR environments [J]. Materials and Corrosion,1998,49(9):651-658.
    [108] Wang L H, Kai J J, Tsai C H, et al. Comparison of stress corrosion cracking susceptibilityof thermally-sensitized and proton-irradiated304stainless steel using electrochemical noisetechniques [J]. Journal of Nuclear Materials,1998,258:2046-2053.
    [109] Shi Z, Song G, Cao C, et al. Electrochemical potential noise of321stainless steel stressedunder constant strain rate testing conditions [J]. Electrochimica Acta,2007,52(5):2123-2133.
    [110] Leban M, Bajt, Legat A. Detection and differentiation between cracking processes basedon electrochemical and mechanical measurements [J]. Electrochimica Acta,2004,49(17):2795-2801.
    [111] Stewart J, Wells D B, Scott P M, et al. Electrochemical noise measurements of stresscorrosion cracking of sensitised austenitic stainless steel in high-purity oxygenated water at288°C [J]. Corrosion Science,1992,33(1):73-88.
    [112] Anita T, Pujar M G, Shaikh H, et al. Assessment of stress corrosion crack initiation andpropagation in AISI type316stainless steel by electrochemical noise technique [J].Corrosion Science,2006,48(9):2689-2710.
    [113] Hickling J, Taylor D F, Andresen P L. Use of electrochemical noise to detect stresscorrosion crack initiation in simulated BWR environments [J]. Materials and Corrosion,1998,49(9):651-658.
    [114] Alyousif O M, Nishimura R. Stress corrosion cracking and hydrogen embrittlement ofsensitized austenitic stainless steels in boiling saturated magnesium chloride solutions [J].Corrosion Science,2008,50(8):2353-2359.
    [115] Nishimura R, Maeda Y. SCC evaluation of type304and316austenitic stainless steels inacidic chloride solutions using the slow strain rate technique [J]. Corrosion science,2004,46(3):769-785.
    [116] Timofeev B T, FedorovaV A, Buchatskii A A. Intercrystalline corrosion cracking of powerequipment made of austenitic steels (Review)[J]. Materials Science,2004,40(1):48-58
    [117] Gutman E M, Soloviof G, Eliezer D. The mechanochemical behavior of type316L stainlesssteel [J]. Corrosion Science,1996,38(7):1141-1145.
    [118] Szklarska-Smialowska Z. Pitting corrosion of metals [M]. National Association ofCorrosion Engineers,1986.
    [119] Kolaczkowski S T, Plucinski P, Beltran F J, et al. Wet air oxidation: a review of processtechnologies and aspects in reactor design [J]. Chemical Engineering,1999,73(2):143.
    [120] Bruemmer S M. Grain boundary chemistry and intergranular failure of austenitic stainlesssteels [J]. Materials Science Forum,1980,46:309-334.
    [121] Was G S. Grain boundary chemistry and intergranular fracture in austenitic nickel-baseallovs-a review [J]. Corrosion,1990,46(4):319-330.
    [122] Briant C L, Banerji S K. Intergranularfailure in steel: the role of grain-boundarycomposition [J]. International Materials Reviews,1978,23(1):164-199.
    [123] Newman R C, Marcus P, Oudar J. Corrosion mechanisms in theory and practice [J]. NewYork, NY: Marcel Dekker,1995:331.
    [124] Tsai M C, Tsai W T, Lee J T. The effect of heat treatment and applied potential on the stresscorrosion cracking of alloy600in thiosulfate solution [J]. Corrosion Science,1993,34(5):741-757.
    [125] Gutman E M. Mechanochemistry of solid surfaces [M]. World scientific,1994.
    [126]古特曼,金石.金属力学化学与腐蚀防护[M].北京,科学出版社,1989.
    [127] Qiao L J, Mao S X. Thermodynamic analysis on the role of hydrogen in anodic stresscorrosion cracking [J]. Acta Metallurgica et Materialia,1995,43(11):4001-4006.
    [128] Lu B T, Luo J L, Norton P R, Ma H Y. Effects of dissolved hydrogen and elastic and plasticdeformation on active dissolution of pipeline steel in anaerobic ground water of near-neutralpH [J]. Acta Materialia,2009,57(l):41-49.
    [129] Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI316L at300K:back stress and effective stress [J]. Acta Materialia.1999,47(13):3617-3632.
    [130] Mughrabi H, Ungar T. Long-range internal stresses in deformed single-phase materials: thecomposite model and its consequences [J]. Dislocations in Solids,2002,11:343-411.
    [131] Stoltz, R E, Pelloux R M Mechanisms of corrosion fatigue crack propagation in Al-Zn-Mgalloys [J]. Metallurgical Transactions,1972,13(9):2431-2441.
    [132]刑志强,黄淑菊,宋余九,等.低碳钢的组织对腐蚀疲劳的影响[J].金属学报,1988,24(6):398-403.
    [133]业成,李强,周昌玉,黄文龙.0Crl8Ni9奥氏体不锈钢在低浓NaCl溶液中的腐蚀疲劳裂纹扩展规律及机理研究[J].压力容器,2002,17(2):27-31
    [134] R Ebara. Corrosion Fatigue Behavior of Structural Materials in Aggressive GasEnvironment [J]. International Fatigue Congress,2002:709-720.
    [135]肖纪美.应力作用下的金属腐蚀:应力腐蚀.氢致开裂.腐蚀疲劳.摩耗腐蚀[M].化学工业出版社,1990:413.
    [136]蒋祖国.飞机结构腐蚀疲劳[M].航空工业出版社,1991:66-70.
    [137]王荣.金属材料的腐蚀疲劳[M].西北工业大学出版社,2001.
    [138] Spitzig W A, Talda P M, Wei R P. Fatigue-crack propagation and fractographic analysis of18Ni (250) maraging steel tested in argon and hydrogen environments [J]. EngineeringFracture Mechanics,1968,1(1):155-166.
    [139]陈美英,牛康民. GC-4高强钢腐蚀疲劳裂纹扩展的研究[J].航空材料学报,1990,10(A09):44-50.
    [140] Gangloff R P. Corrosion fatigue crack propagation in metals [R]. Virginia Univ.,Charlottesville, VA (USA),1990.
    [141] Schütz W. Fatigue life prediction-a review of the state of the art [A]. In: Structural Failure,Product Liability and Technical Insurance [M]. Rossmanith H P, eds. Elsevier Science,Amsterdam,1993,49-60.
    [142] Pao P S,Gill S J. Feng C R. On fatigue crack in itiation from corrosion pits in7075-T735aluminum alloy [J]. Seripta Materialia,2000,43(5):391-396.
    [143] Ford F P. Quantitative examination of slip-dissolution and hydrogen-embritlement theoriesof cracking in aluminium alloys [J]. Metal Science,1978,12(7):326-334.
    [144] Magnin T, Coudreuses L. Corrosion fatigue mechanisms in bcc. stainless steels [J]. ActaMetallurgica,1987,35(8):2105-2113.
    [145] H rminen H, T rr nen K, Kemppainen M, et al. On the mechanisms of environmentsensitive cyclic crack growth of nuclear reactor pressure vessel steels [J]. Corrosion Science,1983,23(6):663-679.
    [146] Nagy P B. Fatigue damage assessment by nonlinear ultrasonic materials characterization [J].Ultrasonics,1998,36(1):375-381.
    [147] Prabhakaran R. Damage Assessment Through electrical resistance measurement in graphitefiber‐reinforced com posites [J].E xperim entalT echniques,1990,14(1):16-20.
    [148] McEvily A J, Wei R P. Fracture mechanics and corrosion fatigue [R]. Connecticut UnivStorrs Dept of Metallurgy,1972.
    [149] Sprowls D O. Evaluation of corrosion fatigue [J]. ASM International, ASM Handbook.,1987,13:291-302.
    [150] Owe Berg T G. Kinetics of absorption by metals of hydrogen from water and aqueoussolutions [J]. Corrosion,1960,16(4):198t-200t.
    [151] Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior ofmetals [J]. Trans. ASM,1960,52(1):54-80.
    [152] Doig P, Jones G T. A model for the initiation of hydrogen embrittlement cracking atnotches in gaseous hydrogen environments [J]. Metallurgical Transactions A,1977,8(12):1993-1998.
    [153] Akhurst K. A criterion for hydrogen-induced fracture[C]//ICF5, Cannes (France)1981.2013.
    [154] Shipilov S A. Environment-assisted cracking of materials as a significant cause ofengineering systems malfunctions [J]. Technol., Law Insur,1996,1(3):131-142.
    [155] Pao P S, Wei W, Wei R P. Effect of Frequency on Fatigue Crack Growth Response of AISI4340Steel in Water Vapor [R]. Lehigh univ bethlethlehem PA inst of fracture and solidmechanics,1977.
    [156] Nakasa K, Takei H, Kajiwara K. Effect of stress wave shape on the crack propagationvelocity in cyclic delayed failure [J]. Engineering Fracture Mechanics,1981,14(3):507-517.
    [157] Hirose Y, Mura T. Crack nucleation and propagation of corrosion fatigue in high-strengthsteel [J]. Engineering Fracture Mechanics,1985,22(5):859-870.
    [158] Pittinato G F. Hydrogen-enhanced fatigue crack growth in Ti-6Al-4V ELI weldments [J].Metallurgical Transactions,1972,3(1):235-243.
    [159] Gerberich W W, Moody N R, Jensen C L, et al. Hydrogen in Alpha/Beta and All BetaTitanium Systems: Analysis of Microstructure and Temperature Interactions on Cracking[J]. Hydrogen Effects in Metals,1980:731-744.
    [160] Chakrapani D G, Pugh E N. Hydrogen embrittlement in a Mg-Al alloy [J]. MetallurgicalTransactions,1976,7(2):173-178.
    [161] Meletis E I, Hochman R F. Crystallography of stress corrosion cracking in pure magnesium[J]. Corrosion,1984,40(1):39-45.
    [162] Oriani R A, Josephic P H. Equilibrium aspects of hydrogen-induced cracking of steels [J].Acta Metallurgica,1974,22(9):1065-1074.
    [163] Gerberich W W, Chen Y T. Hydrogen-controlled cracking-an approach to threshold stressintensity [J]. Metallurgical Transactions A,1975,6(2):271-278.
    [164] Suresh S, Ritchie R O. Mechanistic dissimilarities between environmentally influencedfatigue-crack propagation at near-threshold and higher growth rates in lower strength steels[J]. Metal Science,1982,16(11):529-538.
    [165] Haigh B P. Experiments on the fatigue of brasses [J]. Journal of the Institute of Metals,1917,18:55-86.
    [166] Gough H J, Sopwith D G. Atmospheric action as a factot in fatigue of metals [J]. JournalInstitute of Metals,1932,49(2):93-112
    [167] Johnson H H, Paris P C. Sub-critical flaw growth [J]. Engineering fracture,1968,1(1):3-45.
    [168] Vogelesang L B, Schijve J. Environmental effects on fatigue fracture mode transitionsobserved in aluminum alloys [J]. Fatigue&Fracture of Engineering Materials&Strctures,1980,3(1):86-98.
    [169] Yuen J L, Schmidt C G, Roy P. Effects of air and inert environments on the near thresholdfatigue crack growth behavior of alloy718[J]. Fatigue&Fracture of Engineering Materials&Structures,1985,8(1):65-76.
    [170] Sudarshan T S, Srivatsan T S, Harveyll D P. Fatigue processes in metals-role of aqueousenvironments [J]. Engineering Fracture Mechanics,1990,36(6):827-852.
    [171] Liaw P K, Leax T R, Donald J K. Fatigue crack growth behavior of4340steels [J]. ActaMetallurgica,1987,35(7):1415-1432.
    [172] Duquette D J. Environmental Effects on General Fatigue Resistance and Crack Nucleationin Metals and Alloys [R]. Rensselaer Polytechnic Inst Troy NY Dept of MaterialsEngineering,1978:335-363.
    [173] Marcus H L. Environmental Effects. II.-Fatigue-Crack Growth in Metals and Alloys [J].American Society for Metals,1979:365-383.
    [174] Pelloux R M, Genkin J M. Fatigue-corrosion [J]. La Fatigue des Matériaux et des Structures,Les Presses de l’Université de Montréal,1980:271-289.
    [175] Waterhouse R B. Fretting fatigue [M]. Elsevier Science&Technology,1981.
    [176] Dover W D. Fatigue crack growth in offshore structures [J]. Journal of the Society ofEnvironmental Engineers,1976,15(1).
    [177] Parkins R N. Some electrochemical aspects of the mechanisms of corrosion fatigue [J],Metal Science,1979,13(7):381-386.
    [178] May M E, Palin-Luc T, Saintier N, et al. Effect of corrosion on the high cycle fatiguestrength of martensitic stainless steel X12CrNiMoV12-3[J]. International Journal ofFatigue,2013,47:330-339
    [179] Genel K, Demirkol M, ürgen M. Effect of cathodic polarization on corrosion fatiguebehaviour of iron nitrided AISI4140steel [J]. International Journal of Fatigue,2002,24(5):537-543.
    [180] Bhuiyan M S, Mutoh Y, Murai T, et al. Corrosion fatigue behavior of extruded magnesiumalloy AZ61under three different corrosive environments [J]. International Journal ofFatigue,2008,30(10):1756-1765.
    [181] Shahzad M, Chaussumier M, Chieragatti R, et al. Surface characterization and influence ofanodizing process on fatigue life of Al7050alloy [J]. Materials&Design,2011,32(6):3328-3335.
    [182]赵江涛,韩根亮,李建政.腐蚀疲劳过程中瞬态极化电流的研究[J].甘肃科学学报,2000,4(12):54-57.
    [183]傅朝阳,郑家桑.钻井液中碳钢的氢扩散和腐蚀疲劳行为[J].中国腐蚀与防护学报,1997,4(17):263-268.
    [184]张跃,褚武扬,王燕斌,肖纪美. Ti-24Al-11Nb腐蚀疲劳断口形貌的研究[J].中国腐蚀与防护学报,1995,2(15):141-145.
    [185] Uhlig H H. Action of corrosion and stress on13%Cr stainless steel [J]. Metal Progress,1950,57(4):486.
    [186] Phelps E H, Loginow A W. Stress corrosion of steels for aircraft and missiles [J]. Corrosion,1960,16(7):325t-335t.
    [187] Leckie H P. Effect of environment on stress induced failure of high strength maraging steels[A]. In: Fundamental Aspects of Stress Corrosion Cracking [M],1969,411-419.
    [188] Barsom J M. Mechanisms of corrosion fatigue below KISCC [J]. International Journal ofFracture Mechanics,1971,7(2):163-182.
    [189] Gallagher J P. Corrosion fatigue crack growth rate behavior above and below KISCC insteels (Corrosion fatigue cyclic crack growth rate above and below environmental thresholdstress in steels as function of frequency and potentials, indicating hydrogen embrittlement)[J]. Journal of Materials,1971,6:941-964.
    [190] Meyn D A. An analysis of frequency and amplitude effects on corrosion fatigue crackpropagation in Ti-8Al-1Mo-1V [J]. Metallurgical Transactions,1971,2(3):853-865.
    [191] Rungta R, Begley J. The effect of applied potential on corrosion fatigue crack growth ratesof a Ni-Cr-Mo-V turbine disc steel in a room temperature12M NaOH solution [J].Corrosion,1979,35(12):544-550.
    [192] Murakami R, Ferguson W G. The effects of a marine environment on the corrosion fatiguecrack propagation rate of pure titanium and its weld metal [J]. Fatigue&Fracture ofEngineering Materials&Structures,1993,16(2):255-265.
    [193] Andresen P L, Ford F P. Life prediction by mechanistic modeling and system monitoring ofenvironmental cracking of iron and nickel alloys in aqueous systems [J]. Materials Science&Engineering: A,1988,103(1):167-184.
    [194] Hagn L. Life prediction methods for aqueous environments [J]. Materials Science&Engineering: A,1988,103(1):193-205.
    [195] Holroyd N J H, Hardie D. Factors controlling crack velocity in7000series aluminum alloysduring fatigue in an aggressive environment [J]. Corrosion Science,1983,23(6):527-546.
    [196]路民旭,郑修麟.应力比和频率对Gc-4钢CF裂纹扩展特性的影响[J].中国腐蚀与防护学报,1994,8(2):95-105.
    [197]蒋祖国.用于低周腐蚀疲劳寿命估算的几个模型[J].航空学报,1989,10(6):B254-B258.
    [198] Parkins R N. Aqueous environmental influence in corrosion fatigue [J]. The Metals Society,1983:36-46.
    [199] Elber W. Fatigue crack closure under cyclic tension [J]. Engineering Fracture Mechanics,1970,2(1):37-45.
    [200] Schijve J. Some formulas for the crack opening stress level [J]. Engineering FractureMechanics,1981,14(3):461-465.
    [201]李克唐.飞机结构损伤容限设计指南[M].航空工业部科技委出版社,1985.
    [202]刘艳萍,陈传尧,李建斌,李国清.14MnNbq焊接桥梁钢的疲劳裂纹扩展行为研究[J].工程力学,2008,25(4):209-213.
    [203]曹楚南,腐蚀电化学原理[M].化学工业出版社,2004,108.
    [204]周德璧,刘丹平,莫成千,等.304不锈钢在NaCl-(NH4)2SO4-NH4Cl溶液中的腐蚀行为[J].中国腐蚀与防护学报,2007,27(2):85-87.
    [205]杨栋,陈建设,韩庆,等.钢丝热镀Zn-Al-Mg合金层及其电化学腐蚀行为[J].材料保护,2008,41(11):2-3.
    [206] Liu Z, Zhai G, Du C, et al. Stress Corrosion Behavior of X70Pipeline Steel in SimulatedSolution of Acid Soil [J]. Acta Metallurgica Sinica,2008,44(2):209.
    [207]方明烨,李妙林.矿井提升机钢丝绳可靠性浅论[J].煤矿机械,1995,5:7-8
    [208]宋彤菊.浅谈提高矿用提升钢丝绳寿命的方法[J].科技情报开发与经济,2007,17(32):264-265.
    [209] Van Craen M, Haemers G, Adams F. SIMS analysis of the atmospheric corrosion of a55%Al-Zn coated steel wire [J]. Inrenational Journal of Mass Spectrometry and lon Physics,1983,46:531-534.
    [210] Bombara G, Bernabai U. The caustic stess corrosion cracking of high-strength steel wire [J].Corrosion Science,1981,21(6):409-415.
    [211] Shih C C, Shih C M, Su Y Y, et al. Galvanic current induced by heterogeneous structureson stainless steel wire [J]. Corrosion Science,2005,47(9):2199-2212.
    [212] Cheng Y F, Steward F R. Corrosion of carbon steels in high-temperature water studied byelectrochemical techniques [J]. Corrosion Science,2004,46(10):2405-2420.
    [213] Singh V, Lloyed G M, Wang M L. Effects of temperature and corrosion thickness andcomposition on magnetic measurements of structural steel wires [J]. NDT&E International,2004,37(7):525-538.
    [214]张杰,王秀通,侯保荣,等.几种热浸镀层钢丝在青岛海水中腐蚀行为的对比研究[J].研究报告,2005,29(7):12-16.
    [215] Arenas M A, Damborenea J J, Medrano A. Corrosion behavior of rare earth ion-implantedhot-dip galvanized steel [J]. Surface and Coated Technology,2002(158,159):615-619.
    [216]陈小文,白新德,薛祥义,等.钇离子注入锆的动电位极化曲线研究[J].稀有金属材料与工程,2004,33(2):153-155.
    [217] Carranza R M, Alvarez M G. The effect of temperature on the passive film properties andpitting behaviour of a Fe-Cr-Ni alloy [J]. Corrosion Science,1996,38(6):909-925.
    [218] Juttner K, Lorenz W J, Pantsch W. The role of surface in homogeneities in corrosionprocesses electrochemical impedance spectroscopy (EIS) on different aluminum oxide films[J]. Corrosion Science,1989,29(2):279-288.
    [219]顾宝珊,刘建华.铝合金在铈盐溶液中成膜过程的电化学阻抗谱研究[J].中国稀土学报,2007,25(2):210-215.
    [220] National Energy Board. Report of Public Inquiry Concerning Stress Corrosion Cracking onCanadian Oil and Gas Pipelines [M]. MH-2-95, November1996.
    [221] Wang Y Z, Revie R W, Parkins R N. Mechanistic Aspects of Stress Corrosion CrackInitiation and Early Propagation [A]. Corrosion [C]. Houston, TX: NACE,1999, paper No.0143.
    [222] Fang B Y, Han E H, Wang J Q, et al. Stress corrosion cracking of X-70pipeline steel innear neutral pH solution subjected to constant load and cyclic load testing [J]. Corros. Eng.Sci. Technol.,2007,42(2):123-129.
    [223] Thorbj rnsson I. Corrosion fatigue testing of eight different steels in an Icelandicgeothermal environment [J]. Materials&Design,1995,16(2):97-102.
    [224] Mhaede M. Influence of surface treatments on surface layer properties, fatigue andcorrosion fatigue performance of AA7075T73[J]. Materials&Design,2012,41:61-66.
    [225] Burns J T, Kim S, Gangloff R P. Effect of corrosion severity on fatigue evolution inAl–Zn–Mg–Cu [J]. Corrosion Science,2010,52(2):498-508.
    [226] Begum Z, Poonguzhali A, Basu R, et al. Studies of the tensile and corrosion fatiguebehaviour of austenitic stainless steels [J]. Corrosion Science,2011,53(4):1424-1432.
    [227] Papakyriacou M, Mayer H, Pypen C, et al. Effects of surface treatments on high cyclecorrosion fatigue of metallic implant materials [J]. International journal of fatigue,2000,22(10):873-886.
    [228] Nan Z Y, Ishihara S, Goshima T. Corrosion fatigue behavior of extruded magnesium alloyAZ31in sodium chloride solution [J]. International Journal of Fatigue,2008,30(7):1181-1188.
    [229] Ebara R. Corrosion fatigue crack initiation behavior of stainless steels [J]. ProcediaEngineering,2010,2(1):1297-1306.
    [230] Kondo Y. Prediction of fatigue crack initiation life based on pit growth [J]. Corrosion,1989,45(1):7-11.
    [231] Chen G S, Wan K C, Gao M, et al. Transition from pitting to fatigue crackgrowth—modeling of corrosion fatigue crack nucleation in a2024-T3aluminum alloy [J].Materials Science and Engineering: A,1996,219(1):126-132.
    [232] Ford F P. Quantitative examination of slip-dissolution and hydrogen-embrittlement theoriesof cracking in aluminium alloys [J]. Metal Science,1978,12(7):326-334.
    [233]许天旱,冯耀荣,宋生印,等.应力比对J55钢级疲劳裂纹断口形貌的影响[J].钢铁研究学报,2010,1:010.
    [234] Zhang L, Li X, Du C, et al. Effect of applied potentials on stress corrosion cracking of X70pipeline steel in alkali solution [J]. Materials&Design,2009,30(6):2259-2263.
    [235] Wang S Q, Zhang D K, Wang D G, et al. Stress Corrosion Behaviors of Steel Wires inCoalmine under Different Corrosive Mediums [J]. International Journal of ElectrochemicalScience,2012,7(8).
    [236] Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior ofmetals [J]. trans. ASM,1960,52:54-80.
    [237] GB/T15970.7-2000. Corrosion of metala and alloys-Stress corrosion testing-Part7: Slowstrain rate testing (ISO7539-7:1989). Standardization Administration of the People’sRepublic of China;2000. p.809.
    [238] Sharland S M. A mathematical model of crevice and pitting corrosion-the mathematicalsolution [J]. Corrosion Seienee.1988,28(6):621-630.
    [239] Gavrilov S, Vankeerghen M, Nelissen G, ea al. Finite element calculation of crackpropagation in type304stainless steel in diluted sulphuric acid solutions [J]. CorrosionScience.2007,49(3):980-999.
    [240] Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardening material [J].Journal of the Mechanics and Physics of Solids [J].1968,16(1):13-31.
    [241] Lapovok R. Damage evolution under severe plastic deformation [J]. International Journal ofFracture.2002,115(2):159-172.
    [242]黄毓晖.304不锈钢氯离子腐蚀的力-化学行为研究[D].华东理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700