石油系列绞车模块化设计与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绞车作为石油机械的主要传动部件,它能否安全稳定的运行,关系到整个石油机械系统的安全。由于国内目前绞车设计基本还停留在传统的设计理念上,已经适应不了专业化生产和快速反应市场的形势,也很难实现在大规模生产情况下产品质量的提高,因此制约了我国绞车制造行业的发展。
     本文重点针对石油系列绞车的模块化设计方法及绞车设计可靠性问题,在借鉴前人大量研究成果的基础上,利用现代数学、力学、计算机、结构可靠性等知识,通过理论推导、数值模拟、工程实例分析及配套软件开发等手段,开展石油系列绞车模块化设计与仿真技术研究。
     首先,从石油系列绞车的结构组成与工作原理入手,较全面地分析了绞车设计中总体参数设计、滚筒设计、刹车系统设计、传动系统设计等方面的主要设计理论,并对计算模型进行了理论推导和分析,为后面的模块化设计,提供理论支撑。
     其次,以钻机绞车、修井机绞车、采油车绞车等石油系列绞车为基型产品,在模块化设计理论的基础上,根据绞车的技术要求并结合现场实际,按照功能模块划分方法将绞车设计划分为滚筒设计、刹车系统、传动系统三个主要模块以及总体参数设计和其它零部件设计两个辅助模块,并采用VB计算机语言开发了石油系列绞车模块化设计系统。
     再次,采用有限元方法对650型修井机主滚筒及捞砂滚筒进行分析。对于主滚筒,根据起下钻及钢丝绳位置不同,将滚筒表面载荷分为六种工况分别计算,并分别讨论了不同工况下各关键部件的应力情况及改进措施。对于捞砂滚筒,分别分析了不同钢丝绳缠绕层数以及不同钢丝绳拉力下各关键部件的应力情况,并得出了对应的最大Mises应力拟合公式。同时,根据可靠性设计理论,考虑绞车设计尺寸、外部载荷及材料特性等方面的随机性,分别对六种工况下绞车主要部件的可靠性进行了分析。在此基础上,将绞车看成由各零件组成的串联系统,并对其系统可靠性进行分析。
     最后,详细研究分析了胀套联接的结构组成及工作原理,对胀套的力学模型进行了理论推导,并通过胀套联接在钻机绞车滚筒中的应用实例,验证了胀套联接在石油绞车中应用的可行性。
Drawworks is one of the main transmission components of petroleum machinery; its security and stability largely affect the safety of the whole petroleum machinery system. At the present time, the design of drawworks is still based on the traditional design ideas, which can not satisfy the requirements of professional production and fast reaction to market. The quality improvements of products during large scale production and the development of drawworks manufacture in China are limited.
     This dissertation mainly focuses on the modular design method and design reliability of petroleum-drawworks. Based on the predecessors' researches, knowledge of modern mathematics, mechanics, computer and structure reliability are used forthe modular design and simulation technology research of petroleum-Drawworks by academic deduction, numerical simulation, examples analysis and matched software development.
     Firstly, the structure components and working theories were studied. Main design theories such as general parameters design, drum design, braking system design and transmission system design and calculation model were analyzed. These studies provide theories support for modular design.
     Secondly, petroleum-drawworks modular design system was developed through adopting VB computer language. The drawworks of drilling rig, workover rig and swabbing truck were taken as the basic products of petroleum-drawworks. According to the technology requirements and combined with fieldwork, the drawworks design was divide into three main modules (drum, braking system and transmission system) and two assistant modules (general parameters design and other parts design) on the basis of modular design theory.
     Thirdly, the finite element technique was adopted to analyze the main drum and the bailing drum of 650HP workover rig. For the main drum, according to different position of tripping and wire line, the drum surface load was divided into 6 operating conditions for calculatation and the stress conditions of key parts in different operating conditions were studied so as to obtain improvement measures. For bailing drum, the numbers of banding layer for different wire lines and stress conditions of key parts with different wire lines pull were analyzed to get matched maximum Mises stress fitting formula. At the same time, according to reliability design theory, the reliability of the main parts of the drawworks in different operating conditions were analyzed, in consideration of the randomness of drawworks' design dimension, outside load and material behavior. Then, the drawworks was taken as a cascade system and the reliability of the system was analyzed.
     Finally, the structure and working principle of casing swage connection were studied and analyzed in details. The theory deduction was done for mechanical model of casing swage, and then the casing swage connection was applied in a drawworks of drilling rig, which proved that the application of casing swage connection in petroleum-drawworks was workable.
引文
[1]春刚.世界最大绞车[J].石油机械,1999,(5):56-56
    [2]王定亚.3000马力电驱动齿轮传动绞车设计研究[D].西南石油学院,2003
    [3]华东石油学院矿机教研室,石油钻采机械[M].北京.石油工业出版社,1980
    [4]张连山.国外石油钻机绞车的设计与计算[J].国外石油机械,1997,8(2):1-9
    [5]宜文.世界第一台特大功率绞车问世[J].石油机械,1998,26(2)
    [6]"API Specification for Rating of Drilling and Production Hoisting Equipment" API STDBA 8th Ed.1977
    [7]王文武.ZJ10-600钻机绞车设计及力学分析[D].西南石油学院,2001
    [8]李玉瑾.提升机钢丝绳弹性振动理论与动力学特性分析[J].起重运输机械,2003,(4):32-36
    [9]李铁萍,李之达,陈建桥,等.矿井提升机钢丝绳的粘弹性研究[J].2004,26(3):337-340
    [10]达维道夫布勒.矿山机械动力学[M].北京:煤炭工业出版社,1957
    [11]弗洛林斯基弗符.矿井提升钢丝绳动力学[M].北京:煤炭工业出版社,1957
    [12]徐芝伦.弹性力学简明教程[M].北京:人民教育出版社,1982
    [13]铁摩辛柯S,沃诺斯基S.板壳理论[M].北京:科学出版社,1977
    [14]裴俊峰,王华,任钦俊等.800KN修井机修井曲线的确定.石油矿场机械,1995,24(6):2-5
    [15]裴俊峰,陈国明,齐明侠等.修井曲线在修井机绞车滚筒轴疲劳强度计算中的应用.石油矿场机械,1997,27(1):27-30
    [16]Palmgren A.Die lebens dauer von kugellsgern.ZVer Deut Ing,1924,68:339-341
    [17]Miner M.A.Cumulative damagein in fatigue[J].Appl Mech,1945,i7A(159)
    [18]Wallgren G.FatigueTests with Stress Cycles of Varying Amplitude.FFA Report(No28).Stockholm:Aeronautical Rsearch Institute of Sweden,1949
    [19]锁超民.石油钻井绞车刹车系统的现状与发展[J].石油矿场机械,2005,34(1):105-106
    [20]白金田.基于ANSYS的带式输送机滚筒设计方法的研究[D].东北大学,2003
    [21]吕刚译.用于修井机绞车的盘式刹车[J].国外石油机械,1992,3(2):59-64
    [22]崔颖,刘国辉,黄胜利.石油钻机盘式刹车系统发展概况[J].石油仪器,1999,13(3):25-27
    [23]樊启蕴,林立,姜立国等.石油钻机盘式刹车制动系统[J].石油机械,1999,27(12):5-8
    [24]高向前,马青芳.石油钻机盘式刹车技术的新发展[J].石油矿场机械,2006,35(6):92-94
    [25]高向前.盘式刹车的发展及在石油钻采机械上的推广前景[J].石油机械,1994,22(5):53-55
    [26]樊启蕴,李维明,张嗣伟.用盘式刹车取代带式刹车的分析与建议[J].石油机械,1994,22(8):37-45
    [27]高向前.盘式刹车与带式刹车性能对比分析[J].石油矿场机械,1993,22(6)
    [28]朱小平,高纪念,张铜鋆.钻井绞车盘式刹车液压系统研究[J].西安石油学院学报,1999,14(6):52-54
    [29]PDas S.,Pa1M.C.Stresses and deformations of a conveyor power pulley shellunder exponential belt tensions[J].Computer & Structures,1987,1(27):787-795
    [30]张嗣伟,翟玉生,李康等.石油钻机绞车刹车块摩擦性能的试验研究[J].石油矿场机械,1983,12(2):35-48
    [31]王涛,朱文坚.摩擦制动器原理、结构与设计[M].广州:华南理工大学出版社,1992
    [32]范祖尧,倪庆兴,马登哲译.起重运输机械设计基础[M].北京:机械工业出版社,1988
    [33]郭绪欣,张波,邓德太,等.滚筒排绳装置的设计[J].石油矿场机械,2004,33(5):98-99
    [34]程仰瑞.调度绞车液压排绳装置的设计研究[J].同煤科技,2005,(4):1-2
    [35]赵云矿.矿用调度绞车排绳装置[J].煤矿机械,2008,29(9):133
    [36]吴娟,程仰瑞,寇子明.液压排绳装置的设计[J].2003,(7):1-2
    [37]田福祥.点盘式制动器几个重要设计参数的研究[J].工程机械,1987,(8):16-18
    [38]田福祥.卡钳盘式制动器的计算机辅助设计[J].汽车拖拉机,1987(8):16-18
    [39]马青芳,樊启蕴,张嗣伟.钻机盘式刹车制动力矩特性的理论研究[J].石油机械,1998,26(6):4-7
    [40]樊正祥.水刹车的选型计算[J].部探矿工程,1996,8(4):31-32
    [41]陈立周.机械优化设计方法[M].北京:冶金工业出版社,2005
    [42]钱令希.工程结构优化设计[M].水利电力出版社,1983
    [43]王光远,董明耀.结构优化设计[M].高等教育出版社,1987
    [44]程耿东.工程结构优化设计基础[M].水利电力出版社,1984
    [45]江爱川.结构优化设计[M].清华大学出版社,1986
    [46]李冬玲,陈增伟,王嘉,等.辅助刹车在钻机上应用现状及配套[J].机械工程师,2006,8:132-134
    [47]杨刚.我国链传动行业的发展状况[J].产业与市场,2004(3):16-17
    [48]冯定,张传立,张晓东.钻井机械模块化设计研究[J].江汉石油学院学报,1997,19(3):74-77
    [49]冯定,华北庄,周迪勋.智能支持环境的石油机械产品模块化设计研究[J].石油机械,1996,24(4):1-4
    [50]陈如恒.钻机的模块化设计系列[J].石油矿场机械,2004,33(4):1-8
    [51]李莉.ZJ30DBT钻机控制系统模块化设计及应用[J].石油机械,2005,33(12):48-49
    [52]赵亦芳,万秀颖,石明旺.基于VB开发可视化多功能教师管理系统[J].河南职技师院学报,2001,29(4):57-58
    [53]韩梅.Visual Basic应用系统的优化与调整[J].信息技术,2002,(5):42-43
    [54]郭巧菊,王红达.用VB开发图形化组态的编辑界面[J].计算机系统应用,1999,(6):64-66
    [55]车光宏.VB中实现单选菜单的方法[J].电脑开发与应用,2002(4):46
    [56]王小立.数据访问对象ADO及其应用[J].安徽电力职工大学学报,2002,7(1):34-38
    [57]张君.数据库设计与编程实例详解[M].北京:电子工业出版社,2001
    [58]Smith C.,Michael A.Visual Basic 6.0数据库编程[M].北京:清华大学出版社,1999
    [59]Microsoft Corporation,Visual Basic 6.0中文版程序员指南[M].北京:北京希望电子出版社,1998
    [60]陆骏.ADO和SQL在VB数据库程序开发中的使用[J].电脑知识与技术,2008,4(7):2018-2019
    [61]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007
    [62]林忠民.工程结构可靠性设计与估计[M].北京:人民交通出版社,1990
    [63]黄兴棣.工程结构可靠性设计[M].北京:人民交通出版社,1989
    [64]何水清,王善.结构可靠性分析与设计[M].北京:国防工业出版社,1993
    [65]刘惟信.机械可靠性设计[M].北京:清华大学出版社,1996
    [66]王启,王文博.常用机械零部件可靠性设计[M].北京:机械工业出版社,1996
    [67]郝静初.机械可靠性工程[M].北京:国防工业出版社,1993
    [68]Balbir S.Dhillon Stress-strength reliability models[J].Microelectronics and Reliability,1980,20,(4):513-516
    [69]Paul D.H.Stress-strength interference theory for a pin-loaded composite joint[J].Composites Engineering,1995,5(8):975-982
    [70]Brian J.M,Tom M.Bounds for the probability of failure resulting from stress-strength interference [J].Microelectronics Reliability,1990,30(5):1009
    [71]Franz B.,Lewis E.E.A stress-strength interference approach to reliability analysis of ceramics:Part Ⅰ-fast fracture[J].Probabilistic Engineering Mechanics,1992,7(1):1-8
    [72]Franz B.,Lewis E.E.A stress-strength interference approach to reliability analysis of ceramics:Part Ⅱ-fast fracture[J].Probabilistic Engineering Mechanics,1992,7(1):9-14
    [73]王启,王文博.常用机械零部件可靠性设计[M].北京:机械工业出版社,1996
    [74]苏比尔格尔,苏绍尔,苏约西列维奇著.机械零件强度计算手册[M].北京:机械工业出版社,1987
    [75]濮良贵,纪君刚.机械设计[M].北京:高等教育出版社,2001
    [76]陈健元.机械可靠性设计[M].北京:机械工业出版社,1988
    [77]白和丰.可靠性在机械设计中的应用与数据统计分析[M].武汉:武汉工业大学出版社,1993
    [78]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用[J].建筑结构学报,2002(8):26-28
    [79]赖永星.石油井架结构可靠性分析与蒙特卡罗实现[J].新疆石油天然气,2008,4(1):98-100
    [80]马成刚.A型井架结构可靠性分析与蒙特卡罗实现[J].西安石油大学学报(自然科学版),2008,23(6):83-86
    [81]McKay M.D,Beckman R.J,Conover W.J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics,1979,2:239-45
    [82]Helton J.C,Davis F.J.Latin hypercube sampling and the propagation ofuncertainty in analysis of complex systems[J].Reliability Engineeringand System Safety,2003,81:23-69
    [83]张令心,江近仁.Latin超立方采样技术及其在结构可靠性分析中的应用[J].世界地震工程,1997,13(4):1-6
    [84]Olsson A,Sandberg G.,Dahlblom O.On Latin hypercube sampling for structural reliability analysis [J].Structural Safety,2003,25:47-68
    [85]Florian A.An efficient sampling scheme:Updated Latin hypercube sampling[J].Probabilistic EngineeringMechanics,1992,7:123-30
    [86]Wu Y.T,SitakantaMonhanty.Variable screening and rankingusing sam-piing-based sensitivity measures[J].Reliability Engineering and SystemSafety,2006,91(6):634-647
    [87]舒奇伟.胀套联接简介[J].重型机械,1997,(5):48-49
    [88]李明.无键联结技术的发展、特点和应用[J].矿山机械,1994,5:44-46
    [89]陈波.胀紧套联接的应用[J].煤矿机械,2004,(6):108-110
    [90]孙凯.胀套式无键联接装置的计算与选用[J].煤矿机械,2003,(11):10-12
    [91]王继新.带式输送机传动滚筒胀套联接有限元分析[J].起重运输机械,2004,(2):38-41
    [92]温富成.带式输送机滚筒中胀套的设计与应用[J].煤矿机械,2004,(1):18-19
    [93]张锋.胀紧联接套的设计及其制造加工技术[J].机械设计与制造,2005,(11):36-37
    [94]陈国辉.柱形弹性套胀紧联接接触分析[J].湖北汽车工业学院学报,2008,22(1):54-57
    [95]王启广.胀紧套联接装置的设计[J].矿山机械,2001,(9):48-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700