矿用防灭火有机固化泡沫配制及其产生装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前煤矿防灭火技术和封堵材料存在的不足,为有效防治矿井火灾、封闭火区、封堵采空区中的孔隙和裂隙、防治瓦斯涌出与积聚、以及快速、高效地扑灭矿井火源,本文开展了矿用防灭火有机固化泡沫配制及其产生装置的研究。
     首先,为了研究出各成份最佳的有机泡沫配制关系,运用正交试验,分别对树脂液、发泡剂以及两者之间的质量比进行了研究,得出:树脂液原材料A1和A2取摩尔当量比为1.1:1;发泡剂组合为可溶性易升华固体和有机发泡剂;树脂液和发泡剂的质量比取1:0.3。研究结果表明要得到最大的有机固化泡沫的附着力,必须在发泡倍数为25时,将有机固化泡沫喷射到附着物表面。为了研究出最佳的固化时间,运用泡沫液膜排液分析仪器,对泡沫体排液量与时间之间进行了研究,得出:在区间5-30 min,泡沫液膜主要表现为重力排液;在区间30-60min,泡沫液膜主要表现为重力和PB区曲面压力差共同排液;60min后,泡沫液膜主要表现为PB区曲面压力差排液。研究结果表明要得到最佳的有机固化泡沫,必须在5min内进行有机泡沫交联反应。
     其次,为了研究出最佳固化剂原材料及催化剂组合,运用有机固化泡沫实验系统,对四种固化剂以及两类催化剂进行了研究,得出:固化剂原材料A&B与泡沫液发生链增长反应,泡沫粘度急速变大直至固化,主要作用于成胶反应,所产生的固化泡沫泡孔均匀,稳定性强,但固化剂A在反应过程中产生较强的臭味气体;固化剂C&D与泡沫液反应较慢,发泡倍数高,主要作用于发泡反应,但产品较脆,稳定性差,固化剂D作用时间过长;叔胺类催化剂能促进发泡反应并能有效平衡发泡反应和成胶反应;金属有机化合物催化剂能迅速促进成胶反应并固化,发泡倍数低,不能平衡发泡反应和成胶反应。研究结果表明矿用有机固化泡沫的最佳固化剂组合为B&C和叔胺类催化剂。
     再次,为了研制出双组份有机固化泡沫发泡器,运用Fluent模拟软件,在入口速度为3 m/s时,对发泡器喷管以及树脂溶液管和发泡剂溶液管同时与-x轴成30o、45o和60o三种情况进行了研究,得出:喷管扩散段最大相对负压值为12200Pa、最大负压处距喉部0.0025m;树脂溶液管和发泡剂溶液管与-x轴60o时,双组份有机固化泡沫发泡效果最佳。根据结果设计出了双组份有机固化泡沫负压泡沫发生装置。为了研制出单组份有机固化泡沫包装体系,对树脂液原材料以及溶器罐进行了研究,得出:带有不饱和基的单组份有机固化泡沫预聚体,由于该预聚体遇空气会发生固化反应,以及抛射剂进入空气后会汽化等特点,研制了将树脂液、表面活性剂和抛射剂封装于一体的单组份有机固化泡沫包装体系。
     最后,通过实验得出了双组分泡沫和单组分泡沫的发泡倍数分别为32倍和66倍;双组分泡沫表干时间为7.3min,实干时间为78.3min,单组分泡沫表干时间为5.8min,实干时间为72.1min。得出了有机固化泡沫与煤岩石的附着力为2.1MPa;有焰燃烧时间为5s,无焰燃烧时间为18s;在压力差为125Pa时,漏风流动速率为2 10-5 m3/s。
In view of the present insufficiency in the mine fire prevention and extinguishing technology and sealing materials, in order to effectively prevent and control mine fires, close fire zone, plugging the pores and crack in gob, prevent and control gas emission and accumulation, and extinguish mine fire quickly and efficiently, organic curing foam techniques and machine for mine fire prevention and extinguishing are proposed.
     Firstly, in order to work out the optimum preparation formula of organic foam, liquid resin, foaming agent, and the mass ratio of these two were studied respectively applying the orthogonal test, obtained: the molar equivalent ratio of liquid resin raw materials A1 and A2 was 1:1; foaming agent was comprised of soluble solid, who is easy to sublimate, and organic foaming agent; the mass ratio of liquid resin and foaming agent was 1:0.3. The research results showed that to maximize the adhesion of organic curing foam, one must jet the organic curing foam to the attachments surface when the foam multiple was 25. In order to work out the optimum curing time, the relationship between foam drainage volume and time was studied applying the analysis instrument of foam liquid membrane drainage, obtained: in the range of 5-30 min, foam liquid membrane mainly drained under the gravity; in the range 30-60min, foam liquid membrane drained under the action of the gravity and PB area surface pressure difference; after 60min, mainly for the PB zone surface pressure difference drain. The results showed that to obtain the best organic curing foam, organic foam crosslinking reaction must be carried out in 5min.
     Secondly, in order to work out the optimum combination of curing agent materials and catalysts, four kinds of curing agents and two types of catalysts were studied applying organic curing foam experimental system, obtained: curing agent raw materials A&B and foam liquid occurred propagating reaction, the foam viscosity rapidly largened until curing, it primarily acted on the gel reaction, the resulting foam cured evenly, with strong stability, but Curing Agent A produced gas with strong smell in the reaction; Curing Agent C&D responded slowly with the foam fluid, the foaming multiple was high, it primarily acted on the foaming reaction, but the product was brittle, with poor stability, the action time of Curing Agent D was too long. Tertiary amine catalysts could promote the foaming reaction and effectively balance the foaming reaction and gel reaction; metal organic compounds catalysts could rapidly promote gel reaction and cured, the foaming multiple was low, could not balance the foaming reaction and gel reaction. The research results showed the optimum curing agents combination of mine-used organic curing foam was B&C and tertiary amine catalysts.
     Thirdly, in order to develop a two-component organic curing foam foaming machine, the foaming agent nozzle, resin solution tube and foaming agent solution tube simultaneously formed angles of 30 o, 45 o and 60 o with-x axis at the entrance speed of 3 m/s, these three cases were studied applying Fluent simulation software, obtained: the maximum relative negative pressure value of the foam nozzle diffuser could form was 12200Pa, the place of the maximum negative pressure was 0.0025m far from the throat; the foaming effect of two-component organic curing foam was optimum when the resin solution tube and foaming agent solution tube were 60o with -x-axis. On the basis of the results, two-component organic curing foam negative pressure foam generating machine was designed. In order to develop the one-component organic curing foam packing system, the resin liquid raw materials and containers were studied, obtained: single-component organic curing foam prepolymer with unsaturation, since the prepolymer would occur curing reaction with the air, and the propellent would vaporize when into the air, etc, single-component organic curing foam packing system packing liquid resin, surfactant and propellent all in one was developed.
     Finally, experiment results showed the foaming multiples of the two-component foam and the one-component foam were respectively 32 times and 66 times; the surface drying time and the pragmatic drying time of two-component foam were respectively 7.3min and 78.3min, those of single-component foam were respectively 5.8min and 72.1min. Organic curing foam adhesion to the rock and coal was 2.1MPa; the flaming combustion time was 5s, and the flameless combustion time was 18s; the air leakage flow rate was 2×10-5m3/s when the pressure difference was 125Pa.
引文
[1]鲜学福,王宏图,姜德义等.我国煤矿矿井防灭火技术研究综述[J].中国工程科学,2001,3(12):28-32.
    [2]马成军,白利文,申立华.采空区自燃“三带”分布规律及影响因素分析[J].华北科技学院学报,2008,5(1):24-26.
    [3]茹阿鹏,林柏泉,王婕.采空区注砂防灭火系统的实验研究[J].煤矿安全,2005,36(9):3-5.
    [4]戚颖敏.矿井防灭火:煤矿安全手册第四篇[M].北京:煤炭工业出版社.1991.
    [5]高广伟.中国煤矿氮气防灭火的现状与未来[J].煤炭学报,1999,24(1):48-51.
    [6]张如意.煤矿用防火材料及阻化剂[J].矿业安全与环保,1999(1):6-7.
    [7]张人伟,李增华.新型凝胶阻化剂的研究与应用[J].中国矿业大学学报,1995,24(4):4648.
    [8]邓军,徐精彩,张辛亥.稠化胶体防灭火特性试验研究[J].西安科技学院学报,2001,21(2):102-105.
    [9]金龙哲,靳瑞英,蒋仲安.矿井安全作业采用的填充密闭材料——泡沫树脂及其应用[J].中国安全科学学报,1999,8(5):32-35.
    [10]王德明.矿井防灭火新技术——三相泡沫[J].煤矿安全,2004,35(7):16-18.
    [11]沈文.可调节瓦斯抽放快速封孔器[J].煤炭科技,2007,(2):86.
    [12]刘义生,温大维.应用泡沫水泥治理特大顶板垮落空硐[J].煤炭科学技术,2004, 32(12):33-35.
    [13]王昕,刘红岗,郭坤.罗克休泡沫处理大冒顶事故技术的实践[J].中国矿业,2007,16(2):60-62.
    [14]TIAN Siquan CHEN Xinjun, CHiN Yong XU Liuxiong etal. Standardizing CPUE of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean[J]. CHINESE JOURNAL OF OCEANOLOGY AND LIMNOLOGY,2010,27(4):729-739.
    [15]卞正荣,邢敦爱,杨小铁.用罗克休、马丽散充填加固技术处理巷道冒顶[J].煤炭科技.2009,(1):71-72.
    [16]徐盛.聚氨酯泡沫喷涂堵漏风技术在煤巷的应用[J].能源技术与管理,2006,1:45-46.
    [17]常胜秋,王广平,李张权.大倾角综放面综合防灭火技术研究与应用[J].能源技术与管理,2009,(6):83-85.
    [18]郑钟,李秉跃,窦虎清.泡沫水泥固井装备及技术配套研究[J].科技资迅.2009,(19):38.
    [19]刘英学.清水罐注抑制易燃采空区遗煤氧化及自燃的机理研究与应用[J].煤炭学报,2002,27(3):237-241.
    [20]邓军,徐精彩,王洪权.新型复合胶体防灭火技术及应用[J].煤矿安全,2001,32(12): 42-44.
    [21]王德明.矿井火灾学[M].徐州:中国矿业大学出版社,2008.1:168-239.
    [22]屈建省,杜慧春,黄柏宗.泡沫水泥的研究与应用[J].钻井液与完井液,1994,(5):1-7.
    [23]王箴.化工辞典(第三版)[M].北京:化学工业出版社,1992:220-221.
    [24] Berlin A A, Shutov F A.Chemistry and Technology of Gas-filled High Polymer [M].Nauka press: Moscow,1980:89-163.
    [25]潘志华,程麟,李东旭等.新型高性能泡沫混凝土制备技术研究[J].建筑石膏与胶凝材料,2002,5:1-2.
    [26]张巨松,扬合,刘军华.泡沫混凝土泡沫发生器的研制[J].混凝土,2001,1:51.
    [27]杨海.矿用固化泡沫防灭火密闭充填新技术[J].煤矿安全,2005,36(10):28-30.
    [28]孙桂梁.利用矿用固化泡沫密闭充填技术成功封堵遗留火区[J].煤矿安全.2007,38(3):24-25.
    [29]Hartstein, Arthur F.; Forshey, David R. COAL MINE COMBUSTION PRODUCTS. NEOPRENES, POLYVINYL CHLORIDE COMPOSITIONS, URETHANE FOAM, AND WOOD. Report of Investigations - United States, Bureau of Mines, n 7977,2009, p25.
    [30]Thimons, Edward D.; Kissell, Fred N. BUILDING STOPPINGS IN MINES WITH LARGE OPENINGS . Information Circular - United States,Bureau of Mines,n 8687,2006,p13.
    [31] DORMAN KR; GOOCH AE. SPRAY-APPLIED POLYURETHANE FOAM TO INSULATE HEATED ROOMS EXCAVATED IN PERMAFROST. U S Bur Mines,Rep Invest 7392,June,2008, p42.
    [32]Andryushchenko, V. N.; Zakharov, E. P. ULUCHSHENIE KLIMATICHESKIKH USLOVII TRUDA V GLUBOKIKH SHAKHTAKH TEMPLOIZOLYATSIEI GORNYKH POROD. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal,n 6,2007,p72-76.
    [33]Dangreaux,J.,Kazmierczak,M.; Chauvin, R. Behavior of Polymeric Materials in a Fire in a Mine Gallery. Industrie Minerale,Mines et Carrieres,les Techniques, v 68 Suppl,Feb,2005,p 66-70.
    [34]Cornely,Wolfgang.GROUND CONSOLIDATION AND SEALING.Mining Magazine,v159,n1,Jul,2008,p 38-40.
    [35]Gemmel, Dietrich-Wilhelm. Required properties of injection material for strata consolidation. Glueckauf-Forschungshefte,v 54,n 6,Dec,2003,p271-277.
    [36] Izakson, V.Yu. . Aprosimova, E.P.; Shkulev, S.P. Application of foamed polyurethanic thermal insulating coatings intended for the stability control of pit edges. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh,n 4,July-Aug,2004,p46-49.
    [37]陈家清.苯酚改性脲醛泡沫塑料的研制及其在矿井防灭火中的应用[C].徐州:中国矿业大学,1990:3.
    [38]王秋霞,曹嫣镔,刘冬青等.耐高温高效泡沫封堵调剖体系的研制与应用[J].精细石油化工进展,2004,5(1):22-25.
    [39]李兆敏,孙茂盛,林日亿等.泡沫封堵及选择性分流实验研究[J].石油学报,2007,28(4):115-118.
    [40]王其伟,郑经堂,曹绪龙等.三次采油中泡沫的性能及矿场应用[J].中国石油大学学报:自然科学版,2008,32(3):93-98.
    [41]A.M.Tafreshi, M. di Marzo. Foams and gels as fire protection agents[J].Fire Safety,1999,33(4):295-305.
    [42]闫立章.“罗克休”防灭火技术在易发火煤层中的应用[J].煤矿开采. 2006,11(2):69-70.
    [43]姬太生,薛佩峰.罗克休胶体在防治煤层自然发火中的应用[J].中州煤炭.2004(5):58-59.
    [44]Pearse, M.J., Weir, S., Adkins, S.J., Moody, G.M., 2001. Advances in mineral flocculation. Minerals Engineering 14 (11), 1505-1511.
    [45]Pearse, M.J., 2003. Historical use and future development of chemicals for solid–liquid separation in the mineral processing industry.Minerals Engineering 16 (2), 103-108.
    [46]Pearse. M.J. An overview of the use of chemical reagents in mineral processing[J]. Minerals Engineering 18 (2005) 139-149.
    [47]Mackenzie, M., 1986. Chemical Reagents in the Mineral Processing Industry. Society of Mining Engineers, Inc., Jostens Publications,Kansas, ISBN 0-97335-062-6,139-145.
    [48]Mohammed, A., Weir, S. and Moody, G. M., Flocculants : Development trends. Filtration and eparation, 2000, 37(8), 24-27.
    [49]Moody, G. M., Pre-treatment chemicals. In Proc. Selection and Scale-Up Jbr Solid~Liquid Separation,Filtration Society 30 *l~ Anniversa?' Symposium. Birmingham, 1994, pp. 9-29.
    [50]Berlin A T, Shutov F A.Chemistry and Technology of Gas-filled High Polymer [M].Nauka press: Moscow,1998:89-163.
    [51]Berlin F A,Shutov F A.Formed Polymers Based on Reactive oligomers[M].Technological Publishing: Lancaster, PA,2008.76.
    [52] Shutov R A .Integrau structural polym er Foam s:Technology, Propertise and Applications[M]. Springe-Verlag:Berlin,New York,2007.86-88.
    [53] Saunders JH,Hansen R H.Monographs on Plastics[A].In:FrisK C, Saunders JH.Plastics Foam (PartⅠ)[C].MarcelDekker,New York,1972.
    [54]Moody, G. M. And McColl, P., Novel dewatcring aids for the pressure belt filtration of mineral slurries. InProc. Fihech Europa. D~sseldorf, 1997, pp. 393-406.
    [55]Pearse, M.J., Flocculant performance is enhanced by the Unique Molecular Architecture approach, World Mining Equipment, 2000, 24(9), 60.
    [56]Peng, F. F. And Lu, Z., Polymer flocculation and coagulation for sedimentation of copper flotation tailing.Minerals and Metallurgical Processing, 1998, 15(1), 14-20.
    [57]Weir, S., Flocculation of mineral suspensions by non ionic and anionic flocculants, Patent Application No. GB 0029077.5, 2001. Publication date anticipated in 2002.
    [58]Weir, S. and Moody, G. M.. Trends in the development of llocculants as aids to solid/liquid separation. In Proc. World Filtration Congress 8. Brighton, 2000, 2, pp. 1223-1226. Subsequently published in :Journal of The Filtration Society, 2001, 1(4), 11-12.
    [59]王慎敏主编.胶黏剂合成、配方设计与配方实例[M].北京:化学工业出版社,2003.6:10.
    [60]K.S. Joshi, S.A.K. Jeelani, C. Blickenstorfer,etal. Influence of fatty alcohol antifoam suspensions on foam stability[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 239–249.
    [61] S.A.K. Jeelani, G. Benoist, K.S. Joshi, R. Gunde, D. Kellenberger, E.J.Windhab, Colloid Surf. A 263 (2005) 379–389.
    [62] L. Arnaudov, N.D. Denkov, I. Surcheva, P. Durbut, G. Broze, A.Mehreteab, Langmuir 17 (2001) 6999.
    [63] J. Bibette, D.C. Morse, T.A. Witten and D.A. Weitz, Phys. Rev.Lett., 69 (1992) 2439.
    [64] D. Weaire, N. Pittet, S. Hutzler and D. Pardal, Phys. Rev. Lett., 71 (1993) 2670.
    [65] E.B. Matzke, Amer, J. Bot., 33 (1946) 58.
    [66] H.M. Princen and P. Levinson, J. Colloid Interface Sci., 120 (1987)172.
    [67] Culick H E C.J Appl Phys,1998,31:1128.
    [68] Frankel F,Mysels K J.J Phys Chem,2003,73,3028.
    [69]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984.11-12.
    [70]周光垌,严宗毅,许世雄等编著.流体力学[M].北京:高等教育出版社,2004.5:282.
    [71]甘昌胜,潘见.不对称催化Henry反应研究进展[J].有机化学.2008,28(7):1193-1198.
    [72]黄坤,夏建陵,李梅等.热固性环氧沥青材料的制备及改性方法研究进展[J].热固性树脂.2009,24(6):50-54.
    [73]祝宝英胡中庄振宇等.非离子水性环氧低温固化剂的制备及固化研究[J].涂料工业.2009,(12):51-54.
    [74]李相权,张旭. MDI改性聚氨酯固化剂的研制[J].上海涂料.2009,47(10):42-44.
    [75] CHEN Yong-gui,YE Wei-min , ZHANG Ke-neng. Strength of copolymer grouting materialbased on orthogonal experiment[J]. Journal of Central South University of Technology.2009,16(1):143-148.
    [76]程时远,李盛彪,黄世强编著.胶黏剂[M].北京:化学工业出版社,2000.8:14-15.
    [77]邓舜扬编著.粘合剂与密封材料[M].北京:中国石化出版社,2001.10:16-17.
    [78] L.J. Gibson and M.F. Ashby, Cellular Solids, Pergamon Press,New York 1988.
    [79] D. Weaire and J,P. Kermode, Phil. Maq. B, 48 (1983) 245 Phil.Mag. B, 50 (1984) 4379. [86] D. Weaire, S. Coughlan, A.M. Fortes. The modeling of liquid and solid foams[J].The modeling of liquid and solid foams.
    [80]赵国玺主编.表面活性剂物理化学[M].北京大学出版社,1993.1.
    [81]McBain J W,Humphreys C W.J Phs Chem,1992,36:300.
    [82]蒋庆哲,宋昭峥,赵密福等.表面活性剂科学与应用[M].北京:中国石化出版社,2006.5:64-66.
    [83]沈钟,王果庭编著.胶体与表面化学[M].北京:化学工业出版社,1991.9:325-328.
    [84]张福田著.分子界面化学基础[M].上海:上海科学技术文献出版社,2006.6:126-130.
    [85]吴超,彭小兰,李明,吴国珉.粉尘湿润剂的性能测定新方法及其应用.中国有色金属学报.2007,17(5):831-835.
    [86]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社.2003.
    [87]吴超,左治兴,欧家才,周勃等.不同实验装置测定粉尘湿润剂的湿润效果相关性.中国有色金属学报.2005,15(10):1614-1617.
    [88]张巨松,扬合,刘军华.泡沫混凝土泡沫发生器的研制[J].混凝土,2001,135(1):51-53.
    [89]申瑞臣.泡沫发生器结构设计综述[J].石油机械.1993,21(5).
    [90]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000.
    [91]张择业,PQ-Ⅰ型泡沫发生器中喷射系统和涡轮泡沫分散切割器的设计,成都理工学院学报,1997,24(4).
    [92]陆宏圻.射流泵技术的理论及应用[M].水利电力出版社,1989,6.
    [93]平浚.射流理论基础及应用[M].北京:宇航出版社.1995.
    [94]陈文义,肖建立.气泡发生器结构分析及设计[J].煤矿机械.2000,10.
    [95]孔玲.工程流体力学[M].北京:中国电力出版社,1992.
    [96]吴崇周编著.塑料加工原理及应用[M].北京:化学工业出版社,2008.9:136.
    [97]伊藤公正.塑料异型挤出技术(日)[M].工业调查会出版,1974.59.
    [98]D3574-01,Standard Test Methods for Flexible Cellular Materials-Slab, Bonded,and Molded Urethane Foams,Test G:Air Flow Test,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700