功能性隔热填料的制备及其在反射型隔热涂层中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑物围护结构的隔热是降低建筑能耗、提高建筑物居住和使用功能的重要途径之一,其关键是隔热材料及体系。在各种建筑隔热材料及体系中,隔热涂料以其隔热性能好、经济性高、施工方便以及对热应力不敏感等特点而受到广泛关注,特别是反射型隔热涂料既可有效降低围护结构表面的温度,从源头上减少热流的传入,又在一定程度上改善城市热岛效应,降低光化学烟雾的生成几率。反射型隔热涂料的功能主要来自功能性隔热填料,但目前反射型隔热涂料用功能性隔热填料种类较少,功能较为单一。因此,亟需开发新的应用于反射型隔热涂料的功能性隔热填料。
     本文在综合论述了隔热涂料研究现状的基础上,针对隔热涂料用填料存在的问题,开展了新型反射型隔热填料及辐射型隔热填料的制备机理及应用技术研究,重点研究了核壳结构中空二氧化钛微球、多孔二氧化钛微球、二氧化钛/乙基纤维素复合多孔微球等基于多孔结构的反射型隔热填料以及纳米片状氧化锌、氧化锌纳米片球状团簇、氧化锌纳米棒/云母复合粉体等氧化锌(ZnO)基辐射型隔热填料的制备机理,并通过制备反射型隔热涂料,分析了反射型填料与辐射型填料对涂层隔热效果的影响,从而为新型功能性隔热填料的开发及应用奠定理论基础。主要研究结果如下:
     (一)开展了核壳结构中空二氧化钛微球及多孔二氧化钛微球的制备研究,系统研究原料组分以及制备工艺对多孔微球形貌及内部结构的影响,实现了核壳结构中空二氧化钛微球以及具有大孔结构的多孔二氧化钛徼球的可控制备.采用乳液法结合溶胶凝胶法,在螯合剂乙酰乙酸乙酯与前驱体钛酸四正丁酯摩尔比为1:1,钛酸四正丁酯与油相溶剂正辛醇体积比为1:2条件下,制备出具有良好球状形貌的二氧化钛凝胶微球;以制备的二氧化钛凝胶微球为原料,采用快速升温法制备出具有核壳结构的中空二氧化钛微球;在二氧化钛凝胶微球的制备体系中,引入相分离剂聚乙烯吡咯烷酮(PVP),借助相分离机理制备具有多孔结构的二氧化钛微球;随着PVP用量的增加,所得微球的内部孔径逐渐变大,当PVP用量增至1.903g时,微球平均大孔孔径为~1.3μm。
     (二)开展了二氧化钛/乙基纤维素复合多孔微球的制备研究,实现了二氧化钛/乙基纤维素复合多孔微球的可控制备。采用乳液法制备了乙基纤维素多孔微球,当油相溶液中乙基纤维素/乙酸乙酯质量比分别为0.4/10、0.8/10和1.2/10时,制得的微球具有较好的球状结构,其平均粒径分别为2.6、15.7和23.1μm,通孔孔隙率为72%、74%和68%;在乙基纤维素多孔微球制备体系中,添加纳米二氧化钛粒子后,所得二氧化钛/乙基纤维素复合粒子形貌均为球状结构,纳米二氧化钛粒子并未对其形貌产生显著影响;添加纳米二氧化钛对所得微球内部孔结构有一定的影响,纳米二氧化钛与乙基纤维素质量比分别为0.1/0.8、0.2/0.8和0.4/0/8时,所得复合多孔微球的通孔孔隙率分别为56%、54%和51%。
     (三)开展了高红外辐射率纳米氧化锌的制备研究,实现了纳米片状氧化锌以及氧化锌纳米片球状团簇的可控制备,对比分析了纳米片状氧化锌及氧化锌纳米片球状团簇红外辐射性能的差异。以二水合乙酸锌为原料,NaOH为矿化剂,采用水热法制备出分散性较好的纳米片状氧化锌粉体,其大小约在400nm,厚度在20~50nm之间;在纳米片状氧化锌的制备体系中,添加乳酸、柠檬酸以及聚丙烯酸钠等多官能度改性剂,促使纳米片状氧化锌粒子通过自组装形成氧化锌纳米片球状团簇;所得纳米片状氧化锌粒子与氧化锌纳米片球状团簇在8-14岫光谱区域内的红外辐射率分别为0.90以及0.88。
     (四)开展了氧化锌纳米棒/云母复合粉体的制备研究,实现了云母表面负载氧化锌纳米棒沉积密度的调节,阐明了纳米粒子团簇结构的形成对粉体红外辐射性的影响。采用液相沉积法制备了氧化锌/云母复合粉体,研究了云母表面晶种化以及氧化锌纳米棒在云母表面的沉积过程,ZnO在经过表面晶种化的云母颗粒表面以(002)面取向生长成棒状,其直径约为150nm,长度约为550nm;通过改变ZnO胶体粒子浓度可调节云母表面晶种化密度,从而控制云母表面氧化锌纳米棒的沉积密度;随着云母表面氧化锌沉积密度的增加,所得复合粉体的红外辐射率逐渐增加,最高达到0.863,而氧化锌纳米棒构成的球状粒子,其红外辐射率为0.851。
     (五)应用二氧化钛/乙基纤维素复合多孔微球为反射型填料,氧化锌纳米片球状团簇为辐射型填料制备反射型隔热涂料,研究了反射型填料与辐射型填料的隔热协同作用。以二氧化钛/乙基纤维素复合多孔微球为反射型填料制备反射型隔热涂料,并考察了二氧化钛/乙基纤维素复合多孔微球添加量对涂层隔热性能的影响,当二氧化钛/乙基纤维素复合多孔微球添加量为5.0wt.%时,所得涂层具有较好的隔热性能,覆有涂层的样板经半小时红外灯照射之后,其温度仅为67.7℃,而涂覆未添加多孔微球涂层的样板温度达到85.6℃;在此基础上,进一步考察了氧化锌纳米片球状团簇添加量对涂层隔热性能的影响,发现添加氧化锌纳米片球状团簇进一步改善了涂层的隔热性能,当氧化锌纳米片球状团簇添加量为1.0wt.%时,所得涂层的隔热性能最好,覆有涂层的样板经半小时红外灯照射之后,其温度进一步下降至63.9℃,表明反射型填料与辐射型填料具有一定的协同隔热作用。
Insulation building envelopes are widely applied for their advantages on saving building energy consumption and improving the function of the buildings. And the insulation materials are vital to improve the insulation performance of building envelope. Amoung diverse insulation materials, insulation coatings are widely used because of their good insulation performance, economic reasons, applying convenience and their advantages on insensitivity to thermal stress. In addition, the application of solar heat reflecting insulation coatings can reduce the surface temperature of building envelope, save cooling energy, ameliorate urban heat island effect and reduce the smog probability. Generally, functional pigments are vital to fulfill the high reflecting performance of solar heat reflecting insulation coatings. However, the widely use of solar heat reflecting insulation coatings has not forced substantial emergency of functional pigments and the effective functional pigments for the solar reflecting insulation coatins are still needed. Thus, the development of new functional pigments for the solar heat reflecting insulation coatings is still a promising field.
     In this dissertation, we studied the preparation and application of reflecting and emissive pigments for solar reflecting insulation coatings based on the research status of the solar reflecting coatings. Core-shell structured hollow titania microspheres, porous titania microspheres and titania/ethyl cellulose (EC) composite porous microspheres were prepared as reflecting pigments, in which the synergistic effect between titania and microvoids can be realized to improve the light-scattering power of reflecting pigments; zinc oxide (ZnO) nanosheets, ZnO nanosheets based spherical aggregates and ZnO nanorod/mica composite powders were prepared as emissive pigments, in which the relative high emissivity of nanosized ZnO particles and the good dispersibility of nano ZnO based aggregates were both taken in consideration. Thus, a solution for preparation of functional pigments was suggested in the dissertation. The main results are as follows:
     Core-shell structured hollow titania microspheres and macroporous titania microspheres were prepared and the effects of composition and process route on the final structure were studied systematically:(1) Titania gel microspheres were first prepared by sol-gel process in O/W emulsions with1:1of ethyl acetoacetate (EAA)/tetra-n-butyl titanate (TBT) molar ratio and1:2of TBT/1-octanol volume ratio.(2) The core-shell structured hollow microspheres were prepared by heating the obtained titania gel microspheres at constant heating rate.(3) The macroporous titania microspheres were prepared by using polyvinylpyrrolidone (PVP) as the pore inducer in manufacturing process of titiana microspheres; the macropores inside the porous microspheres were induced by phase separation initiated by PVP; the inner pore size increased with increasing the additive PVP from0.190g to1.903g and the corresponding inner pore sizes of the microspheres obtained with different additive PVP increased from~500nm to~1.3μm.
     Titania/ethyl cellulose (EC) composite porous microspheres were prepared.(1) EC composite porous microspheres were prepared in O/W emulsion by solvent diffusion with0.4/10,0.8/10and1.2/10of EC/ethyl acetate (EA) mass ratio, and the average particles sizes were2.6,15.7and23.1μm, respectively; the interconnected porosity were72%,74%and68%, respectively.(2) Titania particles were added to fabricate titania/EC composite porous microspheres, while the added titania did not affect the spherical structure of obtained powders much; the addition of titania particles greatly affected the inner structure of the obtained microspheres; the interconnected porosity of the obtained microspheres with0.1/0.8,0.2/0.8and0.4/0/8of titania/EC mass ratio were56%,54%and51%which were much less than that of the microspheres obtained without titania particles.
     Zinc oxide (ZnO) nanoparticles with high emissivity and its aggregates were prepared and the effect of different state of aggregation on the resulting emissivity was studied by comparing the two particles.(1) ZnO nanosheets were prepared by hydrothermal process with zinc acetate dehydrate as precursor, NaOH as the mineralizer; the size of the obtained nanosheets was approximately400nm, while the thickness was in the range of20~50nm.(2) Multifunctional additives such as lactic acid, citric acid and sodium polyacrylate were used to fabricate ZnO nanosheets based spherical aggregates.(3) The emissivities of the ZnO nanosheets and nanosheets based spherical aggregates in8-14μm wavelength region were0.90and0.88, respectively.
     ZnO nanorod/mica composites particles were prepared to further illustrate the effect of different state of aggregation on the resulting emissivity.(1) ZnO nanorod/mica composites particles were prepared by chemical liquid deposition; the ZnO nanorods deposited on the mica plates had the preferential orientation of the c axis with150nm of diameter and550nm of length.(2) The density of ZnO nanorods on mica surface was controlled by different density of ZnO seed crystal on mica surface which was controlled by different colloid concentration; the density of ZnO nanorods on mica surface increased with increasing colloid concentration, and the emissivity of the obtained composite particles in8~14μm wavelength region were0.800,0.841,0.858and0.863, respectively; however, the ZnO nanorods based spherical particles attained0.851of emissivity in8-14μn wavelength region.
     The titania/EC composite porous microspheres as reflecting pigment and the ZnO nanosheets based spherical aggregates as emissive pigment were used to prepare a solar reflecting insulation coating to confirm the synergistic effect between the two pigments to enhance the insulation performance.(1) When the amount of the additive titania/EC composite porous microspheres was5.0wt.%, the obtained coatings attained the best heating insulation performance; the temperature of the sample plate after300minutes irradiation by infrared lamp was67.7℃, while the temperature of the sample plate coated with coatings without pigments was85.6℃(2) The effect of emissive ZnO nanosheets based spherical aggregates was also confirmed by adding the spherical aggregates particles to the coatings obtained with5.0wt.%titania/EC composite porous microspheres; it was demonstrated that the additive ZnO particles further improve the insulation performance of the solar reflecting insulation coating; the temperature of the sample plate after300minutes irradiation was63.9℃.
引文
[1]Judkoff R. Increasing Building Energy Efficiency Through Advances in Materials[J]. MRS Bulletin,2008,33(4):449-454.
    [2]郭新.铝合金门窗及幕墙节能方法解析[J].安徽建筑,2009,16(02):36-60.
    [3]陈希.城市规划在低碳建筑中发挥的重要作用分析[J].城市建设理论研究(电子版),2011,(18).
    [4]崔莉.建筑节能的重要性[J].科技风,2009,22:119.
    [5]徐斌.隔热涂层热物性的确定及其在建筑应用中的参数分析与仿真[D].中国科学技术大学,2006.
    [6]徐峰,张雪芹,华七三.建筑保温隔热材料与应用[M].中国建筑工业出版社,2007.
    [7]徐小林,李百战.室内热环境对人体热舒适的影响[J].重庆大学学报(自然科学版),2005,28(04):102-105.
    [8]树森.材料加工冶金传输原理[M].机械工业出版社,2001.
    [9]刘岩松,刘志航.多层住宅的节能体型控制[J].住宅科技,2002,(01):24-27.
    [10]张扬.建筑遮阳设计研究[D].同济大学,2006.
    [11]Akbari H, Pomerantz M, Taha H. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas[J]. Soalr Energy,2001,70(3):295-310.
    [12]景贵琴.建筑绝热[M].北京:中国建筑工业出版社,1987.
    [13]刘杰.水性太阳热反射隔热涂料的研究[D].北京化工大学,2008.
    [14]Levinson R. How to Design a Cool Nonwhite Coating [EB/OL]. http://coolcolors.lbl.gov/assets/docs/OtherTalks/HowToDesignACoolNonwhiteCoating.pdf.
    [15]陈淑仙,冯自立.正确认识建筑绝热中的有关问题[J].西南工学院学报,2001(01):38-41.
    [16]Williams R J J, Aldao C M. Thermal Conductivity of Plastic Foams[J]. Polymer Engineering & Science,1983,23(6):293-298.
    [17]吕绍泉.建筑物的保温[M].中国建筑工业出版社,1975.
    [18]Sharma A, Tyagi V V, Chen C R, et al. Review on Thermal Energy Storage with Phase Change Materials and Applications[J]. Renewable and Sustainable Energy Reviews, 2009,13(2):318-345.
    [19]Heat Island Group:Emittance Impacts Energy Use[EB/OL]. http://heatisland.lbl.gov/CoolRoofs/HeatTransfer/Heating.html.
    [20]陈非力,辛启年.建筑物用红外辐射降温涂料的理论和实验研究[J].中国建材,1994,(11):10-14.
    [21]Boebel C P. Coatings Having High Solar Absorptance to Infrared Emittance Ratios: US3810777A[P].1974-5-14.
    [22]Olson B W, Bakhtiani H P. Thermal Characterization of Emisshield (TM)[J]. Journal of Spacecraft and Rockets,2009,46(1):87-92.
    [23]Technology| Emisshield[EB/OL]. http://www.emisshield.com/technology/.
    [24]李戬洪,江晴.辐射致冷的实验研究[J].太阳能学报,2000,(03):243-247.
    [25]马一平,杨利香,王金前.一种搜寻辐射制冷材料的红外光谱分析方法[J].材料导报,2007,21(04):160-162.
    [26]谢小青.辐射制冷涂料的机理及应用研究[D].中山大学化学工艺,2010.
    [27]Levinson R, Akbari H, Berdahl P. Measuring Solar Reflectance—Part Ⅰ:Defining A Metric That Accurately Predicts Solar Heat Gain[J]. Solar Energy,2010,84(9):1717-1744.
    [28]马承银,李延升.反射近红外辐射涂料的研究[J].材料导报,2004,18(04):27-29.
    [29]Loeb A L. Thermal Conductivity.8. A Theory of Thermal Conductivity of Porous Materials[J]. Journal of The American Ceramic Society,1954,37(2):96-99.
    [30]Vo C V, Bunge F, Duffy J, et al. Advances in Thermal Insulation of Extruded Polystyrene Foams[J]. Cellular Polymers,2011,30(3):137-155.
    [31]Rigacci A, Marechal J C, Repoux M, et al. Preparation of Polyurethane-based Aerogels and Xerogels for Thermal Superinsulation[J]. Jounal of Non-Crystalline Solids, 2004,350:372-378.
    [32]Kim Y H, Choi S J, Kim A M, et al. Effects of Organoclay On the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents[J]. Macromolecular Research,2007,15(7):676-681.
    [33]Almanza O A, Rodriguez-Perez M A, De Saja J A. Prediction of The Radiation Term in The Thermal Conductivity of Crosslinked Closed Cell Polyolefin Foams[J]. Journal of Polymer Science Part B-Polymer Physics,2000,38(7):993-1004.
    [34]Kompan M E, Kompan F M, Gladkikh P V, et al. Thermal Conductivity of A Composite Medium with A Disperse Graphene Filler[J]. Technical Physics,2011,56(8):1074-1078.
    [35]Harikrishnan G, Singh S N, Kiesel E, et al. Nanodispersions of Carbon Nanofiber for Polyurethane Foaming[J]. Polymer,2010,51(15):3349-3353.
    [36]Pichot F, Ferrere S, Pitts R J, et al. Flexible Solid-state Photoelectrochromic Windows[J]. Journal of the Electrochemical Society,1999,146(11):4324-4326.
    [37]Benson D K, Tracy C E, Jorgensen G, et al. Evacuated Window Glazing Research and Development:A Progress Report[M]. Solar Energy Research Institute,1984.
    [38]Carmody J, Selkowitz S, Lee E, et al. Window Systems for High-Performance Buildings[M]. Norton New York,2004.
    [39]王欢,吴会军,丁云飞.气凝胶透光隔热材料在建筑节能玻璃中的研究及应用进展[J].建筑节能,2010(04):35-37.
    [40]吴春山.多功能的气凝胶玻璃[J].中国建材,1998(04):39.
    [41]Akbari H, Bretz S, Kurn D M, et al. Peak Power and Cooling Energy Savings of High-albedo Roofs[J]. Energy and Buildings,1997,25(2):117-126.
    [42]沈辉,谭洪卫.夏热冬暖地区太阳热反射涂料的节能性实证研究[J].上海节能,2009(01):30-33.
    [43]Miller W B, Akbari H, Levinson R, et al. Special infrared reflective pigments make a dark roof reflect almost like a white roof[J]. in Thermal Performance of the Exterior Envelopes of Buildings, IX, proceedings of ASHRAE THERM Ⅷ, Clearwater, FL., Dec,2004.
    [44]Fowles G R. Introduction to Modern Optics[M]. DoverPublications. com,1975.
    [45]Bisht H, Eun H T, Mehrtens A, et al. Comparison of Spray Pyrolyzed FTO, ATO and ITO Coatings for Flat and Bent Glass Substrates[J]. Thin Solid Films,1999,351 (1-2):109-114.
    [46]Thangaraju B. Structural and Electrical Studies on Highly Conducting Spray Deposited Fluorine and Antimony Doped SnO2 Thin Films from SnCl2 Precursor[J]. Thin Solid Films, 2002,402(1-2):71-78.
    [47]Giraldi T R, Escote M T, Bernardi M, et al. Effect of Thickness on the Electrical and Optical Properties of Sb Doped SnO2 (ATO) Thin Films[J]. Journal of Electroceramics, 2004,13(1-3):159-165.
    [48]Meng Y, Yang X, Chen H, et al. A New Transparent Conductive Thin Film In2O3:Mo[J]. Thin Solid Films,2001,394(1-2):218-222.
    [49]Miao W, Li X, Zhang Q, et al. Transparent Conductive In2O3:Mo Thin Films Prepared by Reactive Direct Current Magnetron Sputtering at Room Temperature[J]. Thin Solid Films, 2006,500(1-2):70-73.
    [50]HAMBG I, HJORTSBG A, GRANQVIST C G. High-Quality Transparent Heat Reflectors of Reactively Evaporated Indium Tin Oxide[J]. Applied Physics Letters,1982,40(5):362-364.
    [51]Qiao Z, Latz R, Mergel D. Thickness Dependence of In2O3:Sn Film Growth[J]. Thin Solid Films,2004,466(1-2):250-258.
    [52]Hagiwara Y, Nakada T, Kunioka A. Improved Jsc in CIGS Thin Film Solar Cells using A Transparent Conducting ZnO:B Window Layer [J]. Solar Energy Materials and Solar Cells, 2001,67(1-4):267-271.
    [53]Pawar B N, Jadkar S R, Takwale M G. Deposition and characterization of Transparent and Conductive Sprayed ZnO:B Thin Films[J]. Journal of Physics and Chemistry of Solids, 2005,66(10):1779-1782.
    [54]Ohyama M, Kozuka H, Yoko T. Sol-Gel Preparation of Transparent and Conductive Aluminum-Doped Zinc Oxide Films with Highly Preferential Crystal Orientation[J]. Journal of the American Ceramic Society,1998,81(6):1622-1632.
    [55]Bamiduro O, Mustafa H, Mundle R, et al. Metal-like Conductivity in Transparent Al:ZnO Films[J]. Applied Physics Letters,2007,90(25):252108.
    [56]Ni J, Zhao Q, Zhao X. Transparent and High Infrared Reflection Film Having Sandwich Structure of SiO2/Al:ZnO/SiO2[J]. Progress in Organic Coatings,2009,64(2-3):317-321.
    [57]王伟伟.金属离子掺杂对ZnO晶体生长和性能的影响[D].河北大学光学工程,2007.
    [58]Fortunato E, Assuncao V, Goncalves A, et al. High Quality Conductive Gallium-doped Zinc oxide Films Deposited at Room Temperature[J]. Thin Solid Films,2004,451-452:443-447.
    [59]Lin K, Chen Y, Chiu C. Effects of Growth Behaviors on Chemical and Physical Properties of Sol-gel Derived ZnO:Ga Films[J]. Journal of Sol-Gel Science and Technology, 2010,55(3):299-305.
    [60]Yamada T, Makino H, Yamamoto N, et al. Ingrain and Grain Boundary Scattering Effects on Electron Mobility of Transparent Conducting Polycrystalline Ga-doped ZnO Films[J]. Journal of Applied Physics,2010,107(12):123534.
    [61]Lee K H, Menon R, Yoon C O, et al. Reflectance of Conducting Polypyrrole:Observation of the Metal-insulator Transition Driven by Disorder[J]. Physical Review B, 1995,52(7):4779-4787.
    [62]Lee K, Heeger A J. Optical Reflectance Studies of Conducting Polymers on the Metal-insulator Boundary[J]. Synthetic Metals,1997,84(1-3):715-718.
    [63]Park K C, Ma D Y, Kim K H. The Physical Properties of Al-doped Zinc Oxide Films Prepared by RF Magnetron Sputtering[J]. Thin Solid Films,1997,305(1-2):201-209.
    [64]Oda J, Nomoto J, Miyata T, et al. Improvements of Spatial Resistivity Distribution in Transparent Conducting Al-doped ZnO Thin Films Deposited by DC Magnetron Sputtering[J]. Thin Solid Films,2010,518(11):2984-2987.
    [65]Aktaruzzaman A F, Sharma G L, Malhotra L K. Electrical, Optical and Annealing Characteristics of ZnO:Al Films Prepared by Spray Pyrolysis [J]. Thin Solid Films, 1991,198(1-2):67-74.
    [66]Benhaliliba M, Benouis C E, Aida M S, et al. A Comparative Study on Structural, Optical, Photoconductivity Properties of In and Al Doped ZnO Thin Films Grown onto Glass and FTO Substrates Grown by Spray Pyrolysis Process[J]. Journal of Alloys and Compounds, 2010,506(2):548-553.
    [67]Xu J, Wang H, Yang L, et al. Low Temperature Growth of Highly Crystallized ZnO:Al Films by Ultrasonic Spray Pyrolysis from Acetylacetone Salt[J]. Materials Science and Engineering: B,2010,167(3):182-186.
    [68]Kim Y, Tai W. Electrical and Optical Properties of Al-doped ZnO Thin Films by Sol-gel Process[J]. Applied Surface Science,2007,253(11):4911-4916.
    [69]Gong L, Ye Z, Lu J, et al. Highly Transparent Conductive and Near-infrared Reflective ZnO:Al Thin Films[J]. Vacuum,2010,84(7):947-952.
    [70]Gordon R. Chemical Vapor Deposition of Coatings on Glass[J]. Journal of Non-Crystalline Solids,1997,218:81-91.
    [71]陈飞霞,付金栋,韦亚兵,等.纳米氧化铟锡透明隔热涂料的制备及性能表征[J].涂料工业,2004,34(02):48-51.
    [72]黄旭珊,潘亚美,吕维忠,等.影响纳米ITO透明隔热涂料性能的因素[J].涂料工业,2010,40(08):33-35.
    [73]Vollmer M, Kreibig U. Optical Properties of Metal Clusters:Springer Ser. Mat. Sci[M]. Springer Ser. Mat. Sci,1995.
    [74]Yamada N, Inagaki H, Kawasaki H. Solar Heat-shielding Coating Composition and Coated Structure:US5540998 A[P].1996-7-30.
    [75]Good J W, Kerry R H. Solvent-based, Thermal Paint:US5948845 A[P].1999-8-5.
    [76]Nelson N R. Water-based, Thermal Paint:US5445754 A[P].1995-8-29.
    [77]Berdahl P H. Pigments Which Reflect Infrared Radiation from Fire:US5811180 A[P]. 1998-9-22.
    [78]Anderson M T, Fleming P B, Gould R A, et al. Energy Efficient Construction Surfaces: US20050142329 A1[P].2003-12-24.
    [79]赵金榜.国内外水性反射型隔热涂料发展及其应用[J].现代涂料与涂装,2008,11(10):27-30.
    [80]张广发,陈中华.纳米Ti02在保温隔热涂料中的应用[J].化工新型材料,2008,36(08):98-99.
    [81]陆洪彬,陈建华,冯春霞,等.太阳热反射涂料反射比的测定与计算[J].涂料工业,2008,38(07):46.-49.
    [82]任秀全,陈鹏,张国英,等.太阳热反射弹性涂料的研究[J].新型建筑材料,2004(02):26-28.
    [83]殷燕子,林安,刘秀生,等.太阳热反射涂料的反射率检测方法研究及其数学模型[J].材料保护,2004,37(05):8-10.
    [84]张彦军,张丽萍,张其滨.薄型太阳热反射隔热涂料的研究[J].现代涂料与涂装,2006,9(03):9-10.
    [85]路国忠.建筑反射隔热保温涂料的研制[J].中国涂料,2007,22(09):37-40.
    [86]Born M, Wolf E. Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. CUP Archive,1999.
    [87]Ross W D. Theoretical Light-Scattering Power of TiO2 Microviods[J]. Industrial & Engineering Chemistry Product Research and Development,1974,13(1):45-49.
    [88]Kubelka P. New Contributions to The Optics of Intensely Light-Scattering Materials.l.[J]. Journal of The Optical Society of America,1948,38(5):448-457.
    [89]Levinson R, Berdahl P, Akbari H. Solar Spectral Optical Properties of Pigments—Part I: Model for Deriving Scattering and Absorption Coefficients from Transmittance and Reflectance Measurements[J]. Solar Energy Materials and Solar Cells,2005,89(4):319-349.
    [90]Levinson R, Akbari H, Berdahl P. Measuring Solar Reflectance—Part Ⅱ:Review of Practical Methods[J]. Solar Energy,2010,84(9):1745-1759.
    [91]Levinson R, Berdahl P, Akbari H. Solar Spectral Optical Properties of Pigments—Part II: Survey of Common Colorants[J]. Solar Energy Materials and Solar Cells, 2005,89(4):351-389.
    [92]Park J M, Hong S M. Light Scattering of Model Microvoid Films[J]. Journal of Industrial and Engineering Chemistry,2001,7(2):23-29.
    [93]Park J M, Hong S M. Light Scattering of Model Microvoid Films[J]. Journal of Industral and Engineering Chemistry,2001,7(1):23-29.
    [94]Sein J A, Ghart H L. Light-Scattering from Microvoids-Applications to Polymer Coatings[J]. Industrial & Engineering Chemistry Product Research and Development,1973,12(2):98-109.
    [95]沈轩,徐国跃,程传伟,等.不同形貌ZnO的制备、表征及8~14μm红外发射率研究:第六届中国功能材料及其应用学术会议,中国湖北武汉,2007[C].
    [96]卢晓蓉,徐国跃,王岩,等.纳米ZnO的制备及红外发射率研究[J].南京航空航天大学学报,2003,35(5):464-467.
    [97]Zoldesi C I, Imhof A. Synthesis of Monodisperse Colloidal Spheres, Capsules, and Microballoons by Emulsion Templating[J]. Advanced Materials,2005,17(7):924-928.
    [98]Zeng H C. Synthetic Architecture of Interior Space for Inorganic Nanostructures[J]. Journal of Materials Chemistry,2006,16(7):649-662.
    [99]Liang X, Xu B, Kuang S M, et al. Multi-functionalized Inorganic-Organic Rare Earth Hybrid Microcapsules [J]. Advanced Materials,2008,20(23):4384.
    [100]Cho E C, Camargo P, Xia Y N. Synthesis and Characterization of Noble-Metal Nanostructures Containing Gold Nanorods in the Center [J]. Advanced Materials, 2010,22(6):744-748.
    [101]Guan J G, Mou F Z, Sun Z G, et al. Preparation of Hollow Spheres with Controllable Interior Structures by Heterogeneous Contraction[J]. Chemical Communications, 2010,46(35):6605-6607.
    [102]Li J F, Xiong S L, Li X W, et al. Spinel Mn1.5Co1.5O4 Core-shell Microspheres as Li-ion Battery Anode Materials with A Long Cycle Life and High Capacity[J]. Journal of Materials Chemistry,2012,22(43):23254-23259.
    [103]Mou F Z, Xu L L, Ma H R, et al. Facile Preparation of Magnetic y-Fe203/Ti02 Janus Hollow Bowls with Efficient Visible-light Photocatalytic Activities by Asymmetric Shrinkage[J]. Nanoscale,2012,4(15):4650-4657.
    [104]Zhou L, Zhao D Y, Lou X W. Double-Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries[J]. Advanced Materials, 2012,24(6):745-748.
    [105]Zhou L, Wu H B, Zhu T, et al. Facile Preparation of ZnMn2O4 Hollow Microspheres as High-capacity Anodes for Lithium-ion Batteries[J]. Journal of Materials Chemistry, 2012,22(3):827-829.
    [106]Zhang Q L, Wu F, Yang H, et al. Preparation and Dielectric Properties of (Cao.61,Ndo.26)Ti03 Nanoparticles by A Sol-gel Method[J]. Journal of Materials Chemistry, 2008,18(44):5339-5343.
    [107]Mou F Z, Guan J G, Sun Z G, et al. In situ Generated Dense Shell-engaged Ostwald Ripening:A Facile Controlled-preparation for BaFe12O19 Hierarchical Hollow Fiber Arrays[J]. Journal of Solid State Chemistry,2010,183(3):736-743.
    [108]丛妍,李斌,刘东平,等.微量钛掺杂的纳米二氧化锆相变过程中的光学性质[J].无机化学学报,2010,26(12):2233-2236.
    [109]路新瀛,梁开明,顾守仁,等.氧空位对氧化锆相结构稳定性及相变过程的影响[J].硅酸盐学报,1996,24(06):64-68.
    [110]王宏志,高濂,李炜群,等.高分子网络凝胶法制备纳米α-Al2O3粉体[J].无机材料学报,2000,15(02):356-360.
    [111]吴建锋,刘孟,方斌正,等.高分子网络凝胶法制备纳米氧化锌的工艺控制[J].硅酸盐学报,2009,37(10):1782-1790.
    [112]Zhang H, Cooper A I. Synthesis of Monodisperse Emulsion-Templated Polymer Beads by Oil-in-Water-in-Oil (O/W/O) Sedimentation Polymerization[J]. Chemistry of Materials, 2002,14(10):4017-4020.
    [113]Wang H, Wang M Z, Ge X W. One-step Fabrication of Multihollow Polystyrene Particles from Miniemulsion System with Nonionic Surfactant[J]. Polymer, 2008,49(23):4974-4980.
    [114]Zhang G H, Hou R X, Zhan D X, et al. Fabrication of Hollow Porous PLGA Microspheres for Controlled Protein Release and Promotion of Cell Compatibility [J]. Chinese Chemical Letters,2013,24(8):710-714.
    [115]Li L, Choo E, Tang X S, et al. A facile One-step Route to Synthesize Cage-like Silica Hollow Spheres Loaded with Superparamagnetic Iron Oxide Nanoparticles in Their Shells[J]. Chemical Communications,2009,45(8):938-940.
    [116]Iskandar F, Mikrajuddin, Okuyama K. Controllability of Pore Size and Porosity on Self-organized Porous Silica Particles[J]. Nano Letters,2002,2(4):389-392.
    [117]Du X, He J H. Fine-Tuning of Silica Nanosphere Structure by Simple Regulation of the Volume Ratio of Cosolvents[J]. Langmuir,2010,26(12):10057-10062.
    [118]Grosso D, de A. A. Soler-Illia G J, Crepaldi E L, et al. Nanocrystalline Transition-Metal Oxide Spheres with Controlled Multi-Scale Porosity [J].Advanced Functional Materials, 2003,13(1):37-42.
    [119]Park J, Oh C, Shin S, et al. Preparation of Hollow Silica Microspheres in W/O Emulsions with Polymers[J]. Journal of Colloid and Interface Science,2003,266(1):107-114.
    [120]Sato T, Sato A, Arai T. Adsorption of Polyvinylpyrrolidone on Titanium Dioxide from Binary Solvents (methanol/water) and Its effect on Dispersion Stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,142(1):117-120.
    [121]Zheng M, Gu M, Jin Y, et al. Preparation, Structure and Properties of TiO2-PVP hybrid films[J]. Materials Science and Engineering:B,2000,77(1):55-59.
    [122]Frere Y, Gramain P. Reaction Kinetics of Polymer Substituents:Macromolecular Steric Hindrance Effect in Quaternization of Poly(vinylpyridines)[J]. Macromolecules, 1992,25(12):3184-3189.
    [123]Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation[J]. Journal of Porous Materials,1997,4(2):67-112.
    [124]Brinker C J, Scherer G W. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing[M]. Gulf Professional Publishing,1990.
    [125]Nakanishi K, Tanaka N. Sol-Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance Liquid Chromatography Separations[J]. Accounts of Chemical Research,2007,40(9):863-873.
    [126]Gao F, Su Z, Wang P, et al. Double Emulsion Templated Microcapsules with Single Hollow Cavities and Thickness-Controllable Shells[J]. Langmuir,2009,25(6):3832-3838.
    [127]Khan A Y, Talegaonkar S S T G, Iqbal Z, et al. Multiple Emulsions:An Overview[J]. Current Drug Delivery,2006,3(4):429-443.
    [128]Dienerowitz M, Mazilu M, Dholakia K. Optical Manipulation of Nanoparticles:A Review[J]. Journal of Nanophotonics,2008,2(l):21875.
    [129]Dowding P J, Vincent B. Suspension Polymerisation to Form Polymer Beads[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,161(2):259-269.
    [130]Jahanzad F, Sajjadi S, Brooks B W. Comparative Study of Particle Size in Suspension Polymerization and Corresponding Monomer-Water Dispersion[J]. Industrial & Engineering Chemistry Research,2005,44(11):4112-4119.
    [131]Sein J A. Micorvoids As Pigments-Review[J]. Industrial & Engineering Chemistry Product Research and Development,1978,17(4):302-317.
    [132]Fujiwara M, Shiokawa K, Sakakura I, et al. Preparation of Hierarchical Architectures of Silica Particles with Hollow Structure and Nanoparticle Shells:A Material for the High Reflectivity of UV and Visible Light[J]. Langmuir,2010,26(9):6561-6567.
    [133]Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation[J]. Journal of Porous Materials,1997,4(2):67-112.
    [134]Hindmarsh J P, Su J, Flanagan J, et al. PFG-NMR Analysis of Intercompartment Exchange and Inner Droplet Size Distribution of W/O/W Emulsions[J]. Langmuir, 2005,21(20):9076-9084.
    [135]Nair M, Lusignan C P, Boris D C. Preparation of Uniform Micrometer-Sized Polymer Particles with Closed-Cell Porous Architecture Made by Limited Coalescence of A Double Emulsion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014,443:583-595.
    [136]Djurisic A B, Leung Y H. Optical Properties of ZnO Nanostructures[J]. Small, 2006,2(8-9):944-961.
    [137]赵丰华,杨贤锋,高琼,等.氧化锌和氧化钛纳米树热液合成的研究进展[J].高等学校化学学报,2011,32(3):451-461.
    [138]Zhang H, Yang D, Li D, et al. Controllable Growth of ZnO Microcrystals by a Capping-Molecule-Assisted Hydrothermal Process[J]. Crystal Growth & Design, 2005,5(2):547-550.
    [139]Zhang H, Yang D, Li S, et al. Controllable Growth of ZnO Nanostructures by Citric Acid Assisted Hydrothermal Process[J]. Materials Letters,2005,59(13):1696-1700.
    [140]Lu H B, Dong B H, Zhao L, et al. ZnO Nanosheet-Based Hierarchical Microarchitectures for Enhanced Conversion Efficiency in Dye-Sensitized Solar Cells[J]. Journal of Materials Science-Materials in Electronics,2012,23(10):1905-1909.
    [141]Yu A, Qian J S, Pan H, et al. Micro-Lotus Constructed by Fe-Doped ZnO Hierarchically Porous Nanosheets:Preparation, Characterization and Gas Sensing Property[J]. Sensors and Aactuators B-Chemical,2011,158(1):9-16.
    [142]Zhang L X, Zhao J H, Lu H Q, et al. Facile Synthesis and Ultrahigh Ethanol Response of Hierarchically Porous ZnO Nanosheets[J]. Sensors and Actuators B-Chemical, 2012,161(1):209-215.
    [143]Wang M S, Hahn S H, Kim J S, et al. Chemical Bath Deposition of Textured ZnO Thin Films in Aqueous/Ethanolic Solution[J]. Materials Letters,2008,62(30):4532-4534.
    [144]Tian Z, Voigt J A, Liu J, et al. Complex and Oriented ZnO Nanostructures[J]. Nature Materials,2003,2(12):821-826.
    [145]Han N S, Shim H S, Lee S, et al. Light-Matter Interaction and Polarization of Single ZnO Nanowire Lasers[J]. Physical Chemistry Chemical Physics,2012,14(30):10556-10563.
    [146]赵荣祥,李秀萍.燃烧法快速合成乳白色棒状纳米氧化锌及其光催化研究[J].材料工程,2012,(11):42-46,51.
    [147]Yao Y, Cao Q. Effect of Preparation Techniques on Infrared Emissivities of Zno.9Coo.1O Powders[J]. Materials Science in Semiconductor Processing,2013,16(3):759-764.
    [148]沈轩.不同粒径和形貌ZnO的制备、表征及8~14μm红外发射率研究[D].南京航空航天大学材料加工工程,2008.
    [149]卢晓蓉,徐国跃,王岩,等.纳米ZnO的制备及红外发射率研究[J].南京航空航天大学学报,2003(05):464-467.
    [150]叶晓云,周钰明,陈丁桂,等.不同形貌氧化锌的红外发射率研究[J].福建工程学院学报,2009,7(6):583-586.
    [151]Wang B G, Shi E W, Zhong W Z. Twinning Morphologies and Mechanisms of ZnO Crystallites under Hydrothermal Conditions[J]. Crystal Research and Technology, 1998,33(6):937-941.
    [152]Huang A, Caro J. Shape Evolution of Zinc Oxide from Twinned Disks to Single Spindles through Solvothermal Synthesis in Binary Solvents[J]. Journal of Crystal Growth, 2010,312(20):2977-2982.
    [153]Zhang H, Yang D, Ma X Y, et al. Synthesis of Flower-like ZnO Nanostructures by An Organic-Free Hydrothermal Process[J]. Nanotechnology,2004,15(5):622-626.
    [154]Mazloumi M, Taghavi S, Arami H, et al. Self-assembly of ZnO nanoparticles and subsequent formation of hollow microspheres[J]. Journal of Alloys and Compounds, 2009,468(1-2):303-307.
    [155]Qin Z, Huang Y H, Qi J J, et al. Facile Synthesis and Photoelectrochemical Performance of The Bush-like ZnO Nanosheets Film[J]. Solid State Sciences,2012,14(1):155-158.
    [156]Chen W, Ye W P, Cheng X D, et al. Preparation, Microstructure and Properties of NiO-Cr2O3-TiO2 Infrared Radiation Coating[J]. Journal of Materials Science & Technology, 2009,25(5):695-698.
    [157]张瑜芳.金红石型纳米TiO2/云母珠光颜料的制备及表面改性研究[D].上海大学化工工艺,2007.
    [158]李大光,余超,李铁虎,等.氟金云母钛珠光颜料的制备及表征[J].人工晶体学报,2009,38(05):1221-1226.
    [159]徐卡秋,戴晓雁.化学诱导法制备金红石型云母钛珠光颜料[J].硅酸盐学报,2002,30(5):633-636.
    [160]戴洪斌.云母和蒙脱土表面金属化的研究[D].中国科学院金属研究所材料学,2006.
    [161]齐飞飞.纳米ZnO复合光催化剂的制备及循环使用[D].大连交通大学,2010.
    [162]杨序平,刘德春,卢忠远,等.纳米ZnO/白云母复合材料制备及其性能研究[J].非金属矿,2007,30(3):26-28.
    [163]Zhou S, Lv J, Guo L K, et al. Preparation and Photocatalytic Properties of N-doped Nano-TiO2/Muscovite Composites[J]. Applied Surface Science,2012,258(16):6136-6141.
    [164]张绍岩,常永芳,牟微.云母负载TiO2/BiVO4复合光催化材料的制备及光催化性能研究[J].化工新型材料,2012,40(10):21-23.
    [165]周嵩.一维纳米TiO2/白云母复合材料的制备及光催化性能研究[D].合肥工业大学材料学,2012.
    [166]Kokotov M, Hodes G. Reliable Chemical Bath Deposition of ZnO Films with Controllable Morphology from Ethanolamine-based Solutions Using KMnO4 Substrate activation[J]. Journal of Materials Chemistry,2009,19(23):3847-3854.
    [167]Kokotov M, Biller A, Hodes G. Reproducible Chemical Bath Deposition of ZnO by a One-Step Method:The Importance of "Contaminants" in Nucleation[J]. Chemistry of Materials,2008,20(14):4542-4544.
    [168]Znaidi L. Sol-Gel-Deposited ZnO Thin Films:A Review[J]. Materials Science and Engineering:B,2010,174(1-3):18-30.
    [169]Zhu D, Li K, Luo F, et al. Preparation and Infrared Emissivity of ZnO:Al (AZO) Thin Films [J]. Applied Surface Science,2009,255(12):6145-6148.
    [170]麦卡特尼,乃先.大气光学:分子和粒子散射[M].科学出版社,1988.
    [171]李运涛.液相化学沉积法制备云母珠光颜料的研究[D].陕西科技大学应用化学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700