江西省城门山斑岩铜钼矿成矿流体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城门山铜矿床位于长江中下游成矿带九瑞矿集区的南东端,由“斑岩型+矽卡岩型+块状硫化物型”三种矿体类型组成,在长江中下游成矿带具有典型意义。本文选择与石英斑岩体密切相关的斑岩型铜钼矿作为研究对象,通过流体包裹体对城门山斑岩铜钼矿的成矿流体进行了详细的研究,取得了以下主要认识和成果。
     1、城门山斑岩铜钼矿经历了岩浆期和热液期的成矿过程。岩浆期流体包裹体均一温度集中于220-540℃,盐度集中在28-54%NaCleq,流体密度集中在0.9-1.2g/cm~3,压力集中在3-60MPa;而热液期包裹体的均一温度集中在220-460℃,盐度集中在30-45%NaCleq,密度集中于1.0-1.2g/cm~3,压力集中在3-55MPa。结合同位素资料分析,认为岩浆期成矿流体来自岩浆,热液期成矿流体主要来源于岩浆,但受到少量大气降水的混合。
     2、城门山斑岩铜钼矿两期成矿流体的气相成分都以H2O为主,液相成分中阴离子为Cl~-、SO_4~(2-)、F~-等,阳离子为K~+、Na~+、Ca~(2+)、Mg~(2+)等,但以Na~+、K~+、Cl~-为主。另外在多相包裹体中普遍存在黄铜矿,表明成矿流体中富含Cu~(2+),Fe~(2+)等金属离子。因此,推断城门山斑岩铜钼矿的成矿流体为富矿质的NaCl-KCl-H_2O体系。
     3、城门山斑岩铜钼矿的成矿母流体为高温中低盐度的超临界流体,该流体在上升过程中发生过两次明显的沸腾作用。这一过程导致成矿体系的物理化学条件发生变化,特别是导致温度突降。该变化有助于大量矿物质沉淀富集,是控制该矿形成的主要因素。
     4、城门山斑岩铜钼矿与世界上大型斑岩铜钼矿流体特征相似,具备大型铜钼矿的形成条件,就目前的开采情况以及成矿深度来说,其深部和边部具有成矿远景。
The Chengmenshan copper deposit is located in the southeast of theJiujiang-Ruichang ore concentration area of the Middle-Lower Yangtze Rivermetallogenic belt, consisting of three ore types, namely porphyry, skarn and MassiveSulfide. This thesis focuses on the porphyry Cu-Mo deposit which is related to quartzporphyry from the perspective of fluid inclusions.
     The following are the major achievements obtained in this thesis.
     1) The formation process of Chengmenshan porphyry copper-molybdenumdeposit can be divided into the magmatic stage and the hydrothermal stage. Thehomogenization temperatures, salinity, density and pressure of magmatic stage aredefined mainly in the ranges of220-540℃,28-54wt%NaCl equiv,0.9-1.2g/cm~3and3-60MPa; the hydrothermal stage are defined mainly in the ranges of220-460℃,30-45wt%NaCl equiv,1.0-1.2g/cm~3and3-55MPa. The stable isotopic analysesindicated a derivation of the ore-forming fluids of the two stages from magmaticwater, while the ore-forming fluids of the hydrothermal stage mixed with a littlemeteoric water.
     2) The geochemical and petrographical study of fluid inclusions indicates thatthe gas component is mainly H_2O and the fliud component is mainly Cl-, SO_4~(2-), F~-, K~+,Na~+, Ca~(2+), Mg~(2+), Na~+, K~+, Cl-, Cu~(2+),Fe~(2+) and other metal ions, which indicates thatthe ore-forming fluids of Chengmenshan porphyry copper-molybdenum depositmostly belong to the NaCl-KCl-H_2O system with rich mineral.
     3) The fluids freshly derived from magma was high temperature and middle tolow salt supercritical ones, it had occurred twice boiling in evidence while itsintrution,which changes the physical and chemical conditions of the ore-formingsystem, especially for abrupt temperature dropping.And the abrupt temperaturedropping contribute to mineral enrichment, which is the main factor ofore-controlling.
     4) The fluid characteristics of Chengmenshan porphyry Cu-Mo deposit aresimilar to those of the large porphyry Cu-Mo deposits in the world, which indicates that Chengmenshan is capable to form a large copper-molybdenum deposit, andaccording to mining depth and ore-forming depth, Chengmenshan has mineralizingprospect.
引文
Beane BE and Bodnar RJ.1995. Hydrothermal fluids and hydrothermal alteration in porphyrycopper deposits. Porphyry cropper deposits of the American Cordillera; Arizona GeologicalSociety Digest,20:83-93.
    Beane RE and Titley SR.1981.Porphyry copper deposits PartⅡ. Hydrothermal alteration andmineralization. Economic Geology,75:214-269.
    Bischoff J L.1991.Densities of liquids and vapors in boling NaCl-H2O solutions:A PVTX summaryfrom300℃to500℃. Amer J Sci,289:217~248.
    Bodnar R.J.1983.A method of calculating fluid inclusion volumes based on vapor bubblediameters and PVTX properties of inclusion fluids. Econ Geol,78:535~542.
    Bodnar RJ, Burnham CW and Sterner SM.1985. Synthetic fluid inclusions in natural quartz.Ⅲ.Determination of phase equilibrium properties in the system H2O-NaCl to1000℃and1500bars.Geochimica et Cosmochimica Acta, v49: p1861-1873.
    Bodnar RJ and Cline IS.1991. Fluid inclusion petrology of porphyry copper deposits revisited;Re-interpretation of observed characteristics based on recent experimental and theoreticaldata Plinius,5:2-25.
    Bodnar RJ.1998. Fluid evolution in porphyry copper deposits [abs]: Goldschmidt Conference,Toulouse, abstracts:180-181.
    Bouzari F and Clark AH.2006.Prograde Evolution and Geothermal Affinities of a Major PorphyryCopper Deposit:The Cerro Colorado Hypogene Protore, I Regin,Northern Chile.EconomicGeology,101:95-134.
    Calagari AA.2003. Stable isotope(S,0, H and C)studies of the phyllic and potassic-phyllicalternation zones of the porphyry copper deposit at Sungun, East Azabaidjan, Iran.Journalof Asian Earth Sciences,21(7):767-780.
    Calagari AA.2004.Fluid inclusion studies in quartz veinlets in the porphyry copper deposit atSungun, East-Azarbaidjan,iran.journal of Asian Earth Sciences,23:179-189.
    Candela PA and Holland HD.1986.A mass transfermodel for copper and molybdenum in magmatichydrothermal systems:The origin of porphyry-type ore deposits.EconomicGeology,81(l):l-19.
    Clayton R N,O'Neil J R,Mayeda T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research;Solid Earth,1972,77(17):3057-3067.
    Cline JS and Bodnar RJ.1994. Direct evolution of brine from a crystallizing silicic melt at theQuesta New Mexico, Molybdenum Deposit. Economic Geology,89:1780-1802.
    Dilles JH and Einaudi MT.1992. Wall-rock alteration and hydrothermal flow paths about theAnn-Mason porphyry copper deposit, Nevada: A6-km vertical reconstruction. EconomicGeology,87(8):1963-2001.
    Goldstein R H.2003. Petrographic analysis of fluid inclusions.Fluid inclusions analysis andinterpretation. Mineralogical Association of Canada, Short Course Series,32:9-53.
    Haas JL Jr.1976. Physical properties of the coexisting phases and thermodynamic properties ofthe H2O component in boling NaCl solutions. U. S. Geological Survey Bulletin1421A:73p.
    Habermann D, Gotze J, Neuser R D.1999.The phenomenon of intrinsic cathodoluminescence:Casestudies of quartz,calcite and apatite.Zentralblatt fü-Geologie and Palaeontologie,12:1275-1284.
    Hall D L, Sterner S M, Bordnar R J.1988.Freezing point depression of NaCl-KCl-H2O solutions.Econ Geol,83:197-202.
    Harris AC and Golding SD.2002. New evidence of magmatic-fluid-related phyllicalternation:Implications for the genesis of porphyry Cu deposits. Geology,30(4):335-338
    Hedenquist JW and Lowenstem JB.1994. The role of magmas in the formation of hydrothermalore deposits. Nature,370(6490):519-527.
    Hedenquist JW, Arribas A, Jr and Reynolds TJ.1998.Evolution of an intrusion-centeredhydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits,Philippines. ECONOMIC GEOLOGY,v93: p373-404.
    Heinrich CA1999.Guenther D. Audetat A Ulrich T and Frischknecht R.Metal fractionationbetween magmatic brine and vapor,determined by microanalysis of fluid inclusions.Geology,27(8):755-758.
    Heinrich CA.2007, Fluid-fluid interaction, in magmatic-hydrothermal ore formation. Reviews inMineralogy and Geochemistry,65(1):363-387.
    Hemley JJ and Hunt JP.1992. Hydrothermal ore-forming processes in the light of studies inrock-buffered systems II: Some general geologic applications. Economic Geology,87(1):23-43.
    Henley, R.W and McNabb, A.,1978, Magmatic vapor plumes and groundwater interaction inporphyry copper emplacement: Economic Geology, v.73, p.1–20.
    Hezarkhani A.2006.Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu-Mo deposit, Iran:Evidence from fluid inclusions.Journal of Asian Earth Science,28:409-422.
    Klemm LM, Pettke T, Heinrich CA and Campos E.2007. Hydrothermal evolution of the ElTeniente Deposit, Chile:Porphyry Cu-Mo ore deposition from low-salinity magmaticfluids. Economic Geology,102(6):1021-1045.
    Krüger Y,Stoller P R,Frenz JM.2007.Femtosecond lasers in fluid inclusion analysis:Overcomingmetastable phase states.European Journal of Mineralogy,19:693-706.
    Landtwing MR,Pettke T, Halter WE,Heinrich CA, Redmond PB Einaudi MT and Kunze K.2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids.The Bingham porphyry. Earth and Planetary Science Letters,235(1-2):229-243.
    Lowenstem JB.1995. Applieations of silieate-melt inclusions to the study of magmatic volatiles.In: Thompson JFH(ed.).Magmas,Fluids and ore Deposits. Mineralogieal Association ofCanada Short Course,23:71-99.
    Moore, W. J., and Nash, J. T.,1974, Alteration and fluid inclusion studies of the porphyry copperore body at Bingham, Utah: Ecoa. GEOL., v.69, p.631-645.
    Nash JT and Theodore TG.1971.Ore fluids in the porphyry copper deposit at Copper Canyon,Nevada. Economic Geology,66(3):385-399.
    Olsen S N,Frry J M.1995.A comparative fluid inclusion study of the Waterville and Sangerilleformation,South-central Maine.Contributions toM ineralogy and Petrology,118:396-413.
    Robert R.Seal.Sulfur.2006.Isotope Geochemistry of Sulfide Minerals [J].Review in Mineralogyand Geochemistry.61:633-677.
    Roedder E and Bodnar RJ,1980. Geologic pressure determinations from fluid inclusion studies.Ann. Rev. Earth Planet Science,8:263-301.
    Roedder E,1984.Fluid inclusions.Mineralogical Society of Ameriea,Reviews in Mineralogy,12:644-645.
    Roedder E.1984.Fluid inclusions. Reviews in mineralogy. Mineral Soc Amer12:1-644.
    Rose, A. W.,1970, Zonal relations of wallrock alteration and sulfide distribution in porphyrycopper deposits: ECON. GEOL., v.65, p.920-936.
    Skinner, B. F.1979. The shaping of a behaviorist. New York: Knopf.
    Sterner S M,Bodnar R J.1989.Synthetic fluid inclusions.VII.Re-equilibration of fluid inclusions inquartz during laboratory-simulated metamorphic burial and up lift. Journal of MetamorphicGeology,7:243-260Van den Kerkhof, F H.2001.Fluid inclusion petrography.Lithos,55:27-47.
    Taylor H P.The application of oxygen and hydrogen isotope studies to problems of hydrothermalalteration and ore deposition [J].Economic Geology,1974,69(6):843-883.
    Thomas lrich et al.2001.The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MSAnalysis of Fluid Inclusions:Bajo de la Alumbrera,Argentina.EconomicGeology,96:1743-1774.
    Ulrich T, Gunther D and Heinrich C A.2011.The evolution of a porphyry Cu-Au deposit, Based onLA-ICP-MS analysis of fluid inclusions: Bajo de laAlumbrera,Argentina.Econ.Geol.,96:1743-1774.
    Urusova MA.1975. Volume properties of aqueous solutions of sodium chloride at elevatedtemperatures and pressures. Russian Journal of Inorganic Chemistry, v20:p1717-1721.
    曹剑,姚素平,胡文等.2006.油气包裹体中水的检出及其意义.科学通报,51(13):1583-1588.
    常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社.379页.
    陈红汉,董伟良,张树林等.2002.流体包裹体在古压力模拟研究中的应用.石油与天然气地质,23(3):207-211.
    陈骏,王鹤年.地球化学〔M〕.北京:科学出版社,2005:129-135.
    陈衍景,倪培,范宏瑞,Pirajno F,赖勇,苏文超,张辉.2007.不同类型热液金矿系统的流体包裹体特征.岩石学报,23(9):2085-2108.
    陈岳龙,杨忠芳,赵志丹.同位素地质年代学与地球化学[M〕.北京:地质出版社,2005:262-276.
    池国祥,卢焕章.2008.流体包裹体组合对测温数据有效性的制约及数据表达方法.岩石学报,24(9):1945-1953.
    池国祥,周义明,卢焕章.2003.当前流体包裹体研究和应用概况(英文).岩石学报,19(2):
    201-212.
    单秀琴,钱玲,胡国艺等.2006.塔中奥陶系岩石地球化学通报,25(1):37-41.
    顾连兴、徐克勤.1986.论长江中下游石炭世海底块状硫化物矿床.地质学报.No.2.
    黄恩邦,孟良义,张乃堂等.城门山武山铜矿地质.矿床专著一有色金属矿产,1990,152-173页.
    黄恩郑,张遒堂,罗钊生.1990.城门山、武山铜矿床成因.矿床地质,9(4):291-300.
    季绍新,王文斌,邢文臣.1989.江西九瑞地区两个成矿系列的铜矿床.矿床地质,8(2):14-24.
    李诺,陈衍景,赖勇等.2007.内蒙古乌努格吐山斑岩铜钼矿床流体包裹体研究.岩石学报,(23)
    9:2177-2188.
    李文达.1989.论扬子型铜矿床及其成因.中国地质研究院南京地质矿产研究所所刊.(10)2:1-13.
    李荫清,芮宗瑶,程莱仙.1981.玉龙斑岩铜(钼)矿床的流体包裹体及成矿作用研究[J].地质学
    报,55(3):216~232.
    刘斌,沈昆.1999.流体包裹体热力学原理.北京:地质出版社.290页.
    刘湘培等.1988.论长江中下游成矿条件和成矿规律,地质学报,Vol.62,No.3.p167-177.
    卢焕章,范宏瑞,倪培等.2004.流体包裹体.北京:科学出版社,20-22页.
    卢焕章.1997.成矿流体.北京:北京科学技术出版社,182-190.
    毛景文,邵拥军,谢桂青等.2009.长江中下游成矿带铜陵矿集区铜多金属矿床模型.矿床地质,28(2):109-119.
    孟良义,黄恩邦.城门山铜、钼矿床稳定同位素地质〔J〕.长春地质学院学报,1988,18(3):269~276.
    芮宗瑶,黄崇柯,齐国明,徐压,张洪涛.1984.中国斑岩铜(钥)矿.北京:地质出版社,l-350.
    芮宗瑶,王龙生,王义天.2002.成矿系统的始态、终态及其过程.矿床地质,22(2):137-148.
    芮宗瑶,张洪涛,陈仁义等.2006.斑岩铜矿研究中若干问题探讨.矿床地质,25(4):491-410.
    芮宗瑶,赵一鸣,王龙生,王义天.2003.挥发份在夕卡岩型和斑岩型矿床形成中的作用.矿床地质,22(1):141-148.
    谭耀辉,息朝庄.2008.江西城门山铜钼矿床特征与成因研究.矿业快报,473(9):46-50.
    唐有成,吴言昌,储国正等.1998.安徽沿江地区铜多金属矿床地质.北京:地质出版社.351页.
    王道华等.1987.长江中下游区域铜、金、铁、硫矿床基本特征及成矿规律.北京:地质出版社.
    吴利仁,李秉伦.中国东部中生代两代斑岩型矿床[M],北京:科技出版社,1991:242-249.
    吴俊华,龚敏,龚鹏等.2010.江西九江城门山铜矿三维地质地球化学特征与成矿预测.地质通报,29(6):926-932.
    席明杰.硫同位素在地球化学异常成因判别中的应用:[硕士学位论文].北京:中国地质科学院,2009.
    谢玉玲,侯增谦,徐九华等.2005.藏东玉龙斑岩铜矿床多期流体演化与成矿的流体包裹体证据.岩石学报,21(5:):1409-1415.
    翟裕生,池三川,姚书振.1981.长江中下游铁矿床的构造控制及成矿模式.北京:地质出版社.
    翟裕生,姚书振,林新多等.1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社.235页.
    翟裕生等.1983.长江中下游地区铁铜矿床的类型、形成条件和成矿演化,地球科学,No.4.
    张绮玲,曲晓明,徐文艺等.2003.西藏南木斑岩铜钼矿床的流体包裹体研究.岩石学报,19(2):251-259.
    张文淮,陈子英.1993.流体包裹体地质学.武汉:中国地质大学出版社.4页.
    张文淮,秦江艳,张德会等.2008.斑岩型Au矿床的包裹体标志:以黑龙江金厂金矿矿床为例.岩石学报,28(9):2011-2016.
    赵鹏大,池顺都,李志德等.2006.矿产勘查理论与方法.武汉:中国地质大学出版社,Ⅰ-Ⅱ页.
    赵瑞,谢奕汉,姚御元,霍卫国.城门山及武山铜矿床的硫同位素研究[J]地质科学19853:251-258.
    周永康,1999,走向资源科学大国和地学强国,科技日报,1999年12月2日.
    朱训,黄崇柯,丙宗瑶等.1983.德兴斑岩铜矿床北京:地质出版社,1-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700