胶东大尹格庄金矿床构造控矿规律与矿体定位预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大尹格庄金矿床是胶东招平断裂带中部典型的大型破碎带蚀变岩型金矿床。论文以系统的野外地质观测和矿床探采资料为基础,综合分析了大尹格庄金矿床的成矿背景、地质特征、控矿构造和矿化网络空间结构特征,探讨了其矿体定位规律,并进行了成矿预测。
     矿区内断裂构造发育,主要有招平断裂、大尹格庄断裂、南周家断裂、南沟断裂,金矿床的形成与分布严格受到断裂构造控制。招平断裂既是控矿构造,又是导矿和容矿构造,沿玲珑花岗岩体与胶东群的接触面展布,矿床产于断裂下盘的玲珑花岗岩体中。大尹格庄断裂是晚于招平断裂的成矿前或成矿期构造,它把招平断裂错为南北两段,北段形成Ⅱ号矿体群,南段形成Ⅰ号矿体群,两者地质特征有较大的差异。南周家断裂为成矿后的浅部脆性断裂,南沟断裂为成矿前的基底构造,二者对矿体没有明显的影响。
     矿床的构造-蚀变-矿化分带明显,构造分带控制了蚀变和矿化分带,形成了有序分布的矿化类型。距断裂面由近到远依次发育了黄铁绢英岩带、黄铁绢英岩化花岗质碎裂岩带、黄铁绢英岩化花岗岩带。
     大尹格庄金矿床的矿体分布总体上受各级构造联合控制,各级构造的影响作用随深度变化。在浅部,主干控矿构造控制矿化总体展布(蚀变带的分布),次级构造则控制了矿体在蚀变带内赋存的具体位置、形态及局部富集,矿体一般形态复杂,多呈枝脉状,矿化类型多样,品位变化较大;随深度的增加,浅脆性次级构造控矿作用逐渐减弱,主干断裂不但控制了矿化蚀变带的展布,而且直接控制了矿体在蚀变带内的产出样式,矿体形态简单,随招平断裂主裂面变化,多呈大脉状,矿化类型单一,品位分布均匀。Ⅰ、Ⅱ号矿体的厚大部位自上而下明显向NE方向侧伏。主矿体定位于招平断裂带内;一定规模的NEE向次级断裂、与招平断裂主裂面平行的次级断裂、招平断裂带与其分支组成的的“y”字型构造、多条NE与NW向断裂交汇而成的菱形区、构造岩和断层泥厚大部位、已知矿体NE侧伏方向是成矿有利位置。
     预测成矿重点区在已知矿体的NE侧伏方向,预获金金属量158,421kg。
Dayin’gezhuang gold deposit, hosted in altered granitoid, is a typical large-scale altered deposit located in the fracture zone of the center part of Zhaoping fault belt, northwest Shandong province. Basing on systemic geological field observations and exploring-mining documentation, the paper analysed comprehensively geological characteristics, ore-controlling structures, mineralization networks characteristics of the deposit and studied orebody distribution regularities, and prospected the most advantageous targets for new ore bodies.
     There are many faults in the mining field that control the orebodies distribution. The Zhaoping fault, being not only the ore-controling but also the ore fluids transmitting and ore hosting structure, occurres along the interface of Linglong granite and Jiaodong Group. Most of the mined ore bodiesis are hosted in the altered Linglong granite which located on the footwall of the Zhaoping fault. The Dayin’gezhuang fault formed later than the Zhaoping fault, and might be earlier than mineralization event or syn-mineralization. The Dayin’gezhuang fault divided the ore bodies into two groups, north ore bodies group and south ore bosy group. The north group is named No.2 orebodies group, and the south part is named No.1 orebodies group. The No.1 and the No.2 groups are different in alteration and mineralization characteristics. The Nanzhoujia fault is a shallow and brittle fault after mineralization. The Nangou fault is a basement structure .The Nanzhoujia fault and the Nangou fault have no obvious control on gold mineralization.
     The deposit show obvious structure-alteration-mineralization zonings. Structure zones controlled the alteration zones and mineralization zones, forming regularly distributed mineralization and alteration patterns. From proximal to distal of the Zhaoping fault, alteration zones are pyrite-beresite, beresitizated cataclastic granite, and beresitizated granite.
     Orebody distribution in the Dayin’gezhuang gold deposit is generally controlled by faults and fractures of different scale. The structure control on ore bodies varies with depth. In shallow, the main ore-controlling structures confined the altered belt distribution. Secondary structures control the specific ore bodies’positions, shapes and partial enrichment of gold mineralization. Orebodies reveal complex branch-vein shape with various mineralization types and grades. With the increase of depth, the effect of shallow-brittle secondary ore-controlling structures gradually reduced. Main structure controls not only altered belt distribution but also the patterns of the orebodies. Orebodies show simple large vein shapes which varies with main structures, single mineralization type and stable in grades.
     Thick parts of No.1 and No.2 orebodies group pitch NE.
     The main orebodies are located within Zhaoping fault belt. Some NEE trending secondary structures, structures parallel to Zhaoping fault,“y”style structures constituted by main structure and secondary structures, rhombic zones confined by NEE structures and NW structures, sections of great thickness of tectonite and fault gouge, NE pitching direction of the known orebodies are all favorable targets for gold mineralization.
     The NE trending direction of known orebodies is the key forecast zone where we may probably get 158421 kg AU.
引文
Boullier A M and Robert F. Palaeoseismic events recorded in Archean gold-quartz vein networks. Journal of Structural Geology. 1992,14:161~179.
    Boulter C A, Fotios M G, and Phllips G N. The Golden Mile. Kalgoorlie, A giant deposit localized in ductile shear zones by structurally induced infiltration of an auriferous metamorphic fluid. Economic Brown,PE.Ore genesis:the contribution and Confusions of stable isotope investigations. in: Revolution in the earth science:advance in the past half century,1989.
    Chunying Guo, Jun Deng, Bangfei Gao, et al. Copper Geochemical Anomalies Fractal Separation in a Certain Area, Northwest Yunnan Province, China. The 12th Conference of the International Association for Mathematical Geology, Pengda Zhao Eds.. Printed by China University of Geosciences Printing House,2007, 249-252. Deng Jun, Yang Liqiang, Ge Liangsheng,et al. Preliminary studies of Fluid Inclusions in Damoqujia Gold Deposit along Zhaoping Fault Zone, Shandong province, China. Acta Petrologica Sinica, 2007, 23(1): 153~160.
    Deng Jun, Fang Yun, Yang Liqiang, et al. Numerical modeling of ore-forming dynamics of fractal dispersive fluid systrms. Acta Geologica Sinica. 2001,75(2):220~232.
    Deng Jun, Wang Qingfei, Wan Li, Yang Liqiang, Liu Xuefei. Singularity of Au Distribution in Altered Rock Type Deposit —— an example from Dayingezhuang gold ore deposit. In: Zhao Pengda, Agterberg Frits and Cheng Qiuming (Eds.). Proceedings of IAMG’07: Geomathematics and GIS Analysis of Resources, Environment and Hazards, 12th Conference of Int. Association for Mathematical Geology, Beijing, China, August 26-31, 2007, 44~47.Geology, 1987, 82:1661~1678.
    Groves,D.I,et al.Orogenetic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit typs.Ore Geology,1998,13:7~27.
    Haymes F.M,Kesler L.Composition and sources of mineralizing fluids for chimney and manto limestone-replacement ores in Mexico.Econ geol,1988,83:1985-1993.
    Kerrich R.Geodynamic setting of mesothermal deposits:An association withaccretionary tectonic regimes. Geology ,1990,18:882~885.
    Lonka H, Schulmann K and Venera Z. Ductile deformation of tonalite in the Suomusjarvi shear zone, southwest Finland. Journal of Structural Geology, 1998,20(6):783~798.
    McCaig A M. Deep fluid circulation in fault zones. Geology, 1988, 16: 867~870.
    Sibson. R H, Robert F , Poulsen K H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold deposits. Geology, 1988, 16(6):551~555.
    Qiuming C, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods [J]. Journal of Geochemical Exploration, 1994, 51: 109~130.
    Qiuming C, Agterberg F P, Bonham –Carter G F. A spatial analysis method for geochemical anomaly separation [J]. Journal of Geochemical Exploration, 1996, 56: 183~195.
    Wang Qingfei,Deng Jun,Wan Li,Yang Liqiang and Gong Qingjie. Discussion on the kinetic controlling parameter of the stability of orebody distribution in altered rocks in the Dayingezhuang gold deposit, Shandong. Acta Petrologica Sininca, 2007, 23(4): 861~864.
    Wu Ganguo, Zhang Da. Structural control on concentration and dispersion of ore-forming elements, ○c VSP, Proc, 30thInt’l. Geol. Congr, 1997, 14:293~303.
    Yang Liqiang, Deng Jun, Ge liangsheng, et al. Metallogenic Age and Genesis of Gold Ore Deposits in Jiaodong Peninsula, Eastern China: A Regional Review. Progress in Nature Sciences, 2007, 17(2): 138~143.
    Yang Liqiang, Jun Deng, Chunying Guo, et al. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China. 2008, Resource Geology (in review).
    Yang Liqiang, Deng Jun, Wang Qingfei , et al. Coupling Effects on Gold Mineralization of Deep and Shallow Structures in the Northwestern Jiaodong Peninsula, Eastern China. Acta Geologica Sinica, 2006, 80(3): 400~411.
    Yang Liqiang, Deng Jun, Ge liangsheng, et al. Metallogenic Age and Genesis of Gold Ore Deposits in Jiaodong Peninsula, Eastern China: A Regional Review. Progress in Nature Sciences, 2007, 17(2): 138~143.
    成秋明. 多维分形理论和地球化学元素分布规律[J]. 地球科学, 2000, 25(3): 311~318.
    成秋明. 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J]. 地球科学, 2001, 26(2): 161~166.
    程小久, 翟裕生. 不同类型容矿构造中矿体铅锌品位分形特征[J]. 矿床地质,1994,13(S1):113~115
    邓军, 杨立强, 王庆飞, 等. 胶东矿集区金成矿系统组成与演化概论. 矿床地质. 2006, 25(增刊): 67~70.
    邓军, 吕古贤, 杨立强, 等. 构造应力场转换与界面成矿. 地球学报, 1998, 19(3): 244~250.
    邓军, 方云, 杨立强, 等. 剪切蚀变与物质迁移及金的富集—以胶东矿集区为例. 地球科学—中国地质大学学报. 2000,25(4): 428~432.
    邓军, 王庆飞, 杨立强, 等. 胶东西北部金热液成矿系统内部结构解析[J]. 地球科学, 2005, 30(1): 102~108.
    高帮飞, 杨立强, 王庆飞, 等. 胶东大尹格庄金矿床控矿显微构造特征. 黄金, 2007,28 (1): 9~12.
    高秋斌, 范永香, 王可勇,等.金矿床深部成矿预测的主要途径.黄金地质,1998,4(2):21~26.
    韩淑琴, 邓军, 杨立强, 等. 三维构造应力场分析在胶东招远—平度断裂带中段深部金矿探查中的应用. 地质力学学报, 2006, 12(3): 338~344, 316.
    李德秀, 高帮飞, 刘琰, 等. 大尹格庄金矿床构造控矿规律及找矿意义. 地质与勘探, 2006, 42(4): 32~35. 李惠, 郑涛, 汤磊, 等. 山东招远大尹格庄金矿床隐伏矿定位预测的叠加晕模式. 有色金属矿产与勘查. 1998, 7(3): 178~185.
    李金祥. 胶东西北部招平断裂带构造特征与成矿:[博士学位论文]. 北京:中国地质大学(北京), 2005.
    李卫革, 李龙义, 张瑞忠, 等. 胶东大尹格庄金矿床地质特征与深部资源前景. 地质力学学报, 2003, 9(3): 254~260.
    林吉照. 山东招金集团公司矿山地质论文集. 北京:地震出版社,2001.
    刘善宝. 山东乳山金青顶金矿田成矿规律及其成矿远景研究:[硕士学位论文]. 西安:长安大学,2005.
    刘晓煌, 张效智, 哈本海, 等. 招平断裂带地质特征及成矿预测浅析. 黄金. 2003,24(12):10~13.
    韩东昱, 龚庆杰, 向运川. 区域化探数据处理的几种分形方法.地质通报. 2004, 23(7): 714~719.
    江少卿, 招平断裂带金矿床构造-流体演化—磁组构与流体包裹体面约束:[硕士学位论文]. 北京:中国地质大学(北京), 2007.
    孟宪伟, 窦明晓, 余先川. 地球化学场分解的理论与方法[J]. 地球科学进展, 1994, 9(6): 59~64.
    孟宪伟, 张晓华. 多标度分形与地球化学场分解[J]. 地质与勘探, 1996, 32(4): 47~49.
    潘红伟,张瑞忠,樊明玉. 山东大尹格庄金矿 NWW 向断裂控矿作用浅析. 黄金,2008,29 (1):21-24.
    沈步明, 沈远超. 新疆某金矿的分维特征及其地质意义[J]. 中国科学(B 辑), 1993, 23(3): 297~302.
    申维. 分形混沌与矿产预测[M]. 北京: 地质出版社, 2002, 1~18.
    沈昆, 胡受奚, 孙景贵,等. 山东招远大尹格庄金矿成矿流体特征. 岩石学报, 2000, 016(04):542~550.
    沈远超,刘铁兵,曾庆栋,等. 中国金矿床成矿预测的理论与方法. 北京:科学出版社,2001.
    申玉科.胶西北金矿集中区构造_蚀变网络研究:[博士学位论文]. 北京:中国地质大学(北京), 2006.
    施俊法. 浙江省诸暨地区元素地球化学分布与标度律[J]. 地球科学, 2001, 26(2): 167~171.
    施俊法, 向运川, 王春宁. 区域地球化学异常空间分形结构及其意义—以浙江省诸暨地区区域地球化学数据为例 [J]. 矿物学报, 2000, 20(1): 68~72.
    滕吉文, 杨立强, 姚敬全, 等. 金属矿产资源的深部找矿?勘探与成矿的深层动力过程. 地球物理学进展, 2007, 22 (2): 317~334.
    谭凯旋. 砂岩铜矿床的分形分析与资源远景预测[J]. 湘潭矿业学院学报, 1999,14 (1):6~10.
    田锋. 谢家沟金矿元素地球化学特征及原生叠加晕模型:[硕士学位论文].北京:中国地质大学(北京),2005.
    童纯菡, 李晓林, 李巨初, 等. 地气法—找深部金矿的新方法. 1996, 18(增刊), 13~16.
    魏民, 刘红光, 王学平, 等. 中国砂金矿床吨位—品位模型[J].地质科技情报,2000,19(2):43~44.
    魏民, 赵鹏大, 刘红光, 等. 中国岩金矿床品位-吨位模型研究[J]. 地球科学-中国地质大学学报, 2001, 26(2):176~179.
    王庆飞, 万丽, 刘学飞. 典型构造蚀变岩型金矿远景资源量数学模型与预测. 矿床地质, 2007, 26(3): 341~345.
    万丽, 王庆飞, 高帮飞, 等. 成矿预测数据统计方法. 现代地质, 2005, 19(4):615~620.
    万丽,王庆飞. 成矿元素品位有序数据集自仿射分形方法应用性评价.地球科学进展,2007,22(4):357~361.
    王学平, 魏民, 杨丽沛, 等. 中国接触交代型铜矿床品位、吨位模型[J]. 地质科技情报,1999,18(1):67~70.
    王学平, 魏民, 杨丽沛, 等. 中国斑岩型铜矿床品位—吨位模型[J]. 地质与勘探,2000,36(1):57~59.
    谢和平. 分形-岩石力学导论 [M]. 北京: 科学出版社, 1996, 11~15.
    肖克炎, 李景朝, 陈郑辉, 等. 中国铜矿床品位吨位模型[J]. 地质论评, 2004,50(1):50~56.
    杨立强, 邓军, 王庆飞, 等. 深部构造与地质过程控矿研究.矿床地质. 2006, 25(增刊): 107~110.
    曾庆栋, 沈远超, 刘铁兵, 等. 山东平邑卓家庄金矿金品位的分形结构特征及意义[J]. 地质与勘探,2000,36(3):43~45.
    翟裕生, 邓军, 李晓波. 区域成矿学. 北京:地质出版,1999.
    张瑞忠, 高帮飞, 郭春影, 等. 胶东大尹格庄金矿床矿体定位与成矿预测. 黄金, 2008, 29 (4):9~13.
    张文钊, 徐述平. 招平断裂带成矿特征与找矿靶区. 黄金科学技术. 2006, 14(2): 1~10.
    张艳彬. 山东招远黄埠岭金矿床地质特征及矿化富集规律:[硕士学位论文]. 吉林:吉林大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700