深海固体矿产资源相关数据处理分析及定量评价方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为战略矿产资源,多金属结核、富钴结壳、热液硫化物等深海固体矿产越来越引起人们的关注,世界各国纷纷把战略目光转向了空间广阔、资源丰富的海洋,深海矿产资源的调查与评价工作越来越受到人们的重视。然而,由于深海和陆地矿产资源评价工作的的差异性,诸如海底调查程度低、控矿因素复杂且不确定性高、背景数据资料少且成矿模式不统一等,在陆地矿产评价中发挥重要作用的定量评价方法没有被系统地应用于深海矿产资源评价工作中。
     目前,深海矿产资源调查与评价工作是依据已有认识或专家判断,来选择调查区的,基本上未使用矿产资源定量评价技术来圈定重点勘探靶区。随着深海矿产资源调查技术的长足发展和资源调查工作的逐步深入,到了将陆地固体矿产资源定量评价理论和方法引入深海的时候了。本文拟将此作为研究工作的重点,尝试将陆地矿产资源定量评价方法引入深海,结合深海矿产资源评价特点,给出较系统定量评价方法。结合陆地矿产资源定量评价思路提出较系统的深海固体矿产资源定量评价方法,并将该方法应用于CC区锰结核资源。具体思路如下:
     首先,收集、整理和总结深海目标矿区(或典型矿区)的矿产数据资料及知识,收集、整理涵盖典型矿区的周边广大海底的背景数据资料及知识。对典型矿区前人研究成果的收集、整理和总结,可以得到成矿规律性的认识,为矿产的定量预测模型的建立,提供先验知识;对包含典型矿区的广大周边海底信息的收集整理,可以为典型矿区的预测模型推广提供证据图层。?
     其次,进行数据信息预处理。数据处理方法主要包括数据去异、数据网格化、数据变换和预测单元的选取等等。通过预处理,排除异常数据的影响,克服数据单位和量级不一致的所带来的弊病,同时将不规则数据变成均匀分布的数据矩阵,满足模型计算的需要。数据处理分析水平直接影响矿产资源定量预测建模的效果。?
     再次,对经过预处理后的数据进行信息特征提取。提取信息特征的方法有很多种,这里只介绍适合深海矿产资源相关数据的信息特征提取方法。这些方法包括空间场特征、统计特征、定性特征等的提取方法。信息特征提取技术能为矿产资源评价提供更多的证据图层,为矿产资源定量建模提供自变量信息。?
     最后,引入了适合实验区资源评价的两个新模型,即“证据权回归模型”和“Fuzzy?ARTMAP模型”。证据权回归模型可同时实现资源的定位和定量预测。改进的成分化Fuzzy?ARTMAP模型,能同时估算出多种金属的品位。前者是将两个已有算法进行组合使用而衍生的新方法,后者是第一次被应用于矿产资源定量评价工作中。这两个模型在实验区的实际应用中取得良好效果,被证明适合深海矿产资源定量评价工作。?
As strategic mineral resources, deep‐sea solid mineral resources, such as polymetallic nodules, cobalt‐rich crusts, and hydrothermal sulfide, has drawn more attention and many countries have shifted their strategic vision to the vast and resource‐rich ocean, so deep‐sea mineral resources surveying and assessment become more and more important. However, due to the differences between deep‐sea and land mineral resources, such as the low level of seabed surveying, complex ore‐controlling factors and high uncertainty, lack of background data various metallogenic model of data and so on, quantitative estimation methods, playing an important role in land mineral assessment, has not been systematically applied in the estimation of deep‐sea mineral resources.
     At present, the deep‐sea mineral resources surveying and estimation is based on the existing knowledge or expert judgments to select the survey area, basically not using quantitative assessment technology to delineate target areas. With the development of deep‐sea mineral resources surveying techniques, it is time to introduce the theory and methods of land mineral resources quantitative evaluation to deep sea. This research work intends to focus on this point trying to introduce the theory and methods of land mineral resources quantitative evaluation to deep sea, and gives a more systemic quantitative assessment method, combining with the characteristic of deep‐sea mineral resources assessment. The systemic deep‐sea mineral resources quantitative assessment methods are proposed based on the thoughts of land solid mineral resources quantitative assessment, and are applied to manganese nodule resources in CC zone. Specific ideas are as follows:
     First, collect, classify and summarize the mineral data and knowledge in deep‐sea target mining area (or typical mining area), then collected, classify the background data and knowledge on typical mining area and its surrounding areas. The knowledge of metallogenic regularity can be obtained by collecting, classifying and summarizing the results of previous studies on typical mining area, to provide a priori knowledge for establishing the estimated model. The collection and classification of the information on the typical mining area and its surrounding areas can provide evidence layers for generalization of estimated model on typical mining area
     Second, preprocess data. Data processing methods include removing abnormal data, data gridding, data transformation and estimating unit selection and so on. Through the preprocessing, the impact of abnormal data is excluded, the inconsistencies of data units and magnitude is overcome, while irregular data is transformed into a uniform the data matrix, meeting the needs of model calculation. Direct impact on the level of data processing and analysis impacts directly the effect of modeling.
     Third, feature extraction after data preprocessing. There are many ways for feature extraction, and here only the information extraction methods for deep‐sea mineral resources data are introduced,. These include methods for extracting spatial field features, statistical features and the qualitative fractures. Information extraction technology can provide more evidence layers and independent variable information.
     Finally, introduce two new assessment models for experiment area. They are "weight of evidence regression model" and "Fuzzy ARTMAP model." Weight of evidence regression model realize simultaneously positioning and quantitative estimation. Modified Fuzzy ARTMAP element model, which can estimate the metallic grade of many kinds of metal. The former is a combination of two existing algorithms, and the latter is used in the work for the first time. The two models get good results in the practical application, which proves to be suitable for quantitative assessment of deep‐sea mineral resources.
引文
[1]谢格洛夫.成矿分析基础.吴承栋译.北京:地质出版社,1985.1~414.
    [2]刘安洲等.成矿信息论与大比例尺矿产靶区定量预测.吉林:吉林大学出版社,1991.1~240.
    [3]王银宏.矿产资源潜力定量评价研究—以长江中下游斑岩铜矿为例[博士学位论文].北京:中国地质大学,2005.
    [4]王仁铎,胡光道.线性地质统计学.北京:地质出版社,1987.1~252.
    [5]肖克炎,王勇毅,陈郑辉,等.中国矿产资源评价新技术与评价新模型.北京:地质出版社,2006.1~260.
    [6]李裕伟,赵精满,李晨阳.基于GMS、DSS和GIS的潜在矿产资源评价方法.北京:地震出版社,2007.1~862.
    [7]刘驰.地理信息系统(GIS)在矿产资源评价中的应用.辽宁地质,1999,16(3):234~237.
    [8]王世称,陈永良.夏立显.综合信息矿产预测理论与方法.北京:科学出版社,2000.1~335.
    [9] http://www.ige.unicamp.br/sdm/Arc SDM93/source/ReadMe_ArcSDM2009.pdf
    [10] J.M.Botbol.An Application of Characteristic Analysis to Mineral Exploration, Proceedings of 9th International Symposium on Techniques for Decision-Making in the Mineral Industry.Montreal,Canada:Canadian Institute of Mining and Metallurgy,Special Volume 12.1971,12:92~99.
    [11] http://www.sres-whu-edu.cn/garden/courseware/gis/ch1/4.1.htm
    [12]肖克炎,张晓华,王四龙,等.矿产资源GIS评价系统.北京:地质出版社,2000.1~142.
    [13]赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展.地学前缘,2003,10(2):455~463.
    [15] International Seabed Authority.Establishment of a geological model of polymetallic nodule deposits in the Clarion-Clipperton fracture zone of the equatorial North Pacific Ocean.Kingston,International Seabed Authority,2009.
    [16] United Nations Ocean Economics Technology Branch. Assessment of Manganse Nodules Resources, London:Graham & Trotman Limited, 1982. 1~68.
    [17] United Nations Ocean Economics Technology Branch. Delineation of Mine sites and potential in different sea areas, London:Graham & Trotman Limited, 1987. 17~30.
    [18]李裕伟.应用二维克里金评价大洋多金属结核资源.深海采矿政策研讨会.北京,海洋出版社,1991. 72~78.
    [19]张富元.克立格法在大洋多金属结核资源量计算和资源评价中应用.海洋学报,1995,17(4):94~100.
    [20]张富元,沈华悌,韩喜球.太平洋多金属结核富集区结核丰度和品位的地质统计学分析.沉积学报,1997,15(3):126~132.
    [21]何高文.大洋多金属结核资源勘查Ⅱ阶段资源量计算方法的选择.海洋地质与第四纪地质,1999,19(4):21~29.
    [22]朱克超.应用克里格法评价多金属结核不同勘查阶段的勘探网度及资源量,南海地质研究,1997,9:105~111.
    [23]朱克超,王公念.多金属结核海底照片图像处理结果的地质解释.海洋地质与第四纪地质,1997,17(3):53~61.
    [24]王公念,朱克超,叶剑平,等.多金属结核海底照片的图像识别与处理.地质论评,1996,42(6),560~562.
    [25]张富元等.大洋多金属结核资源评价原理和矿区圈定方法.北京:海洋出版社,2001.1~150.
    [26]王英,金翔龙.人工神经网络在多金属结核研究中的应用.海洋学报,1998,20(5):83~89.
    [27]王英,金翔龙.利用人工神经网络方法研究多金属结核分布与水深的关系.东海海洋,1999,17(3):62~66.
    [28]王英,李家彪,韩喜球,等.地形坡度对多金属结核分布的控制作用.海洋学报,2001,23(1):60~65.
    [29]韩喜球,李家彪,王英,等.分形理论在太平洋多金属结核分布研究中的应用.海洋学报,2001,23(3):142~146.
    [30]杜德文,孟宪伟,石学法,等.CC西区多金属资源评价的协同区域化理论和方法.海洋学报,2005,27(2):98~105.
    [31]周宁,李德平,田赤英,等.证据权法在CC区潜在多金属结核资源预测中的应用.大地构造与成矿学,2008,32(3):352~359.
    [32]刘永刚.太平洋CC区多金属结核资源定量评价方法研究[硕士学位论文].青岛:国家海洋局第一海洋研究所,2008.
    [33]刘永刚,杜德文,李钟山,等.太平洋CC区及周边多金属结核分布及资源量预测.海洋科学进展,2009,27(3):342~350.
    [34]武光海,周怀阳,杨树锋.最近区域法与地质块段法在富钴结壳资源量评估中的综合应用.海洋地质与第四纪地质,2000,20(4):87~92.
    [35]何高文,赵祖斌,朱克超,等.西太平洋富钴结壳资源.北京,地质出版社,2001.1~83.
    [36]何高文.富钴结壳分布的分形特征.海洋地质与第四纪地质,2001,21(1):89~92.
    [37]杨克红,章伟艳,胡光道,等.分形理论在富钴结壳资源量评价方面的应用研究.地质与勘探,2004,40(6):61~64.
    [38]杨克红,胡光道,章伟艳,等.富钴结壳资源量评估参数的分形特征研究.地质科技情报,2004,23(4):88~93.
    [39]章伟艳,张富元,杨克红,等.太平洋海山地形与钴结壳资源分布的分形研究.沉积学报. 2006,24(5):705~713.
    [40]章伟艳,张富元,胡光道,等.中西太平洋海山形态类型与钴结壳资源分布关系.海洋学报,2008,30(6):76~84.
    [41]周林立,胡光道.分形理论在富钴结壳圈矿中的应用.矿产勘查,2010,1(2),173~177.
    [42]周林立,胡光道.富钴结壳资源量评估方法.海洋地质动态,2005,21(6):29~31.
    [43]马维林,初凤友,金翔龙.富钴结壳资源评价和圈矿方法探讨.2007,29(2):67~73.
    [44]章伟艳,张富元,程永寿,等.大洋钴结壳资源评价的基本方法.海洋通报,2010,29(3):342~350.
    [45]张富元,章伟艳,朱克超,等.钴结壳矿区圈定和资源评价的参数指标.地球科学-中国地质大学学报,2008,33(2):251~258.
    [46]温竹青,夏建新.深海硫化物资源评价方法及案例分析.海洋地质动态,2010,26(4):46~54.
    [47]李军.现代海底热液块状硫化物矿床的资源潜力评价.海洋地质动态,2007,23(6):23~30.
    [48]刘家远,单娜琳,钱建平,等.隐伏矿床预测的理论和方法.北京:冶金工业出版社,2006:1~203.
    [49]方银霞,包更生,金翔龙.21世纪深海资源开发利用的展望.海洋通报,2000,19(5):73~78.
    [50]邓希光.大洋中脊热液硫化物矿床分布及矿物组成.南海地质研究,2007,1:54~64.
    [51]袁见齐,朱上庆,翟裕生.矿床学.北京:地质出版社,1985:1~342.
    [52] J.J.Becker, D.T.Sandwell, W.H.F.Smith, et al. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLU. Marine Geodesy, 2009, 32:355~371.
    [53]阳正熙.矿产资源勘查学.北京:科学出版社,2006:1~7.
    [54]国家海洋局科技司.东太平洋多金属结核资源调查.北京:海洋出版社,1996.1~229.
    [55]张德玉,陈穗田.东太平洋海盆中、西部多金属结核主要锰矿物区域变化规律的研究.北京:海洋出版社,1998:7~8.
    [56]张富元,章伟艳,殷汝广,等.东太平洋CC区板块构造和多金属结核资源效应探讨.海洋学报,2001,23(4):61~67.
    [57]张富元,杨群慧,殷汝广,等.东太平洋CC区多金属结核物质来源和分布规律.地质学报,2001,75(4):542~544.
    [58]潘国富,华祖根.CC区多金属结核分布特征及其与地质地理环境因素之间的关系.海洋与湖沼,1996:27(4):68~76.
    [59]黄永样,杨惠宁,匡耀求,等.海底沉积物类型及其地球化学环境对多金属结核形成与分布的控制作用.武汉:中国地质大学出版社,1997:2~132.
    [60]张宏达,汪珊,武强,等.大洋多金属结核的成矿作用和模式.海洋地质与第四纪地质,2006,26(2):95.
    [61]鲍才旺,曾瑞坚,梁德华,等.海底地形地貌海流与多金属结核分布的关系.武汉:中国地质大学出版社,1997:44~52.
    [62]何高文.太平洋多金属结核和富钴结壳抵制地球化学特征与成矿机制对比研究[博士学位论文].广州:中山大学,2006.
    [63] Exon N F. Manganese nodule deposits in the Central Pacific Ocean and their variation with latitude.Marine Mining,1983, 4(1):79~107.
    [64]沈华悌.中太平洋海盆碳酸钙溶解带及其特征.见:沈华悌,钱江初编.东太平洋多金属结核论文集.北京:海洋出版社,1996:14.
    [65]金翔龙.东太平洋多金属结核矿带海洋地质与矿床特征.北京,海洋出版社,1997:435~436.
    [66]地质矿产部广州海洋地质调查局.太平洋地质科学调查(三).北京:地质出版社,1993:37~83.
    [67]王述功,刘忠臣,刘保华,等.太平洋CC区构造特征与多金属结核成矿条件研究.海洋与湖沼,1999,30(4):439~442.
    [68]钱江初,王星福.东太平洋多金属结核的形成年代及生长速率研究.东海海洋,1999,17(3):43~44.
    [69]沈华悌,陈建林,钱江初.东太平洋海盆勘察区多金属结核及其形成环境.见:沈华悌,钱江初编.东太平洋多金属结核论文集.北京:海洋出版社,1996:19~21.
    [70] Calverts S E,Price N B.Geochemical variation in ferromanganese nodules and associated sediments from the Pacific Ocean.Marine Chemistry,1977,(5):43~73.
    [71]钱江初,初凤友,冯旭文.大洋多金属结核中几种常见锰矿相的特征及其相关性.矿物学报,2006,26(2):152~158.
    [72]张丽洁.太平洋中部海底水-沉积物界面地球化学研究.海洋地质与第四纪地质,1991,11(增刊):126~127.
    [73] Hoi-Soo Jung,Chang-Bok Lee.Growth of diagenetic ferromanganese nodules in an oxic deep-sea sedimentary environment,northeast equatorial Pacific.Marine Geology,1998,157(1999):127~132.
    [74] Baturin G N.The geochemistry of Manganese and Manganese nodules in the Ocean.Holland:D. Reidel Publishing Company,1998:342.
    [75] Cronan D S.Underwater Minerals.London:Acadamic Press,1980:362.
    [76] Halbach P.Geochemical processes controlling the relationship between Co,Mn and Fe in early diagenetic deep-sea nodules.Earth and Planet,1982,60:226~236.
    [77]王湘芹.太平洋CC区多金属结核成矿元素迁移规律的界面地球化学研究.黄渤海海洋,1999,17(3):58~59.
    [78]梁宏锋,姚德.大洋多金属结核成因的地球化学标志.地质科技情报,1991,10(1):55~56.
    [79]姚德,梁宏峰,张丽洁,等.太平洋中部多金属结核稀土元素地球化学.海洋与湖沼,1993,24(6):571~575.
    [80]姚德.东太平洋和中太平洋海盆铁锰结核的物质组成、成矿介质和成矿作用研究[博士学位论文].青岛:中国科学院海洋研究所,1993.
    [81] Yubko. Regional and local features of geologic structure and ore potential of the Clarion-Clipperton zone. In: meeting of workshop to develop a Geological model of the Clarion-Clipperton polymetallic nodule deposits, Fiji Island, May 13-20, 2003, held by Internatioal Seabed Auhtority.
    [82] Von Stackellberg U,Beiersdorf H. The formation of manganese nodules between the Clarion and Clipperton fracture zones southeast of Hawaiii. Marine Geology, 1991,98(2-4):411~423.
    [83] Skornyakova N S,Murdmaa I O.Local variations in distribution and composition of ferromanganese nodules in the Clarion-Clipperton Nodule Province.Marine Geology,1992,103(1-3):381~405.
    [84] Holister C D,Johnson D A,Lonsdale P E. Current controlled abyssal sedimentation.Equatorial West Pacific.J.Geol., 1974,83(3):275~300.
    [85] Van Andel T H,Heath G R,Moore T C. Cenozoic History and Paleooceanography of the Central Equatorial Pacific Ocean.Geological Society America Memoir,1975,143:184.
    [86] Moore T C,Van Andel T H,Sancetta C,et al. Cenozoic Hiatuses in the pelagic sediments. Micropaleontal,1978,24:113~138.
    [87]许东禹,姚德,梁宏锋,等.多金属结核形成的古海洋环境.北京:地质出版社,1994:103~104.
    [88] Kazmin Y B. Geology of the Clarion-Clipperton Fracture Zone(CCZ)—Existing geologic information in respect of polymetallic nodules in the CCZ. In: meeting of workshop to develop a Geological Model of the Clarion-clipperton polymetallic nodule deposits, Fiji Island, May 13-20, 2003, held by Internatioal Seabed Auhtority.
    [89] Morgan C L. Geological Model inputs. In: meeting of workshop to develop a Geological model of the Clarion-Clipperton polymetallic nodule deposits, Fiji Island, May 13-20, 2003, held by Internatioal Seabed Auhtority.
    [90] Kazmin Yuri. Administering the Polymetallic Nodule Resources of the Deep Seabed. In Proceedings of the Tenth Anniversary commemotation of the Establishment of the International Seabed Authority. Kingston, Jamaica, 2004, 25 -26 May
    [91] Rawson M D, Ryan W B F. Oceanic floor sediment and polymetallic nodules. World oceanic floor panorama, Lamont-Doherty Geol. Obs., Palisades(map), 1978.
    [92] Chester R. Marine Geochemistry. USA: Blackwell Publishing,2003:172~173.
    [93] Halbach P, Puteanus D. The influence of carbonate dissolution rate on growth and composition of Co rich crusts from the Central Pacific seamount areas. Earth Planet. Sci. Lett. 1984, 68: 73~87.
    [94] Halbach. P.,G. Friedrich and Von U. Stachelberg. The Manganese Nodule Belt of the PacificOcean. Ferdinand Enke Verlag Stuttgant,1998.
    [95]赵鹏大.定量地学方法及应用.北京:高等教育出版社,2004:1~464.
    [96]王世称,杨毅恒,李景朝,等.综合信息矿产资源预测中的定性数据分析方法.吉林:吉林大学出版社,1999:1~175.
    [97]王世称,范继璋,杨永华.矿产资源评价.吉林:科学技术出版社,1990:1~246.
    [98]杜德文,马素珍,一种重磁特征线自动提取方法,物化探计算技术,1996,(4):320~324.
    [99] Ven katesh Raghavan ate. Automatic lineament extraction from digital images using a segment tracing and Rotation transformation approach. Computer and Geoscience, 1994,21(4): 555~591.
    [100] Cheng Q, Agterberg F P . The separation of geochemical anomalies from background by fractal methods. Geochemical Exploration,1994,51:109~130
    [101]杜德文陈永良,地球化学异常圈定的两种非线性方法及其与传统方法的比较.长春科技大学学报,1998,28:38~42.
    [102] Weszja J. A survey of threshold selection techniques. Computer graphics and Image processing. 1978, 7(2): 259~265.
    [103] Panda D P, Rosenfeld A. Image segmentation by pixel classification in space. IEEE Transactions on Computers. 1978, 27(9): 875~879.
    [104] Marr D, Hildreth E. Theory of Edge Detection. London: Royal Society of London, 1980.
    [105]杨刚,杜德文,吕海龙.数字海底地形分割算法.海洋科学进展,2004,22(2):204~209.
    [106] Wright D F. Data integration and geochemical evaluation of Meguma Terrance, Nova Scotia, for Gold Mineralization[Dissertation]. Univ. Ottawa, Ottawa, 1988.
    [107] Bonham-Carter G F , Agterberg F P, Wright D F. Integration of Geological Datasets for Gold Exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 1988, 54 (11): 1585~1592.
    [108] Bonham-Carter G F , Agterberg F P, Wright D F. Weights of evidence modelling: a new approach to mapping mineral potential. In: Agterberg F P, Bonham-Carter G F, eds. , Statistical Applications in the Earth Sciences. Geol. Survey Canada, Paper 89-9, 1989: 171~183.
    [109] Bonham-Carter G F . Geographic Information Systems for Geoscientists. Pergamon-Elsevier, Kidlington, UK, 1994: 398
    [110] Cheng Q . Asymmetric Fuzzy Relation Analysis Method for Ranking Geoscience Vareables. Nonrenewable Resources, 1996, 5 (3): 169~180.
    [111] Cheng Q, Agterberg F P. Fuzzy weights of evidence method and its application in mineral potential in Mineral potential mapping. Natural Resources Research, 1999,8 (1): 27~35.
    [112] Agterberg F P, Bonham-Carter G F. Logistic regression and weights of evidence modeling in mineral exploration. In: Proc 28th Intem Symp Computer Applications in the Mineral Industries Golden, Colorado, 1999, 483~490.
    [113] Raines G L. Evaluation of weights of evidence to predict epithermal-gold deposits in the GreatBasin of the western United States. Natural Resources Research, 1999: 257~276.
    [114] Agterberg F P, Bonham-Carter G F, Cheng Q M, et al. Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In: Davis J C and Herzfeld U C(ed). Computers in Geology: 25 years of progress. New York: Oxford Univ Press, 2003: 13~32.
    [115] Agterberg F P, Cheng Q. Conditional Independence Test for weights of evidence modeling. Natural Resources Research, 2002: 249~255.
    [116]杨毅恒,韩燕,徐兵,等.多维地学数据处理技术与方法.北京:科学出版社,2002:1~206.
    [117]王世称,王宇天,成秋明.综合信息矿产资源定量评价.吉林:长春地质学院,1987:1~212.
    [118] Carpenter G A, Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision Graphics and Image Processing. 1987, 37: 54~115.
    [119] Carpenter G A, Grossberg S. Stable self-organizationof pattern recognition codes for analog input patterns. Applied Optics. 1987, 26(23): 4919~4930.
    [120] Carpenter G A, Grossberg S. FUZZY ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps. IEEE Transactions on Neural Networks, 1992,3 (5): 698~713.
    [121] Gopal S, Sklarew D M, Lambin E. Fuzzy-neural Networks in Multitemporal Classification of Land Cover Change in the Sahel. Office and Office publications of the European Communities, Luxembourg, 1994.
    [122] Fischer M M, Gopal S, Staufer P, et al. Evaluation of Neural Pattern Classifiers for Remote Sensing Application. Geographical Systems,1997,4 (2): 195~226.
    [123] Luo C F, Liu Z J, Yan Q. Classification of CBERS-2 Imagery with FUZZY ARTMAP Classifier. Geo-spatial information science, 2007, 10 (2): 124~127.
    [124]刘正军,王长耀,延昊,等.基于Fuzzy ARTMAP神经网络的高分辨率图象土地覆盖分类及其评价.中国图象图形学报,2003,8A(2):151~155..
    [125]骆成凤,王长耀,牛铮.用模糊ARTMAP算法对CBERS-2数据进行分类.武汉大学学报·信息科学版,2006,31(4):325~328.
    [126] Zhou Xinghua, Chen Yongqi, Nick Emerson, et al. FUZZY ARTMAP neural network for seafloor classification from multibeam sonar data. High Technology Letters, 2006, 12 (2): 219~224. ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700